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Abstract

Table Detection (TD) is a fundamental task to enable visually rich document understanding, which requires the
model to extract information without information loss. However, popular Intersection over Union (IoU) based evalua-
tion metrics and IoU-based loss functions for the detection models cannot directly represent the degree of information
loss for the prediction results. Therefore, we propose to decouple IoU into a ground truth coverage term and a predic-
tion coverage term, in which the former can be used to measure the information loss of the prediction results. Besides,
considering the sparse distribution of tables in document images, we use SparseR-CNN as the base model and fur-
ther improve the model by using Gaussian Noise Augmented Image Size region proposals and many-to-one label
assignments. Results under comprehensive experiments show that the proposed method can consistently outperform
state-of-the-art methods with different IoU-based metrics under various datasets and demonstrate that the proposed
decoupled IoU loss can enable the model to alleviate information loss.
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1. Introduction

Table Detection (TD) is often a pre-processor step for information extraction and document understanding tasks [11,,
2]. One typical formulation for the TD problem is transforming the electronic documents into images and then using
object detection models to generate the bounding boxes of defined table objects. Current state-of-the-art methods [13,
4] for the TD problem usually employ two-stage object detectors, which require dense candidates and apply data
augmentation and multiple-stage transfer learning techniques. However, tables in visually rich documents are usually
well formatted and large so that human readers can easily interpret them. Besides, the number of tables in a single
document image is typically small, which means their distribution in a single document is sparse. Based on these
observations, we use SparseR-CNN [3] as the base model in this study, which is a competitive detector using sparse

learnable regional proposals. It is worth mentioning that many state-of-the-art studies for the TD problem often
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employ two-stage detectors using dense candidates and multiple-stage transfer learning techniques, which are usually
more complex than the proposed method. We also propose to use image size regional proposals to cover all the
information of target tables in the proposal boxes and use the noise augmentation method to enrich the diversity of
proposal boxes.

Since information extraction tasks often follow TD tasks, it is vital to avoid information loss. Therefore, a larger
prediction box is preferable to a smaller box that can lose information even when the latter box has a larger Intersection
over Union (IoU) score with the ground truth. Figure[Tluses a table as an example to further illustrate this observation.
The green box in Figure [[lhas an IoU score of 0.77 with the red ground truth box, while the blue box has an ToU
score of 0.82. Even though the blue prediction has a larger IoU score, the green prediction is preferable for TD
tasks. Motivated by these observations, we argue that the IoU score cannot directly reflect the information loss of a
prediction box. Therefore, we propose to decouple the IoU score into two terms: a ground truth coverage term and
a prediction coverage term, in which the former term can be used to measure the information loss for the prediction
boxes. It is worth mentioning that the proposed decoupled IoU score termed the Information Coverage Score (ICS),

can replace the IoU score in the IoU-based loss functions and evaluation metrics.
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Figure 1: Preferable prediction for TD tasks. The IoU scores of green and blue predictions are 0.77 and 0.82, respectively. The green prediction is

preferable for TD tasks, even though its IoU score is smaller.

On the other hand, label assignment in object detection models is to define the classification and regression targets
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for anchors [6]. Many studies [[7, 6]] have shown that label assignment plays a vital role in the success of a detector,
and the one-to-one scheme used in SparseR-CNN [3] is not optimal. Besides, SparseR-CNN employs a cascade
architecture that uses the outputs of ith Dynamic Head as the inputs of the i + 1th Dynamic Head to refine the
predictions, as shown in Figure @] which means that the proposal quality of each Dynamic Head varies. Therefore,
inspired by the studies [7, 18, 16, 19, [10], we leverage a SimOTA [10] based many-to-one label assignment approach,
which further improves the SimOTA by adapting a dynamic scheduling scheme to adjust the number of positive
assignments dynamically and integrating the proposed ICS loss to the cost function.

To sum up, the contributions of this study are three-fold:

1. We introduce a decoupled IoU score, termed Information Coverage Score (ICS), which can reflect the informa-
tion loss of the prediction boxes when it is used as evaluation metrics and encourage the model to alleviate the
information loss when it is used as loss functions.

2. We improve the SimOTA method by adapting a dynamic scheduling scheme and integrating the ICS loss,
propose a Gaussian Noise Augmented Image Size region proposal method, and apply them to the SpareR-CNN
model to further improve the performance of the proposed method.

3. To compare with state-of-the-art models fairly, we first conduct extensive experiments using IoU-based eval-
uation metrics and loss functions on various manually annotated datasets to demonstrate the efficiency and
effectiveness of our proposed detection model. Then, we conduct further experiments to demonstrate the ben-
efits of the proposed ICS score when it is applied to the TD problem. The experimental results show that the
proposed method can consistently outperform the state-of-the-art benchmark models under different evaluation

metrics.

The rest of this paper is organized as follows: Section [2] discusses related studies, including studies in Object
Detection models and Table Detection models. Section [3introduces the formal problem definition and our proposed
SparseTableDet model. Section ] presents the experiments and discusses the design aspects of the proposed method.

At last, we draw our conclusion and possible directions in section [3

2. Related Work

As discussed in section [I, we formulate the TD problem as an Object Detection problem and propose an ICS
that can replace the IoU in loss functions and evaluation metrics. Therefore, this section first discusses popular
object detection models and loss functions. Since the proposed method employs a Many-to-One label assignment, we
include popular label assignment studies. At last, we focus on the studies specifically designed or optimized for the

TD problem.

2.1. Object Detection Methods
Object detection problem has been widely discussed in recent years. Object detection models are often categorized

into one-stage and two-stage models based on their number of regression steps. Popular one-stage models include
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YOLO [11] and its variants [12,113,[14,!10], SSD [[15], FCOS [16], and many others. These one-stage models do not
contain the step of generating region proposals and usually have faster training and inference speed compared with
two-stage models. In contrast, two-stage models usually first use a region proposal network to generate a series of
regional proposals, then further regress and classify the regional proposals by well-designed models. Typical two-
stage models include FasterR-CNN [17], MaskR-CNN [18], CascadeR-CNN [[19] and many others. Along with these
typical one-stage and two-stage models, transformer-based approaches recently attracted a lot of attention. DETR [2(0]
is the first study introducing transformer and self-attention mechanism [21] to the object detection. Following the
design of DETR, many variants of DETR have been proposed to improve the performance further and accelerate the
convergence, such as Deformable-DETR [22] and DAB-DETR [23]. SparseR-CNN [3] adopts the Set prediction loss
and Hungarian matching from DETR and proposes to use learnable region proposals and learnable instance features
to simplify the region proposal generation. One key characteristic of the learnable region proposals in SparseR-CNN
is that they can be initialized with different methods, including random initialization and image size initialization.
Our proposed method in this study is based on SparseR-CNN and uses the image size initialization considering the
requirements of TD applications as discussed in section[Il

Loss functions used in object detectors’ regression and classification tasks have also been discussed widely. For
the regression task, it is a natural choice to use /,-norms and their variants, such as smooth-11 [24], as the loss function.
However, these functions are not aligned with the widely accepted evaluation metric IoU score, meaning that for some
cases minimizing these loss functions cannot lead to better IoU scores [25,26]. IoU-based loss functions can alleviate
this issue and become the most popular choice. IoU loss [27] has the gradient vanishing issue when the prediction and
ground truth boxes have no overlaps. GIoU loss [25] extends the IoU loss by adding an extra penalty term to alleviate

the gradient vanishing problem when two boxes have no overlap. More specifically, assuming that A, B denote two

|C-AUB|

arbitrary convex shapes and C is the smallest enclosing convex, then the term used in GIoU loss is defined as e

where — means the complementary operation. A limitation of GIoU loss is that it can be degraded to IoU loss for
enclosing bounding boxes. To address this limitation of GIoU loss, DIoU loss [28] proposes to use the distance
between two boxes’ centers as the additional term, which can lead to faster convergence and alleviate the gradient
vanishing problem. CloU loss [29] also considers the geometric factors of bounding boxes and proposes an aspect
ratio term, a distance term, and the IoU term. Besides these popular IoU-based loss functions, there are other loss
functions without using IoU score, such as SCALoss [26] and KLLoss [30]. SCALoss defines two terms considering
side overlap and corner distance. KLLoss requires the output to be a distribution instead of location coordinates.
Besides these object detection models, label assignment methods have also been widely discussed in recent stud-
ies. Typically, label assignment methods can be categorized into Fixed Label Assignment and Dynamic Label As-
signment [6]. Fixed Label Assignments are methods defining fixed criterion to determine the positive and negative
samples of each ground truth. For example, Region Proposal Network (RPN) in FasterR-CNN [[17] defines two IoU
scores as the thresholds to the positive and negative proposals. YOLO [11] uses the closest anchor points to the cen-
ter of ground truths as positive anchor points. In contrast, Dynamic Label Assignment methods often formulate the
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problem as an optimization problem and solve the problem more dynamically. For example, OTA [6] formulates the
label assignment problem as an Optimal Transport (OT) problem, which can be optimized by the Sinkhorn-Knopp
algorithm. SimOTA [9, [10] uses the top-k candidates whose centers are in the ground truth bounding boxes to avoid

the time-consuming optimization process.

2.2. Table Detection

Many studies have discussed the TD problem recently. One of the most popular formulations for the TD prob-
lem is defining tables in visually rich documents as objects and then applying popular object detectors. Following
this problem formulation, the object detection approaches discussed in section 2.1] can be easily adapted to the TD
problem and widely used as benchmark models in many studies [31]]. Considering the special characters and re-
quirements for the TD problem, many studies further optimized the popular object detection methods to improve the
model performance. Due to the limited number of training samples for the TD problem, transfer learning methods are
widely used. CascadeTabNet [4] extends the Cascade Mask R-CNN [19] model and uses HRNet [32] as the backbone
network. Besides, CascadeTabeNet applies a two-stage transfer learning approach and various augmentation meth-
ods. Similarly, TableDet [3] is based on Cascade R-CNN [19], proposes a Table Aware Cutout augmentation method,
and also leverages a two-step transfer learning approach to improve the model performance further. Besides two-
stage detectors, one-stage methods, such as YOLO [11] and its variants, also have been adapted to the TD problem.
YOLOV3-TD [33] employs the YOLOv3 [13] as the base model and proposes some adaptive adjustments, including
a new anchor optimization method and a new post-processing process. Besides these one-stage and two-stage meth-
ods, transformer-based approaches such as DETR [20] and Deformable-Detr [22], also have been applied to the TD
problem [34,31]. There are many other studies discussing the TD problem, including DeepDeSRT [35], TableDet (3],
and many others [36,[37]. All in all, these studies usually adopt popular object detection models to the TD problem
and use some specifically designed methods to improve the model performance based on the characteristics of the TD

problem.

3. Proposed Method

3.1. Architecture of the Proposed Method

Following the architecture of SparseR-CNN [5], our proposed method also consists of an Initialization Module, a
Feature Pyramid Network, and a series of Dynamic Heads. The Initialization Module is used to initialize the learnable
proposal boxes and the learnable proposal features. In this study, we use the Noise Augmented Image Size region
proposals, which will be discussed in section[3.2] Feature Pyramid Network (FPN) [38] is the backbone network to
generate image features for every Dynamic Head. The Dynamic Heads are used to do the regression and classification
tasks. Dynamic Head 7 + 1 takes the image features generated by FPN and the outputs of Dynamic Head ¢, including

the Refined Proposal Features and Refined Proposal Boxes, as the input to further refine the predictions of Dynamic
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Figure 2: The overall architecture of the proposed method. Notably, all Dynamic Heads share an identity structure. We only show the details of

Learnable Proposal Features

Dynamic Headl in this figure for simplicity.

Head r when ¢ > 1. Since the predictions of each Dynamic Head are used to calculate the loss, a label assignment
process is operated on these predictions to further calculate the losses. Since our refinements to the SparseR-CNN
model are mainly on the proposal initialization, label assignment, and the loss functions, which will be discussed in
section B3 and B4l we keep the default implementations of SparseR-CNN for other parts which are detailed

described in the study [5].

3.2. Noise Augmentation to Region Proposals

As discussed in section [Il TD applications typically require predictions to avoid information loss, and the tables
in the documents are usually large and have no overlaps. Considering these characteristics of TD applications, using
Image Size to initialize the region proposals becomes a good choice compared with other initialization methods, such
as Random Initialization [B] and Grid Initialization [B], because it can avoid information loss at the first step of the
detector. However, simply using a number of the same proposals may not be optimal. Therefore, we propose a simple
but effective augmentation method to the region proposals by adding Gaussian Noise to enrich the proposals’ diversity.
More specifically, assuming that a proposal box is represented by its box center, width, and height, namely b =
{cx, ¢y, w, h}, then the augmented proposal box can be defined as Equation[Il where N means Gaussian Distribution.
In our implementation, boxes are normalized, meaning that an image size box can be represented as b = {0.5,0.5, 1, 1},

and p, o are set as 0 and 0.01, respectively.

baug = f({c)u Cy, W, h}) = {cx + &, Cy + €&, W — 2 |&l,h—-2- |6y|}7 € € N(ﬂ: 0_2)7 € € NQU» 0—2) ey

It is worth mentioning that adding noise to the regional proposal boxes can be interpreted as a movement of these

boxes. Since we set initial boxes to Image Size, any movement € of the center leads to 2e reduction of height or width,
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as shown in Figure 3
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Figure 3: A sample of noise augmentation to a regional proposal box. The green box is the original box, the dashed red box is the result of center

movement, and the blue box is the result box after augmentation.

3.3. Many-to-One Label Assignment

As discussed in section[Iland [2] label assignment plays a key role in the object detection models. SparseR-CNN
employs Hungarian algorithm [2(] to perform one-to-one label assignment so that the Non Maximum Suppression
(NMS) can be removed from the processing pipeline. However, as aforementioned, tables in documents are usually
large and have no overlaps, meaning that applying NMS to the TD problem doesn’t necessarily lead to some drawbacks
caused by the NMS, such as the performance degradation caused by the object overlaps [39]. Moreover, the cascaded
Dynamic Heads take input proposal features and boxes with different qualities, making it necessary to determine the
label assignment dynamically. Many studies [6, 7, 9] have demonstrated that Many-to-One label assignment can bring
benefits to the model performance. Therefore, we adapt SimOTA [9] as the base label assignment method in this study.

SimOTA is a simplified version of OTA [€], which can avoid the complex optimization process of OTA. More
specifically, SimOTA directly uses the top-k candidates whose centers are in the ground truth bounding boxes as
the positive samples, as defined by Equation 2] which contains a classification cost, a regression cost, and a center
cost. It is worth mentioning that the cost function of SparseR-CNN is the sum of the cls_cost and regression_cost in

Equation

COSISimOTA = /lcls + COStes + /lll -costip + /lgiou . COStgiou + /lcem‘er * COSIcenter
S— —

@)

cls_cost regression_cost center_cost

SimOTA employs a dynamic method to determine the number of positive samples assigned to each ground truth
box using the sum of the top 10 IoU scores between a ground truth box and its corresponding prediction boxes without
considering the difference of Dynamic Heads. Considering that the inputs of Dynamic Head 7+ 1 should contain higher
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quality boxes than that of ¢ after the refinement of Dynamic Head ¢, the Dynamic Head ¢ + 1 should have more positive
samples. Therefore, we further extend this dynamic method of SimOTA by adding a scheduling scheme as defined
by Equation[3] where N is the number of Dynamic Heads, IoU; is the ToU matrix between the predictions and the ith
ground truth, 7 is a hyper parameter and k! means the number of positive samples assigned to the ith ground truth for

Dynamic Head .

ki = SUM(TOPK(IoU;,n— 0.5 % (N — 1))),1 € [1,N] (3

At last, we can define the loss function as the sum of all the Dynamic Heads’ loss, as defined by Equation (4]
For the classification loss, we simply use cross entropy and focal loss [40] for binary and multi-class classification,

respectively.

N N
! ! !
L= Z loss; = Z Acisloss,, + Anlossy + /lgi(,ulossgm “4)

t=1 t=1

It is worth mentioning that some studies, such as YOLOX [10] and Dynamic SparseR-CNN [7], use similar
Label Assignment approaches. Dynamic SparseR-CNN introduces an assignment scheduling scheme to the OTA
method [6]] to dynamically adjust the number of positive label assignments. However, the OTA method requires a
complex optimization procedure, which is significantly more time-consuming than SimOTA. Therefore, in this study,
we leverage SimOTA and further improve it by adapting the assignment scheduling scheme and the proposed ICS loss

function.

3.4. Information Coverage Score

As discussed in section [T} the ToU score cannot directly reflect the information coverage of the prediction boxes.
This section discusses our proposed decoupled IoU, the Information Coverage Score (ICS). Assume that G and P
are the ground truth and prediction boxes, respectively. IoU is the ratio of the intersection of G and P to the union
of G and P, as defined by Equation |3l In contrast, ICS contains a ground truth coverage term (GT_Coverage) and
a prediction coverage term (Pred_Coverage), as defined by Equation|[6l The ground truth coverage term is the ratio
of the intersection of G and P to the G, which can directly measure the information covered by the prediction box.
Similarly, the prediction coverage score is defined as the ratio of the intersection of G and P to the P. Figure d shows
three cases for the calculation of ICS, in which green boxes, red boxes, and yellow areas represent the ground truth
boxes, prediction boxes, and their intersection areas. It is worth mentioning that the proposed ICS can be used to
replace IoU in a variety of IoU-based loss functions, such as GIoU loss [25] and DIoU loss [28]. A simple ICS loss

can be defined as Equation[7]
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Figure 4: Three cases for the Information Coverage Score. A is set to 0.5. All the boxes are squares.
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4. Experimental Results and Analysis

This section compares the proposed method with state-of-the-art models using IoU-based evaluation metrics and
loss functions. Then, we conduct experiments to demonstrate the benefits of using ICS as the evaluation metrics and
loss functions. Lastly, an ablation study is conducted to demonstrate the effectiveness of the proposed many-to-one

label assignment method and Gaussian Noise Augmented Image Size region proposal.

4.1. Experiment settings and Main results

Many datasets have been proposed for the TD problem. We can roughly categorize these datasets into two groups:
human-annotated datasets and generated datasets by parsing meta-data. The former dataset type usually has higher-
quality annotations, but the number of samples is usually limited. In contrast, the latter type can have a large number
of samples but often contain much noise. In this study, we only consider the datasets with high-quality annotations,
including ICDAR2017 [41], ICDAR2019 [42], TNCR [31] and ICT-TD [43] datasets.

The TD problem is often the pre-processor step of the information extraction tasks, which requires models to avoid
missing tables or predicting other document components as tables. Therefore, the widely used evaluation mAP [44]
for the detection models cannot fulfill this requirement per se. Hence, we use Precision, Recall, and F1 scores as
evaluation metrics, which are also widely used in other studies [45, 41,142, [31], 43]. However, the IoU thresholds for
these metrics vary among studies, making it hard to compare these models directly. Therefore, in this study, we align
the evaluation metric for all datasets and use Weighted Average F1, as defined in Equation 8, as evaluation metric
whose thresholds are 60%, 70%, 80% and 90%, and attach detailed results containing Precision, Recall and F1 under
the ToU thresholds from 50% to 95% with a 5% interval in A. Notably, the evaluation metric used here
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is identical to the one used in ICDAR2019 competition [42], and other evaluation metrics, such as mAP. The metrics

in other competitions [45, 41] can be found in the detailed experimental results in section [Appendix Al

_ >t IoU; - F1@IoU;
Weighted Avg. F1 =

®)

>t IoU;

Table 1: Key training parameters of the proposed model.

Parameter Value Description

IMS_PER_BATCH 16 number of training samples in an iteration
MAX_TER 40,600 total number of mini-batch

STEPS 29,000 the mini-batch to apply the learning rate schedule
SCHEDULER MultiStepLR the scheduler to change the learning rate
BASE_LR 2.5e-05 the learning rate before applying the scheduler
WEIGHTS r50_300pro_3x_model | initialization weight of the model
NUM_HEADS 6 the number of Dynamic Head
NUM_PROPOSALS 300 number of region proposals

OPTIMIZER AdamW the optimizer to train the model

LABEL_N 8 the hyper parameter N defined by Equation[3]
NOISE_.MEAN 0 mean value of the Gaussian Noise
NOISE_VAR 0.01 variance value of the Gaussian Noise
NMS_THRESH 0.9 non-maximum suppression threshold

For the benchmark models, we include all the types of popular object detection models discussed in section 2]
including FasterR-CNN [[17], MaskR-CNN [[18], TableDet [3], DiffusionDet [§], Deformable-DETR [22], SparseR-
CNN [5], RetinaNet [40], FCOS [[16], YOLOX-X [[10], YOLOR-X [46], YOLOvV5-X [47], YOLOv7-X [48], YOLOVS-
X [49]. We used the default settings of their implementations, trained FasterR-CNN, MaskR-CNN, TableDet, Diffu-
sionDet, Deformable-DETR, and SparseR-CNN for 120 epochs, and other one-stage detectors for 300 epochs. The
detailed settings of these benchmark models are included in section Our proposed SparseTableDet is
built on the code base of SparseR-CNN, and the key training parameters are summarized in Table [l It is worth
mentioning that the parameter names in Table [I] are aligned with the names in Detectron2 [50]. More specifically,
IMS_PER_BATCH is the total number of training samples in an iteration. MAX_ITER and STEPS refer to the to-
tal number of mini-batch used in the training and the mini-batch to apply the learning rate scheduler, respectively.
WEIGHTS is the initialization weight of the model. In our implementation, we use the SparseR-CNN model pre-
trained with COCO dataset [44] as the initialization weight. NUM_HEADS and LABEL_N are two custom parameters
in the proposed SparseTableDet, which refer to the number of Dynamic Head and the hyper parameter N defined by

Equation[3] as discussed in section Bl At last, the model is trained with AdamW [51] optimizer.

10



Table 2: Experimental results on ICDAR2017 dataset.

Model Fl1 Weighted Average F1
IoU(60%) 1oU(70%) IoU(80%) IoU(90%)

RetinaNet 96.0 93.4 91.7 87.3 91.6
FCOS 96.0 93.8 92.1 87.6 91.9
YOLOX-X 97.7 95.5 923 80.0 90.4
YOLOR-X 97.1 95.3 934 89.7 93.5
YOLOV5-X 98.5 96.8 954 91.9 95.3
YOLOV7-X 97.6 96.3 94.6 91.5 94.6
YOLOV8-X 97.9 96.2 95.3 92.5 95.2
FasterR-CNN 97.1 96.0 93.8 89.6 93.7
MaskR-CNN 96.8 96.0 94.8 91.1 94.4
TableDet 98.8 97.1 95.0 90.4 94.9
DiffusionDet 98.3 97.0 94.9 90.3 94.7
Deformable-DETR 97.5 96.7 94.4 91.4 94.6
SparseR-CNN 98.3 97.9 96.1 94.0 96.3
SparseTableDet (Proposed) 99.5 994 98.2 94.8 97.7

The experimental results for the ICDAR2017, ICDAR2019, TNCR and ICT-TD datasets are shown in Table [2]
Bl @ and [ respectively. The experimental results show that the proposed SparseTableDet can consistently outper-
form the state-of-the-art benchmark models regarding the Weighted Average F1 score. We also compare our proposed
model with other state-of-the-art models optimized for the TD problem following the evaluation protocols of IC-
DAR2013, ICDAR2017, and ICT-TD datasets, and include the results in section[Appendix A] With these competition

evaluation protocols, our proposed method can still consistently outperform the benchmark models.

4.2. ICS for model training and evaluation

As discussed in section 3.4 GT_Coverage term in the ICS is a direct metric to measure whether the prediction
box covers all the target content. This section uses the GT_Coverage as the evaluation metric to evaluate the model
performance. More specifically, we replace the ToU score defined in Equation B] with GT_Coverage to define a new
Weighted Average F1 score as the evaluation metric, as defined by Equation [91 To demonstrate the effectiveness
of ICS as the loss function, we replace the cost_giou in Equation 2] and GIoU loss in Equation ] with their ICS-
based counterparts. For simplicity, we use Mgy, and M., to represent the model trained with GIoU loss and ICS
loss, respectively. As shown in Table [6] when the IoU-based metrics are used, Mo, can perform better than M.

However, as aforementioned in section [Iland [.4] GT_Coverage term defined in the ICS is a direct measure to
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Table 3: Experimental results on ICDAR2019 dataset.

Model Fl1 Weighted Average F1
IoU(60%) 1oU(70%) IoU(80%) IoU(90%)

RetinaNet 98.0 96.7 94.5 86.8 93.4
FCOS 97.6 96.5 93.6 85.7 92.7
YOLOX-X 97.1 96.0 94.6 89.2 93.8
YOLOR-X 98.6 98.2 97.2 934 96.6
YOLOV5-X 99.0 98.9 98.2 95.7 97.8
YOLOV7-X 99.2 98.6 98.0 94.1 97.2
YOLOV8-X 99.2 99.1 98.1 94.7 97.5
FasterR-CNN 97.4 96.2 95.0 90.4 94.4
MaskR-CNN 98.2 97.0 95.8 91.9 95.4
TableDet 98.1 96.8 94.9 91.5 94.9
DiffusionDet 98.9 97.4 95.8 91.3 95.5
Deformable-DETR 98.4 97.9 96.5 92.7 96.0
SparseR-CNN 98.6 98.1 97.5 94.9 97.1
SparseTableDet (Proposed) 993 99.1 98.9 96.3 98.3

evaluate the ground truth information covered by the prediction. GT_Coverage-based evaluation metric is used, Mg
can perform better. Figure 3] shows two prediction results of Mo, and M. Using an ICS-based loss function can
encourage the model to alleviate the information loss during the optimization process because the GT_Coverage term
in the ICS is a direct measure of the information loss and is more sensitive to the information loss. We include some
other prediction samples of these two models in Notably, bias might be introduced when using the GT
Coverage score as the evaluation metric because the GT Coverage score cannot reflect the difference of prediction
boxes once the predictions can cover the ground truth. However, the proposed ICS and GT Coverage scores can

provide more insights regarding the quality of predictions and complement IoU-based metrics.

>, GT_Coverage; - F1@GT _Coverage;

Weighted Avg. F1 = n
21 GT _Coverage;

€))

4.3. Ablation Study

This section discusses the effectiveness of the proposed Image Size regional proposals, Noise Augmented Propos-
als, and Many-to-One label assignment method. We use SparseR-CNN as the baseline model in this section, which
uses Hungarian Matching for the label assignment and random region proposals. We use the ICDAR2019 dataset to
conduct experiments and use the Weighted Average F1 scores defined by Equation[8and Equation@l as the evaluation
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Table 4: Experimental results on TNCR dataset.

Model Fl1 Weighted Average F1
IoU(60%) 1oU(70%) IoU(80%) IoU(90%)

RetinaNet 92.7 92.0 90.6 84.8 89.6
FCOS 90.8 89.9 88.8 83.3 87.8
YOLOX-X 90.6 89.3 86.1 79.6 85.8
YOLOR-X 94.2 93.4 91.8 86.4 91.0
YOLOV5-X 95.8 95.5 94. 89.6 93.5
YOLOV7-X 95.2 95.0 93.7 89.3 93.0
YOLOV8-X 96.1 95.5 94.6 90.1 93.7
FasterR-CNN 91.5 91.0 90.3 84.4 88.9
MaskR-CNN 92.5 92.2 90.9 84.7 89.6
TableDet 94.7 94.4 93.3 87.7 92.2
Deformable-DETR 94.4 94.1 92.9 89.3 924
DiffusionDet 95.4 94.6 93.1 88.5 92.5
SparseR-CNN 95.1 94.9 94.4 90.9 93.6
SparseTableDet (Proposed) 96.3 96.2 95.8 92.7 95.1

metrics. It is worth mentioning that we choose 60%, 70%, 80% and 90% as thresholds to align with the metric in
section4.Jl The experimental results are shown in Table[7 and [§] where SparseR-CNN(R), SparseR-CNN(I) are the
SparseR-CNN initialized with the random proposals and image size proposals, respectively. ManytoOne and Noise
represent the proposed many-to-one label assignment and the Noise Augmentation to regional proposals. The experi-
mental results show that using image size region proposals, adding noise to the regional proposals, and Many-to-One

label assignment can improve the performance of the base SparseR-CNN model.

5. Conclusion

In this study, we propose to use SparseR-CNN [5] as the base model and further improve the model by introducing
Noise Augmented region proposal generation, Many-to-One label assignment, and a decoupled IoU. The experimen-
tal results show that the proposed method can consistently outperform benchmark models regarding the Weighted
Average F1 score on various datasets. Furthermore, considering the requirement of TD applications, we propose to
use GT_Coverage in ICS to replace IoU to act as the evaluation metric and use ICS to replace IoU to derive ICS-
based loss functions. The experimental results demonstrate that the GT_Coverage can be a better metric reflecting the
prediction’s information loss, and ICS-based loss can guide models to cover more information of the target objects.
In this study, we assume that all the area in a ground truth box contains information without considering the inner

13



Table 5: Experimental results on the ICT-TD dataset.

Model Fl1 Weighted Average F1
IoU(60%) 1oU(70%) IoU(80%) IoU(90%)

RetinaNet 95.8 93.6 91.0 83.7 90.4
FCOS 91.8 90.4 87.9 82.3 87.6
YOLOX-X 95.8 93.6 90.1 81.6 89.5
YOLOR-X 97.5 96.0 94.3 89.0 93.8
YOLOVS5-X 98.0 97.2 95.8 91.7 95.3
YOLOV7-X 98.6 97.6 95.7 92.6 95.8
YOLOV8-X 97.9 97.2 95.6 923 95.4
FasterR-CNN 96.8 94.7 92.9 86.8 923
MaskR-CNN 96.2 94.8 92.8 87.9 92.5
TableDet 96.9 95.7 93.6 89.1 934
DiffusionDet 97.6 96.8 95.5 91.1 94.9
Deformable-DETR 97.4 96.5 95.0 91.2 94.7
SparseR-CNN 97.1 95.9 94.3 90.4 94.1
SparseTableDet (Proposed) 98.2 97.9 97.2 94.2 96.7

structure of tables. However, some tables contain extra spaces, meaning that some smaller prediction boxes than their
ground truth boxes do not lead to any information loss. Therefore, it can be a direction to consider the inner structure
of a table to build more reliable evaluation metrics for the TD applications. Besides, as aforementioned in section[4.2]
the proposed GT_Coverage score cannot reflect the difference of box size once the prediction box can cover the whole
ground truth. Therefore, it can be another direction to integrate the size of boxes to the GT_Coverage score to make it

more versatile.
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Appendix A. Appendix

Appendix A.1. Model implementations and settings

In this section, we list the implementations and configuration files of the baseline models, including RetinaNet [40],
FCOS [16], YOLOX-X [10], YOLOR-X [46], YOLOvV5-X [47], YOLOv7-X [48], YOLOv8-X [49], FasterR-CNN [17],
DiffusionDet [8], Deformable-DETR [22], and SparseR-CNN [5], as summarized in Table[A.9] It is worth mentioning
that we modified the training epochs of the listed configuration files, trained FasterR-CNN, MaskR-CNN, Diffusion-
Det, Deformable-DETR, and SparseR-CNN for 120 epochs, and trained other one-stage detectors for 300 epochs.

Table A.9: Summary of model implementations and settings

Model Implementation  Setting File

RetinaNet Detectron?2 https://github.com/facebookresearch/detectron2/blob/main/configs/COC
FCOS Detectron2 https://github.com/facebookresearch/detectron2/blob/main/configs/COC
YOLOX Official codebase https://github.com/Megvii-BaseDetection/YOLOX/blob/main/exps/default

YOLOR Official codebase https://github.com/WongKinYiu/yolor/blob/main/cfg/yolor_csp_x.cfg
YOLOV5 Official codebase https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg
YOLOvV7 Official codebase https://github.com/WongKinYiu/yolov7/blob/main/cfg/training/yolov7x.
YOLOvV8 Official codebase https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg
FasterR-CNN Detectron2 https://github.com/facebookresearch/detectron2/blob/main/configs/COC
MaskR-CNN Detectron2 https://github.com/facebookresearch/detectron2/blob/main/configs/COC
DiffusionDet Official codebase https://github.com/ShoufaChen/DiffusionDet/blob/main/configs/diffdet
Deformable-DETR detrex https://github.com/IDEA-Research/detrex/blob/main/projects/deformab]
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Table A.10: Experimental results on ICDAR2013 dataset (IoU = 50%).

Model Precision Recall Fl

CascadeTabNet [4] 100 100 100
TableDet [3] 100 100 100
DeCNT [36] 99.6 99.6 99.6
YOLOvV3-TD [33] 94.9 100 973
DeepDeSRT [35] 97.4 96.2  96.8
TableNet [52] 97.0 963  96.6
SparseTableDet (Proposed) 100 100 100

SparseR-CNN Official codebase https://github.com/PeizeSun/SparseR-CNN/blob/main/projects/SparseRCl

Appendix A.2. Compared with other Table Detection models

In this section, we include the experimental results using the evaluation protocols in ICDAR2013, ICDAR2017,
and ICT-TD datasets. More specifically, for the ICDAR2013 dataset, the F1 score thresholded by 50% is the compe-
tition evaluation metric. For the ICDAR2017 dataset, Precision, Recall, and F1 scores thresholded by 60% and 80%
are used as evaluation metrics. For the ICT-TD dataset, Weighted Average F1 score, as defined in Equation[8] is used
as the evaluation metric whose thresholds are 80%, 85%, 90%, and 95%. The experimental results of them are shown
in Table [ATTland [A 12l It is worth mentioning that the experimental results of TableDet [3], DeCNT [36],
YOLOvV3-TD [33], DeepDeSRT [33], TableNet [52], GAN-TD [53], in Table [A. 10 [A.TTlare from study [3].

Appendix A.3. Detailed experimental results

In this appendix section, we include the detailed experimental results on the TNCR and ICT-TD datasets, as shown
in Table[A.T3land Table[A.T6l Besides, we also include some prediction results for the models trained with ToU-based

and ICS-based losses, as discussed in section 4.2

Table A.13: Detailed Experimental results on the ICDAR2017 dataset.

IoU
Method Metric

50% 55% 60% 65% 10% 5% 80% 85% 90% 95% 50%:95%

RetinaNet Precision 964 964 952 949 921 90.7 903 88.1 855 750 90.4
Recall 978 97.8 969 963 947 938 932 91.6 89.1 80.1 93.1
F1 971 971 960 956 934 922 917 898 873 7TI5 91.7

Continued on next page
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Table A.13 Detailed Experimental results on the ICDAR2017 dataset (continued from previous page).

IoU
Method Metric
50% 55% 60% 65% 10% 5% 80% 85% 90% 95% 50%:95%
FCOS Precision 973 963 952 949 924 90.8 902 87.6 849 727 90.2
Recall 981 975 969 966 953 947 941 928 903 82.6 93.9
F1 977 969 960 957 938 927 921 90.1 875 773 92.0
YOLOX-X Precision 97.0 970 963 955 941 933 912 87.1 78.8 542 88.5
Recall 994 994 991 984 969 956 935 894 813 595 91.3
F1 982 982 977 969 955 944 923 882 800 56.7 89.9
YOLOR-X Precision 97.5 974 964 951 943 934 922 922 881 799 92.6
Recall 98.8 988 978 969 963 953 947 944 913 84.1 94.8
F1 98.1 981 971 960 953 943 934 933 897 819 93.7
YOLOVS5-X  Precision 983 983 979 979 958 954 942 938 90.2 828 94.4
Recall 99.7 997 991 991 978 972 966 963 938 86.6 96.6
F1 99.0 990 985 985 96.8 963 954 950 919 847 95.5
YOLOV7-X  Precision 980 97.1 97.0 959 953 941 933 933 89.8 80.7 93.5
Recall 99.1 984 981 975 972 96.6 960 956 932 85.1 95.7
F1 985 977 975 967 962 953 946 944 915 828 94.6
YOLOV8-X  Precision 99.0 979 97.1 965 952 946 941 939 91.0 80.6 94.0
Recall 1000 99.1 988 981 972 969 96.6 963 94.1 85.1 96.2
F1 995 985 979 973 962 957 953 951 925 828 95.1
FasterR-CNN  Precision 97.8 969 967 96.6 954 940 929 913 882 794 92.9
Recall 98.1 97.8 975 972 966 953 947 938 910 832 94.5
F1 979 973 971 969 96.0 946 938 925 89.6 813 93.7
MaskR-CNN  Precision 97.5 965 962 962 951 940 939 926 89.8 68.5 92.0
Recall 98.1 97.8 975 972 969 96.0 956 947 925 76.6 94.3
F1 97.8 971 968 967 96.0 950 947 93.6 O91.1 723 93.1
TableDet Precision 994 986 985 985 964 951 941 935 89.0 788 94.2
Recall 100.0 99.7 99.1 99.1 97.8 966 96.0 950 919 84.1 95.9
F1 99.7 991 988 988 97.1 958 950 942 904 814 95.0
DiffusionDet  Precision 98.1 980 97.6 971 96.1 946 939 925 89.1 778 93.5
Recall 99.7 997 991 988 978 963 960 944 916 835 95.7

Continued on next page
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Table A.13 Detailed Experimental results on the ICDAR2017 dataset (continued from previous page).

IoU
Method Metric
50% 55% 60% 65% 10% 5% 80% 85% 90% 95% 50%:95%
Fl1 989 988 983 979 969 954 949 934 903 805 94.6
Deformable-  Precision 972 972 968 968 958 937 926 913 89.7 78.6 93.0
DETR Recall 98.8 984 981 981 975 96.6 963 950 932 832 95.5
F1 98.0 97.8 974 974 966 951 944 931 87.1 80.8 94.2
SparseR-CNN  Precision 993 983 978 978 97.0 959 948 948 927 84.6 95.3
Recall 100.0 99.7 99.1 99.1 988 981 975 972 953 8&9.1 97.4
F1 99.6 990 984 984 979 97.0 96.1 96.0 940 86.8 96.3
SparseTableDet  Precision 99.7  99.7  99.1 99.1 989 975 96.7 956 93.1 83.6 96.3
(Proposed) Recall 100.0 100.0 100.0 100.0 100.0 100.0 99.7 99.1 96.6 89.1 98.4
F1 99.8  99.8 995 995 994 987 982 973 948 863 97.3
Table A.14: Detailed Experimental results on the ICDAR2019 dataset.
IoU
Method Metric
50% 55% 60% 65% 0% T15% 80% 85% 90% 95% 50%:95%

RetinaNet Precision 98.6 984 974 972 962 943 939 905 853 728 92.5

Recall 99.6 99.1 98.7 982 973 960 951 927 884 78.6 94.4

F1 99.1 987 98.0 97.7 96.7 951 945 91.6 868 756 934

FCOS Precision 97.1 96.7 96.7 957 955 944 922 90.2 831 63.7 90.5

Recall 989 984 984 978 97.6 969 951 935 884 757 94.1

F1 98.0 975 975 967 965 956 936 91.8 857 692 923

YOLOX-X Precision 97.5 97.1 963 957 953 943 941 922 883 704 92.1

Recall 98.7 984 98.0 97.1 96.7 96.0 951 933 902 744 93.8

F1 98.1 977 97.1 964 96.0 951 946 927 892 723 92.9

YOLOR-X Precision 98.7 987 982 982 975 975 966 956 925 82.1 95.5

Recall 99.6 996 99.1 991 989 987 978 964 942 853 96.9

F1 99.1 99.1 986 98.6 982 98.1 972 96.0 933 837 96.2

YOLOVS-X  Precision 987 98.6 985 985 985 984 975 965 951 83.7 96.4

Recall 99.8 998 996 993 993 993 989 978 964 86.6 97.7

Continued on next page

21



Table A.14 Detailed Experimental results on the ICDAR2019 dataset (continued from previous page).

IoU
Method Metric

50% 55% 60% 65% T10% 15% 80% 85% 90% 95% 50%:95%
F1 99.2 992 99.0 989 989 988 982 971 957 85.1 97.0
YOLOV7-X  Precision 99.5 98.6 98.6 984 98.1 977 976 967 933 81.0 95.9
Recall 100.0 99.8 99.8 99.1 99.1 987 984 978 949 849 97.2
F1 99.7 992 992 98.7 98.6 982 98.0 972 941 829 96.5
YOLOV8-X  Precision 99.0 99.0 98.8 98.8 988 98.7 977 96.8 940 895 97.1
Recall 99.8 998 99.6 993 993 99.1 984 980 953 920 98.1
F1 994 994 992 990 99.0 989 98.0 974 946 90.7 97.6
FasterR-CNN  Precision 97.9 978 96.8 968 956 945 945 935 89.7 76.0 93.3
Recall 98.7 984 98.0 97.6 969 958 956 947 91.1 802 94.7
F1 983 981 974 972 962 951 950 941 904 780 94.0
MaskR-CNN  Precision 989 97.8 977 965 964 954 954 945 912 712 93.5
Recall 99.3 989 987 980 97.6 969 962 958 927 76.6 95.1
F1 99.1 983 982 972 97.0 96.1 958 951 919 738 94.3
TableDet Precision 98.5 975 975 974 963 953 944 935 907 772 93.8
Recall 99.1 989 987 984 973 964 953 944 922 837 95.5
F1 98.8 982 98.1 979 96.8 958 948 939 914 803 94.6
DiffusionDet  Precision 98.5 983 983 97.6 964 960 950 926 903 744 93.7
Recall 99.8 996 99.6 993 984 976 96.7 944 924 822 96.0
F1 99.1 989 989 984 974 968 958 935 0913 78.1 94.8
Deformable-  Precision 987 97.9 976 97.1 969 965 953 941 91.0 802 94.5
DETR Recall 99.6 993 99.1 989 989 987 97.8 967 944 86.6 97.0
F1 99.1 986 983 980 979 976 965 954 9277 833 95.7
SparseR-CNN  Precision 984 979 979 979 97.1 965 964 96.1 935 86.0 95.8
Recall 99.8 996 993 993 99.1 989 987 982 962 91.8 98.1
F1 99.1 987 98.6 986 981 977 975 971 948 88.8 96.9
SparseTableDet Precision 99.5 98.8 988 98.8 986 985 983 975 952 88.6 97.3
(Proposed) Recall 100.0 998 996 99.6 99.6 99.6 996 989 973 92.0 98.6
F1 99.7 993 992 992 99.1 99.0 989 982 963 903 97.9
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Figure A.6: Prediction samples of models trained with ICS-based loss and IoU-based loss.
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Figure A.7: Prediction samples of models trained with ICS-based loss and IoU-based loss.
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Table A.11: Experimental results on ICDAR2017 dataset.

IoU Threshold Model Precision Recall Fl
TableDet [3] 98.8 99.7 993
YOLOV3-TD [33] 97.2 97.8 975
60% DeCNT [36] 96.5 97.1 96.8
GAN-TD [53] 94.4 944 944
SparseTableDet (Proposed) 99.1 100.0 995
TableDet [3] 97.4 984 979
YOLOV3-TD [33] 96.8 975 97.1
80% DeCNT [36] 96.7 937 952
GAN-TD [53] 90.3 90.3 90.3
SparseTableDet (Proposed) 96.7 997 982
Table A.12: Experimental results on the ICT-TD dataset.
Model F1 Weighted Average F1
IoU(80%) IoU(85%) IoU(90%) IoU(95%)
TableDet [43] 93.6 91.6 89.1 75.7 87.1
DiffusionDet [43] 95.5 94.2 91.1 76.4 88.9
Deformable-DETR [43] 95.0 93.9 91.2 83.0 90.5
SparseR-CNN [43] 94.3 93.0 90.4 78.8 88.8
SparseTableDet (Proposed) 97.2 96.4 94.2 81.8 92.1
Table A.15: Detailed Experimental results on the TNCR dataset.
TIoU
Method Metric
50% 55% 60% 65% T0% T5% 80% 85% 90% 95% 50%:95%
RetinaNet Precision 89.7 89.7 896 894 889 886 875 856 815 698 86.0
Recall 962 962 96.1 96.0 953 950 941 923 882 782 92.8
F1 928 928 927 926 92.0 91.7 90.6 888 84.8 738 89.3
FCOS Precision 87.8 877 876 873 86.7 863 856 831 794 685 84.0
Recall 944 943 942 940 934 931 923 904 875 784 91.2
Fl1 91.0 909 90.8 905 899 89.6 888 866 833 73.1 87.5

Continued on next page
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Table A.15 Detailed Experimental results on the TNCR dataset (continued from previous page).

IoU

Method Metric
50% 55% 60% 65% T70% T5% 80% 85% 90% 95% 50%:95%

YOLOX-X Precision  §7.1 86.8 865 86.1 855 844 830 806 767 579 81.5
Recall 96.0 956 950 942 934 918 895 867 827 659 89.1
F1 913 910 906 900 &893 879 86.1 835 79.6 61.6 85.1

YOLOR-X Precision 904 903 902 90.1 89.6 89.2 882 86.0 829 751 87.2
Recall 987 986 985 983 976 97.1 956 933 90.1 83.6 95.1
Fl1 944 943 942 940 934 930 091.8 895 864 79.1 91.0

YOLOVS5-X Precision 93.0 928 927 924 922 918 91.1 889 86.0 793 90.0
Recall 993 992 991 990 989 985 979 96.1 934 882 97.0
Fl1 96.0 959 958 956 954 950 944 924 895 835 93.4

YOLOV7-X Precision 92.0 919 918 917 916 913 903 88.6 858 773 89.2
Recall 99.1 99.0 989 989 988 984 973 96.0 93.1 864 96.6
F1 954 953 952 952 951 947 937 922 893 81.6 92.8

YOLOV8-X  Precision 93.1  93.1 93.0 928 924 922 914 895 86.6 79.2 90.3
Recall 993 993 993 992 989 98.6 98.0 963 939 87.6 97.0
F1 96.1 96.1 96.0 959 955 953 946 928 90.1 832 93.5

FasterR-CNN  Precision ~ 89.1 89.1 889 887 885 882 878 865 815 66.6 85.5
Recall 943 943 942 941 937 934 930 917 875 76.1 91.2
F1 916 916 915 913 910 90.7 903 89.0 844 710 88.3

MaskR-CNN  Precision 90.2  90.0 90.0 89.8 89.7 89.1 882 863 817 644 85.9
Recall 953 952 951 950 948 943 937 920 880 755 91.9
F1 927 925 925 923 922 916 909 89.1 847 695 88.8

TableDet Precision 917 91.7 917 915 913 90.7 902 884 84.0 729 88.4
Recall 98.1 98.1 98.0 979 977 970 96,6 952 917 83.6 95.4

Fl1 948 948 947 946 944 937 933 917 877 T79 91.8

Deformable-  Precision 903 903  90.1 90.1 898 892 885 868 844 772 87.7
DETR Recall 99.2  99.1 99.0 989 988 986 979 97.0 947 894 97.3
Fl1 945 945 943 943 941 937 93.0 91.6 893 829 92.3

DiffusionDet = Precision 91.7 91.6 916 91.3 908 902 894 877 84.6 740 88.3
Recall 99.6 996 996 994 987 979 972 955 929 852 96.6

Continued on next page
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Table A.15 Detailed Experimental results on the TNCR dataset (continued from previous page).

IoU
Method Metric
50% 55% 60% 65% T0% 5% 80% 85% 90% 95% 50%:95%
F1 955 954 954 952 946 939 931 914 885 792 923
SparseR-CNN  Precision 909 909 90.7 90.7 905 903 898 89.0 855 77.1 88.6
Recall 999 998 998 997 99.7 99.7 995 987 97.1 899 98.4
F1 952 951 950 950 949 948 944 93,6 909 83.0 93.2
SparseTableDet  Precision 93.0 93.0 929 929 927 925 922 913 888 772 90.6
(Proposed) Recall 100.0 100.0 100.0 999 999 998 996 99.0 969 879 98.3
F1 9.4 964 963 963 962 96.0 958 950 927 822 94.3
Table A.16: Detailed Experimental results on the ICT-TD dataset.
IoU
Method Metric
50% 55% 60% 65% T70% 5% 80% 85% 90% 95% 50%:95%

RetinaNet Precision 95.8 95.7 947 944 924 91.1 900 879 82.1 68.0 89.2
Recall 973 972 969 962 948 933 921 90.7 854 72.1 91.6
F1 965 964 958 953 936 922 91.0 893 837 70.0 90.4
FCOS Precision 92.0 91.8 90.8 90.5 89.4 88.1 868 844 805 6638 86.1
Recall 93.6 931 928 921 915 906 8.0 874 841 73.7 88.8
F1 928 924 918 913 904 893 879 859 823 70.1 87.4
YOLOX-X Precision 958 949 944 936 922 90.7 889 862 804 645 88.2
Recall 98.7 978 973 9677 951 935 914 883 829 679 91.0
F1 972 963 958 951 936 921 90.1 872 81.6 662 89.6
YOLOR-X Precision 97.6 97.3 964 955 950 942 933 90.7 883 79.1 92.7
Recall 994 99.1 98.6 979 97.1 965 953 921 89.8 &I.1 94.7
F1 985 982 975 967 960 953 943 914 89.0 80.1 93.7
YOLOVS5-X Precision 974 97.2 972 97.0 964 956 948 937 90.7 81.2 94.1
Recall 989 98.8 988 98.6 980 974 968 958 928 838 96.0
F1 98.1 98.0 980 978 972 965 958 947 91.7 825 95.0
YOLOV7-X Precision 98.2 98.2 98.0 979 968 958 948 937 91.8 809 94.6
Recall 99.5 994 993 99.1 985 978 967 956 934 835 96.3
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Table A.16 Detailed Experimental results on the ICT-TD dataset (continued from previous page).

IoU
Method Metric
50% 55% 60% 65% T0% 15% 80% 85% 90% 95% 50%:95%

F1 98.8 988 98.6 985 97.6 968 957 946 926 822 954

YOLOV8-X Precision 979 97.1 97.0 969 964 956 947 936 914 824 94.3
Recall 99.1 98.8 987 98.6 981 975 96.6 957 932 849 96.1

F1 985 979 978 977 972 965 956 946 923 83.6 952

FasterR-CNN Precision 96.6 96.5 965 954 942 932 921 900 86.0 73.6 914
Recall 974 972 971 964 953 948 937 91.7 876 765 92.8

F1 97.0 968 968 959 947 940 929 90.8 86.8 75.0 92.1

MaskR-CNN Precision 96.6 96.5 955 953 942 931 921 900 869 744 91.5
Recall 974 97.1 969 963 955 944 934 917 889 778 92.9

F1 97.0 96.8 962 958 948 937 927 90.8 879 76.1 922

TableDet [43] Precision 974 964 963 963 951 940 929 905 882 725 92.0
Recall 982 979 975 972 963 955 944 927 90.1 793 93.9

F1 97.8 971 969 96.7 957 947 936 91.6 89.1 757 92.9

DiffusionDet [43]  Precision 96.5 964 963 958 952 945 939 925 892 73.6 924
Recall 993 992 99.0 988 984 978 972 960 93.1 795 95.8

F1 979 978 97.6 973 96.8 96.1 955 942 O91.1 764 94.1

Deformable- Precision 97.0 96.6 963 960 952 944 937 92.6 89.7 803 93.2
DETR [43] Recall 989 98.6 985 983 978 969 963 952 928 858 95.9
F1 979 976 974 971 965 956 950 939 912 83.0 94.5

SparseR-CNN [43] Precision 962 96.0 955 953 942 933 926 O91.1 883 756 91.8
Recall 99.0 989 987 984 977 970 962 949 925 824 95.6

F1 97.6 974 971 96.8 959 951 943 93.0 904 788 93.7

SparseTableDet Precision 97.5 974 97.1 969 96.7 962 96.0 951 928 79.6 94.5
(Proposed) Recall 993 993 993 992 992 987 985 97.8 956 84.1 97.1
F1 98.4 983 982 980 979 974 972 964 942 818 95.8
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