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Active Relation Discovery: Towards General and Label-aware Open Relation Extraction
Yangning Li,Yinghui Li,Xi Chen,Hai-Tao Zheng,Ying Shen

• We reveal two major shortcomings of previous OpenRE: Insufficient capacity to discriminate between known and
novel relations, and requiring additional secondary labeling. We also propose a practical test setup (General OpenRE)
to appeal to the information extraction community to focus more on how the model performs in real-world scenarios.

• We propose ARD, a framework that not only adapts to the General OpenRE utilizing relational outlier detection, but
also exploits active learning to assign more meaningful and human-readable labels to novel relations. ARD offers a
new, feasible and practical perspective for solving OpenRE.

• Extensive experiments on both conventional and General OpenRE settings show that ARD achieve significant
improvements in three real-world datasets.
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ABSTRACT
Open Relation Extraction (OpenRE) aims to discover novel relations from open domains. Previous
OpenRE methods mainly suffer from two problems: (1) Insufficient capacity to discriminate between
known and novel relations. When extending conventional test settings to a more general setting where
test data might also come from seen classes, existing approaches have a significant performance
decline. (2) Secondary labeling must be performed before practical application. Existing methods
cannot label human-readable and meaningful types for novel relations, which is urgently required
by the downstream tasks. To address these issues, we propose the Active Relation Discovery
(ARD) framework, which utilizes relational outlier detection for discriminating known and novel
relations and involves active learning for labeling novel relations. Extensive experiments on three
real-world datasets show that ARD significantly outperforms previous state-of-the-art methods on
both conventional and our proposed general OpenRE settings. The source code and datasets will be
available for reproducibility.

1. Introduction
Novel relations are cropping up at a rate of tens of

thousands per year [44], while most of the rapidly emerging
relations are still unlabeled and under-explored, mixed with
pre-defined relations. These relations cannot be well handled
by supervised RE methods due to the fixed pre-defined rela-
tion schema. Therefore, Open Relation Extraction (OpenRE)
aims at discovering and extracting potential novel relations
from open-domain corpora.

Some recent preliminary studies [49, 50] have noticed
the challenge of learning emerging relations and explored
methods for OpenRE. Previous works can be divided into
two main paradigms: pattern-based and clustering-based
methods. Specifically, pattern-based methods [1, 7] utilize
statistical or neural approaches to heuristically extract re-
lation patterns from sentences, then clustering-based meth-
ods [10, 50] are proposed to aggregate instances representing
the same novel relation. However, previous works mainly
have two shortcomings in real scenarios:

(1) The widely used traditional setting can’t compre-
hensively reflect what OpenRE in the real world entails.
The traditional OpenRE setup is that models are evaluated
based on their ability to discriminate among unseen classes,
assuming the absence of known relation during the test
phase. This test setup is a good measure of the model’s abil-
ity to learn novel relations, but ignores the model’s ability
to distinguish between the known and unseen relations. As
we all know, the relation distribution in the real world is
intricate, mixedwith known and unseen relations. Therefore,
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it’s unrealistic to assume that we will never encounter known
relations during the test stage.

In the light of above facts, we loosen the existing setting
to aGeneral OpenRE setting: test data might also come from
known relations. Empirical experiments in Table 4 show that
the previous state-of-the-art OpenRE models [19, 50, 55]
perform poorly under this setting.

(2)The results produced by previousOpenREmodels
require secondary labeling before they can be practically
applied. In other words, for a certainly discovered novel
relation, the model cannot assign it a surface name with a
specific semantic meaning. As the foundation of a series of
downstream tasks, labels with actual meaning are inevitable.
However, due to the absence of human knowledge, both
pattern-based and clustering-based OpenRE methods lack
the ability to name novel relation types as human-readable
and meaningful. Pattern-based methods rely heavily on the
surface phrase, yet relations between entities are often not
directly represented by the span in the sentence. Clustering-
based methods merely cluster instances that express the
same relations, but do not provide concrete representations
of the novel relations. Both methods require manual re-
labeling of the novel relations found. This gap between
model and practice hinders model application in real-world
scenarios.

To address above mentioned issues, we propose the
Active Relation Discovery (ARD) framework shown in
Figure 1. Targeted improvements are made in two aspects:
(1) To avoid the model being confused by the set of mixed
known and novel relations, we developed a relational outlier
detection algorithm that separates known and novel relations
by treating novel relations as outliers, performing stably
under the General OpenRE setting. (2) To assign meaningful
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labels to novel relations, the incorporation of human knowl-
edge is inevitable. To minimize the labor cost, we propose
an active learning algorithm. Specifically, we introduce the
representative instance, which denotes an instance can offer
rich information of unknown relations. Only a handful of
representative instances requires manual labeling, and then
the model can automatically label the novel relations in a
supervised manner.

In summary, our contributions are in three folds:
(1) We reveal two major shortcomings of previous

OpenRE, and introduce a new setting calledGeneral OpenRE,
which can realisticallymeasure the capabilities of theOpenRE
model.

(2)We proposeARD, a practical framework that not only
adapts to the General OpenRE utilizing relational outlier
detection, but also exploits active learning to assign more
meaningful and human-readable labels to novel relations.

(3) We conduct extensive experiments on both con-
ventional and General OpenRE settings to show that our
framework can achieve significant improvements in three
real-world datasets. Detailed analyses demonstrate the effec-
tiveness of each component of our proposed ARD.

2. Related Work
OpenRelationExtraction.Whereas supervised RE [24, 28,
53, 57] relies heavily on manual annotation and the inherent
inadequacy of predefined relation schema, OpenRE gains
increasing attention. The method of OpenRE can be broadly
divided into two categories: pattern-based and clustering-
based. Pattern-based approaches extract relation patterns
from textual corpora [3, 11, 47, 48]. These methods apply
heuristic algorithms to describe relations between marked
entities with relation patterns consisting of several key
phrases in texts. Due to the ambiguity of relations obtained
by the pattern-based methods, the focus of research in recent
years has been primarily on clustering-based methods.

Clustering-based method [10, 19, 45, 50, 55] cluster
instances in the feature space into novel relation types. [50]
enhances unsupervised clustering-based methods by intro-
ducing Siamese Network to measure instance similarity.
Considering the inherent connection between OpenRE and
relation hierarchies, [55] proposes a framework to effec-
tively integrate hierarchy information into relation represen-
tations for better novel relation extraction.

As described in Section 1, there are two main problems
with the current OpenRE: (1) They focus only on the dis-
crimination of novel relations, supposing that test sets only
have novel relations. (2) The model output is not directly
usable by downstream tasks. In response, we propose a
General OpenRE setup and incorporate outlier detection and
active learning into OpenRE.
Active Learning in Relation Extraction. The key idea
behind active learning [43] is that the learning algorithm is
allowed to ask for true meaningful labels of some selected
unlabelled instances. Various criteria [12, 35, 54] have been
proposed to choose these instances on traditional supervised

RE tasks. To our best knowledge, we firstly integrate active
learning into OpenRE, enablingmeaningful tags of the novel
relation type with the addition of human knowledge.
Generalized Zero-Shot Learning(GZSL). The motivation
for the General OpenRE setting is similar to that of the
GZSL. Traditionally, ZSL approaches [38, 56] assume that
only the unseen classes are present in the test set. [5]
first challenged this implausible setting and proposed the
GZSL setting: test data might also come from seen classes.
GZSL approaches [20, 37] focus on mitigating the strong
bias caused by known classes and preventing novel classes
from being categorized as one of the seen classes. While in
our General OpenRE setting, we concentrate more on the
distinction between known and novel classes.

3. Task Formulation
General OpenRE formulates the task slightly differently

from traditional OpenRE setting. The original train set is a
large-scale manually annotated corpus  = {xrij |ri ∈ K},where relations inK are pre-defined as “known relations”.
Obviously, we assume that there exists a relation set Nthat contains “novel relations” in another corpus without
annotations. In the real-world scenario, we need to process
the dataset whose instances express relations both inK and
N , distinguish known and novel relations, then label each
instance.

Under this fact, we first consider the novel relation
discovery, in which we solely focus on the mining of unseen
relations. At this stage, we pre-train the model on  and
obtain a trained encoder E. Then for a concrete dataset (test
set)  ′ = {xrij , x

′r′i
j |ri ∈ K , r′i ∈ N}. The model will

unsupervisedly divide ′ into a “known relation set”K and
a “novel relation set” N .

K can be easily labeled for sufficient information ob-
tained from  . Secondly, we focus on the annotation of
novel relations N . In this phase, we integrate the intuition
of active learning by utilizing limited labor to facilitate the
novel relation annotation performance. Our model queries a
small set of informative samples in N for manual labeling
and then trains a classifier to annotate novel relations.

4. Methodology
4.1. Overview

The overview of the method is illustrated in Figure 1.
We will detailedly introduce our work into three compo-
nents: (1) Relation representation, in which we extend
to transform semantic relations into low-dimension dense
representations. (2) Relational Outlier Detection, where
the model automatically detects a novel relation set from
real-world datasets and feeds them into the active learning
stage. (3) Relational Active Learning, where the model
selects the most informative instances to train a powerful
classifier for novel relation.
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Figure 1: An illustration of our proposed Active Relation Discovery (ARD) framework.

4.2. Relation Representation
Given a dataset X = {x1, ..., xn}, an instance x is a

word (token) sequence {w1, w2, ..., wn} with two marked
entities eℎ and et. We use triplets of relation facts (eℎ, r, et)to denote that there is a relation r between the marked entity
pair. And xr indicates an instance that expresses the relation
r. Specifically, we define four special markers ⟨eℎ⟩, ⟨∕eℎ⟩,
⟨et⟩, and ⟨∕et⟩ to locate the head entity and the tail entity.
We denote the indices of ⟨eℎ⟩ and ⟨et⟩ as START(h) and
START(t). An instance is represented as:

x = ..., ⟨eℎ⟩, wSTART(ℎ)+1, ..., wEND(ℎ), ⟨∕eℎ⟩, ...,
⟨et⟩, wSTART(t)+1, ..., wEND(t), ⟨∕et⟩, ...

(1)

We use pre-trained language model (i.e. BERT [8]) to en-
code each tokenwt to the corresponding representation ht ∈
ℝd , where d is denotes the dimension of representation
vectors.

For an instance xi ∈ S, we use the concatenation
of representations of two start positions (wSTART(ℎ) and
wSTART(t)) as the representation of the relation:

hr(xi) = [hSTART(ℎ),hSTART(t)], (2)
These extra tokens play a similar role like position embed-
dings in conventional RE tasks [51]. The relation represen-
tation hr(xi) will be utilized to predict the relation type r.Asmentioned previously, are used to fine-tune the pre-
trained language model. Notably, along with the traditional
cross-entropy loss, we integrate a supervised contrastive loss
sup
out 1:

supout =
∑

i∈I

−1
|P (i)|

∑

p∈P (i)
log

exp
(

zi ⋅ zp∕�
)

∑

a∈A(i) exp
(

zi ⋅ za∕�
) , (3)

Here, P (i) ≡
{

p ∈ B∖ {i} ∶ ỹp = ỹi
} is the set of

indices of all positives in the mini-batch B distinct from
i. zi = Proj(hr(xi)) ∈ DP , where Proj is a single

1Scalar temperature parameter � is 0.1 as in [23]. We refer to [23] for
more details.

linear layer outputs vector of size DP = 128. Contrastive
loss [23, 25, 26]allows for tighter clustering of intra-class
instances and a more dispersed distribution of inter-class
instances. The essence behind the employment of contrastive
loss is to gain relation representations that are more friendly
to outlier detection and active learning. The performance
of our relation representation on supervised RE can also be
found in Section 5.9.2.
4.3. Relational Outlier Detection

After pre-training, E� could encode an instance x into
a dense vector hr(x) as the relation representation. In the
feature space, due to the similarity of the semantics, rep-
resentations that express the same relation tend to densely
gather (forming n separate clusters) and ones that express
different relations tend to disperse. Figure 3 illustrated the
distribution of different representations. Since the instances
express unseen relations have not been pre-trained, in other
words, the model has not seen the semantics, the instances
are not projected near any clusters.We utilize this property to
design local outlier factor (LOF) to reflect the local density
of instances in the feature space.

Formally, given any two representations hr(xi),hr(xj) ofinstances xi, xj , we denote d(hr(xi),hr(xj)) as the Euclideandistance between them. Then, we define k-th distance, de-
noted as dk(hr(xi)), to represent the distance from hr(xi)to the k-th nearest neighbour. The reach-ability distance
between hr(xi) and hr(xj) is:

rdk(hr(xi),hr(xj)) = max{dk(hr(xj)),
d(hr(xi),hr(xj))},

(4)

We then compute the density to measure the average
distance of reach-ability distance:

denk(ℎr(xi)) = 1∕

∑

ℎr(xj )∈Nk(ℎr(xi)) rdk(ℎr(xi), ℎr(xj))
|Nk(ℎr(xi))|

, (5)
where Nk(hr(xi)) denotes all the points whthin in k-th
distance of hr(xi).
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The computation of local outlier factor is:

LOFk(hr(xi)) =
∑

hr(xj )∈Nk(hr(xi))
denk(hr(xj ))
denk(hr(xi)

|Nk(hr(xi))|
, (6)

where the larger LOF is, the more likely hr(xi) is an outlier
point, i.e, an instance that expresses a novel relation. Our
model could unsupervisedly detect the instances with novel
relations.
4.4. Relational Active Learning

To this end, themodel could divide the real-world dataset
into a “known relation set" K and an “novel relation set"
N . In view of the fact that K can be conveniently and
precisely annotated, we focus on labeling meaningful types
for discovered instances in N in this subsection.

To retrieve human-readable labels and avoid subsequent
secondary labeling, we need to incorporate human knowl-
edge into the relation learning phase through active learning.
Our primary goal is to find a small part of instances with the
most information and artificially label them. Then we use
the labeled data to train a classifier in a supervised manner.
The problem of how to find instances with most information
essentially is the problem of how to find the instances that
are most likely to express “novel relations”. Inspired by this,
we propose the following Relation Active Learning module:

In the beginning, we randomly label a small part of data
in N . The labeled dataset is denoted as L and the rest
of the unlabeled data is denoted as U . We assume that all
the instances x are i.i.d according to a latent distribution
P (x). Correspondingly, their labels are distributed by the
conditional distribution P (y|x).
Neural Encoder We adopt a neural encoder to learn the
distribution of L and U in the latent feature space. Our
framework is independent of the choice of neural encoders,
in this case, we adopt BERT [8] as the encoder. The goal of
the neural encoder is to encode L and U into the same
feature space and try to fool a discriminator to correctly
predict if the instance is “representative”. The loss function
of the encoder is:

e = − Ex∼PL [log(D (E�(x)))]

− Ex∼PU [log(1 −D (E�(x)))],
(7)

DiscriminatorA binary classifier (or a discriminator): →
{−1, 1} is adopted to select the most informative samples.
We utilize adversarial training to leverage the information of
both L and U . The discriminator is adversarially trained
to accurately distinguish if the instance expresses a novel re-
lation.2 The loss function is a flipped version of the encoder:

d = − Ex∼PL [log(1 −D (E�(x)))]

− Ex∼PU [log(D (E�(x)))]
(8)

2A single novel relation where it won’t be picked to be labeled will
eventually be labeled as a novel relation that has already been labeled, but
this almost never happens.

Naturally, we could jointly optimize the two objective func-
tions by allocate two parameters:  = �e + �′d .
Active learning At each training step, we select k instances
with the highest confidence of the discriminator as the most
informative instances. Then the instances will be manually
annotated and then used to train the classifier. In our exper-
iments, as in most active learning efforts, we use the golden
label of the instance as the annotation result. At this point,
the discussion of annotations needs to be further developed.
Considering the explosive growth of the number of relations,
an annotating process that supports online and continual
learning of novel relations needs to be designed. Thus,
we propose a practical and easy-to-implement annotation
procedure. At the start, for each selected instance xi, theannotator only needs to judge if xi has the same relation class
as any instances of L. xi will be indexed as a novel relationif it doesn’t share the same relation with instances in L, orlabeled as one known relation. After the procedure, the labels
of relations would be easy to design than before the active
learning begins. This manner effectively ensures the ability
to continual learning and online learning of our framework,
expediently fitting the real situation. Subsequently, L will
be fed into a classifier, which is a one-layerMLP [30] with an
output layer, optimized by cross-entropy objective function,
denoted as c and parameterized by 
:

c =
∑

i∈|L|
− log p(y(i)L |xiL, 
). (9)

Algorithm 1 Training for Active Learner, �, �′, k are hyper-
parameters.
Input: Labeled data (L, YL), unlabeled data U , initial-ized encoder model with �, discriminator model with  ,
classifier with 

while not converge do
Sample mini-batches (xL, yL) from (L, YL) Sample
mini-batches (xU ) from (U )Compute e by Eq. 7
Update � w.r.t eCompute d by Eq. 8
Update  w.r.t dSelect k most informative instances {x1, ..., xk} by the
output of d
for i← 1 to k do do
if xi has the same relation as xrj ∈ L then
Label xi with r and append xi to L

else
Label xi with a new index and append xi to L

end if
end for
Update 
 w.r.t c

end while
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5. Experiments
In this section, we verify the performance of the model

on three large-scale OpenRE datasets and their variants, and
at the same time, a series of auxiliary experiments are carried
out to prove the effectiveness of the model. Finally, we give
a detailed analysis of the efficacy of our ARD framework.
5.1. Baseline

To demonstrate the effectiveness of our ARD models,
we compare our models with three state-of-the-art models:
(1) RSN-CV [50] employs conditional entropy and virtual
adversarial learning to train Siamese Network to measure
instance similarity. (2) SelfORE [19] utilizes self-training to
iteratively learn relation representations and clusters with the
weak signals provided by large pretrained language model.
(3)OHRE [55] integrate hierarchy information into relation
representations for better novel relation extraction. For a fair
comparison, we substitute all the encoding models in the
baseline models with BERTLARGE.
5.2. Datasets and Setting
Datasets Three datasets and their variants are used to
evaluate our model: FewRel [15], New York Times Free-
base(NYT+FB) [34] and FewRel2.0 [14], the first two of
which have been widely used in previous RE works [19, 46,
55]. We follow the division of the datasets from previous
works.

FewRel is one of the largest RE dataset. As in the
previous work, we use the original train set of FewRel. The
dataset contains 80 relation categories and 700 instances of
each relation category. Among them, 64 relations are divided
into the training set and the remaining 16 relations are chosen
as the test set.

NYT+FB dataset aligns entities from the New York
Times corpus with Freebase triplets. Following the setting
in [46], we filter out sentence with non-binary relations and
obtain 41,000 labeled sentences containing 262 relations.
The training and test sets comprise 212 and 50 relations
respectively.

To verify the cross-domain capability of the model com-
prehensively, we also use FewRel2.0 dataset whose training
and test sets are from completely different domains. As
an advanced version of FewRel, FewRel2.0 incorporates
knowledge transferring. The test set of FewRel2.0 contains
data of 10 relations (100 samples for each relation) in the
biomedicine field, and the training set is exactly the same as
FewRel. The statistics of the data set are shown in Table 1.
Datasets Processing As described above, in the original
OpenRE setting, there are no overlapping relations in the
training and test sets. The relations in the test set are all novel
relations. To measure the performance of the model in our
proposedGeneral OpenRE setting, we resample the original
dataset and gain two variants: noisy and imbalanced. In the
test sets of the two variants, there exist known relations with
different distributions. In other words, the original dataset
corresponds to the conventional setting and the noisy and
imbalanced variants to the general setting.

Table 1
Statistical results for the dataset. #CLS represents the number
of relation types and #SUM stands for the number of samples.
In the addition equation x + y in the table, x and y are the
statistics for the known and novel relations separately.

Dataset Setting Train Test

#CLS #SUM #CLS #SUM

FR
Ori 64 44,800 16 11,200

Noi 64 40,320 64+16 4,480+11,200

Imb 64 40,320 64+16 4,480+4,560

NYF Ori 212 33,990 50 7,010

Noi 212 30,591 212+50 3,399+7,010

FR2.0
Ori 64 44,800 10 1,000

Noi 64 40,320 64+10 480+1,000

Imb 64 40,320 64+10 480+720

Table 2
The discarding probabilities for different relations.

Dataset Relation ID P

FewRel
66-73 0.4

74-77 0.7

78-81 0.85

FewRel2.0

66-68 0.15

69 0.2

70 0.3

71-72 0.35

73 0.4

74-75 0.45

To obtain the noisy variant, we randomly select 40%
samples from original training sets. Given that the number
of samples for each novel relation is identical in FewRel and
FewRel2.0, we further construct the imbalanced variant to
explore the performance of themodel in the presence of class
imbalance. Specifically, we build on the noisy variant by
randomly discarding a portion of the samples with different
probabilities for each relation class in the test set, yielding
class imbalance in test set. The discarding probabilities for
different relations are shown in the Table 2.
5.3. Evaluation Settings

Following previous works, we apply instance-level eval-
uation metrics to evaluate the model, covering B3 [2], V-
measure [39] and Adjusted Rand Index(ARI) [22].

For quantitative validation, we divideN into train
N and

 test
N , which account for 40% and 60% respectively. The

active learning module selects the instance with the most
information in  train

N and trains the relation classifier. In the
test phase, we merge K and  test

N , report metric scores
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on it. As the baselines are semi-supervised,  train
N is also

applied to the training of the baseline models to ensure a
fair comparison.

For FewRel and NYT+FB, the seminal set size for
Active Learning module is 32. The sample size k is 32 and
we sample a total of 8 epochs. In other words, a whole of 288
samples is manually labeled. As for FewRel2.0, we choose a
smaller sample size: k = 8 and keep seminal set size as 32.
Finally, 96 informative samples are annotated.
5.4. Implementation Details and Hyper-parameter

Choices
To improve the experimental effect, we use BERTLARGEwith 300M parameters in the relation representation module.

We pre-train the BERT model on 3 epochs, and each epoch
costs about 1 GTX 3090 GPU hour. For the discriminator,
we constructed a 3-layer fully connected neural network.
For active learning, � and �′ are both 1. For optimiza-
tion, different models use different optimizers. Specifically,
BERT use AdamW [32] with a learning rate of 0.00002, for
discriminator, we use Adam with a learning rate of 0.0005,
and for task learner of active learning, SGD is utilized. For
baseline models, we follow their original setting without
modifying any parameters except the division of the dataset.
5.5. Main Experiment

Table 4 shows the quantitative evaluation results on three
datasets and their variants, from which we observe that: (1)
Our ARD model outperforms state-of-the-art models by a
large margin. Specifically,B3, V-measure and ARI increased
by 10.5, 13.7, and 11.4 respectively compared to OHRE on
FewRel. Compared with other semi-supervised methods, the
gap is even larger, rises of over 20 are achieved byARD. This
proves that ARD can efficiently discover and learn represen-
tations of novel relations at a fraction of the labor cost. (2) A
universal and consistent decline in performance of baseline
models from the original datasets to noisy variants and then
to unbalanced variants. This demonstrates that the General
OpenRE setting is more challenging and more practical for
the real scenario. The F1 score for RSN-CV drops dramat-
ically from the original data to the noisy variant by 16.6. In
contrast, the ARD model performs better on both the noisy
and imbalanced variants than on the original dataset, even
with a F1 score boosting by 7.2 on FewRel. This indicates
the relation discovery procedure and relational active learn-
ing is robust in different scenarios. (3) The state-of-the-art
models perform poorly on FewRel2.0. This is entirely to be
expected, as the instances in the test set are from non-generic
and low-resource domains such as biomedicine. ARD, on the
other hand, still shows strong stability, confirming the cross-
domain capability of the model. Further, to substantiate the
applicability of our framework, we deploy ARD to a real
medical dataset, as detailed in Section 5.10.
5.6. Analysis on Active Learning

The Efficiency of Active Learing Table 3 shows the
results of our active learning approach compared to vari-
ous active learning baseline models including DBAL [13],

Table 3
F1-measure for various active learning methods on noisy
datasets.

Dataset Model Epoch

#1 #2 #3 #4 #5 #6

FR (Noi)

DBAL 58.8 64.8 71.6 70.4 74.1 76.9

CoreSet 60.1 61.8 66.1 68.4 70.9 75.4

SRAAL 61.9 64.7 65.7 69.8 73.7 73.9

Ours 66.0 69.0 70.5 72.7 75.5 78.5

NYF (Noi)

DBAL 47.4 48.6 51.4 53.3 54.9 55.5

CoreSet 45.4 49.5 52.0 55.3 56.8 59.2

SRAAL 50.2 51.9 54.0 55.6 56.2 56.9

Ours 56.8 62.5 66.6 68.3 69.3 69.9

FR2.0 (Noi)

DBAL 46.9 50.5 51.4 51.7 52.2 53.7

CoreSet 44.0 45.5 50.3 51.9 53.0 54.2

SRAAL 45.0 49.7 51.8 52.0 52.8 53.9

Ours 48.8 51.2 52.4 53.2 53.5 54.5

F1

50.0

57.4

64.8

72.2

79.6

87.0

Epoch

#1 #2 #3 #4 #5 #6 #7 #8

40%(V)
40%(B)
20%(V)
20%(B)

表格 1

FewRel 1.0 20%(V) 40%(V) 20%(B) 40(B)

#1 54.18 58.21 59.9 66.0

2 64.55 65.45 64.88 69.0

3 65.59 69.17 69.14 70.5

4 67.66 71.74 72.1 72.7

5 68.95 73.94 75.1 75.5

6 73.94 74.11 76.4 78.5

7 74.84 76.31 76.9 79.5

8 76.93 77.16 79.4 80.8

100% -
30% -

Lowest Confidence Random Highest Confidence

70.59
69.95 69.07 68.30 69.11

78.39

76.51

77.46 78.82

80.31

77.90

81.13

80.42

86.9

79.5

𝒳train
N

𝒳train
N

Figure 2: F1-measure on noisy FewRel, (V) denotes the �-VAE
and (B) denotes the BERT encoder.

CoreSet [42], SRAAL [52]. It can be observed that in each
iteration, our model outperforms the other models, indicat-
ing that our method can consistently sample informative
samples. In particular, our method performs significantly
better on the NYT-FB dataset where the category count is
much larger. Compared to the baseline models, our method
ensures the information content and category diversity of the
selected samples by enabling samples of the present batch to
interact implicitly with previously selected samples through
the discriminator. Besides, we report first 8 cases selected by
discriminator which are regarded as the most representative
instances(instances with novel relations) in Section 5.8.
The Impact of Different Encoder and Scope of Query
Figure 2 shows the experimental results on noisy FewRel
with different encoders and query ranges. The “query ranges”
represents the ratio of  train

N to N , We also explore the
impact of �-VAE [17] and BERT as encoders. From the re-
sults we observe that: (1) Generally, the model performance
is proportional to the size of  train

N . However, the results
are improved marginally as the number of samples increase.
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Table 4
Main results on three original datasets and their variants. Ori, Noi, and Imb stand for original, noisy and imbalanced respectively.
Ori corresponds to the conventional setting. Noi, and Imb refer to the general setting. Results are the average of 3 experiments
with different random seeds.

Dataset Model B3 V-measure ARI
F1 Prec. Rec. V Hom. Comp.

FR (Ori)

RSN-CV 59.2±0.5 55.5 63.4 72.9±0.3 69.1 77.2 47.2±0.9
SelfORE 60.6±0.6 60.2 61.1 68.4±1.2 67.5 69.3 56.0±0.7
OHRE 63.1±1.0 54.9 74.1 71.4±0.8 64.9 79.4 52.7±1.0
Ours 73.6±0.8 70.7 76.8 85.1±0.1 84.9 85.3 64.1±0.8

NYF (Ori)

RSN-CV 49.7±0.8 39.3 67.6 64.2±0.8 56.7 73.9 35.1±0.2
SelfORE 54.9±0.7 52.8 57.2 72.5±0.3 71.6 73.4 56.6±0.6

OHRE 41.2±0.2 28.5 74.3 54.1±0.5 42.7 73.7 26.5±0.6
Ours 51.4±0.5 45.0 60.0 72.3±0.4 75.0 69.8 45.1±0.7

FR2.0 (Ori)

RSN-CV 27.7±1.2 18.2 58.2 48.8±0.2 39.5 63.7 13.4±0.7
SelfORE 36.7±0.8 26.2 61.3 60.2±0.8 52.2 71.2 27.3±0.3
OHRE 25.1±0.6 18.5 38.9 15.8±0.3 14.4 17.6 9.4±0.7
Ours 48.8±0.7 43.2 56.1 65.1±0.8 60.8 70.1 34.4±0.8

FR (Noi)

RSN-CV 42.6±0.7 30.1 72.6 66.6±0.3 56.4 81.2 28.3±0.3
SelfORE 51.3±0.8 49.3 53.5 56.4±0.5 55.2 57.7 45.8±0.4
OHRE 32.5±0.2 20.4 79.8 57.5±1.2 46.1 76.3 26.3±1.2
Ours 80.8±0.9 75.7 86.7 90.2±0.5 89.0 91.4 71.3±0.5

NYF (Noi)

RSN-CV 43.0±0.5 30.6 72.3 59.6±0.1 50.7 72.3 30.6±0.7
SelfORE 48.6±1.2 43.8 54.6 65.7±0.1 65.1 66.3 46.2±0.3
OHRE 36.4±0.7 25.1 66.2 48.1±0.3 38.2 64.6 30.2±0.9
Ours 71.3±0.2 60.8 86.2 72.9±0.3 70.5 75.5 51.0±0.3

FR2.0 (Noi)

RSN-CV 27.7±0.2 32.4 24.2 31.4±0.4 30.1 32.8 10.2±0.5
SelfORE 32.8±1.1 24.7 48.9 54.8±1.0 47.3 65.1 27.1±1.0
OHRE 25.2±0.5 15.9 60.5 50.0±1.2 40.1 66.4 16.2±0.2
Ours 55.0±0.7 52.8 57.4 69.3±0.7 65.1 74.0 38.5±0.9

FR (Imb)

RSN-CV 37.2±1.0 24.6 76.2 65.5±0.6 55.1 80.8 25.3±0.5
SelfORE 48.3±0.2 44.2 53.5 53.7±0.1 56.4 51.3 44.2±1.3
OHRE 31.0±1.0 19.8 71.1 56.1±0.6 44.1 77.6 22.6±1.0
Ours 76.5±0.6 74.7 78.4 86.5±0.7 86.8 86.2 67.8±0.6

FR2.0 (Imb)

RSN-CV 26.4±0.4 20.6 36.8 31.5±0.3 25.2 41.9 22.7±0.7
SelfORE 31.3±1.2 22.4 52.2 52.9±0.4 45.8 62.6 25.7±0.9
OHRE 22.6±0.6 13.9 60.7 45.5±1.0 35.4 63.6 13.4±0.6
Ours 52.4±0.6 50.1 54.9 67.4±0.2 63.2 72.2 36.4±0.3

But the model still yields better performance when the query
range is 40%. (2) The comparisons between the VAE and the
BERT encoder are in line with intuition. Although VAE is
intuitive and can be more easily trained, BERT still shows
superiority in empirical results.

Compare withManual RandomSelection. In Figure 2, the
gain from 288 informative instances (approximately 8% of
 train
N ) selected by the active learning is similar to the gain

from 30% of instances randomly selected.When trainedwith
the full amount of  train

N , the F1 is 6.1% higher than ARD
while costing 12 times as much in human effort.
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Table 5
Comparisons of F1-measure between different sampling strate-
gies on noisy FewRel dataset.

Epoch Lowest Random Highest

#1 57.1 58.7 66.0
#2 57.1 60.4 69.0
#3 57.8 65.6 70.5
#4 57.6 67.2 72.7
#5 57.6 67.7 75.5
#6 58.1 67.7 78.5

Table 6
Average time token to sample once on the corresponding
dataset.

Dataset Time(ms)

DBAL CoreSet SRAAL Ours

FewRel 157.0 1145.2 409.3 465.1

NYT+FB 157.9 74.3 132.7 101.9

FewRel2.0 181.4 209.4 418.4 9.2

Average 165.4 476.3 320.1 192.0

The Impact of Different Sampling Strategies In order to
prove the effectiveness of the active learning method, we
conduct a further ablation experiment. As mentioned above,
our sampling strategy is to select the k instances with the
highest confidence for manual labeling. In the ablation ex-
periment, we test two other sampling strategies: selecting the
k instances with the lowest confidence; randomly selecting
k instances by human. The comparison results are shown in
Table 5.

It can be seen that after being trained by instances with
the highest confidence, the model achieves the most im-
provement. In contrast, instances with the lowest confidence
contribute very little to improving the performance of the
model. Even with the continuous increase of training data,
the improvement is extremely little. The results prove that
the active learning model does select the most informative
instances.
Time Efficiency of Relational Active Learning In practice,
it is often the time spent on manual annotation that is
the time-consuming bottleneck. Nevertheless, the sampling
strategy for active learner should also select samples in a
time-efficient manner as much as possible. We analysis the
time efficiency of different active learning methods. Table 6
shows the average time for different methods to sample once
on the corresponding dataset. DBAL is the most competitive
baselines in terms of their achieved mean time efficiency.
Our method fell marginally behind DBAL, however, our
method is outperformed in accuracy by all other methods.
5.7. Analysis on Relational Outlier Detection
The Effects of Relational Outlier Detection ARD em-
ploys novel relation discovery module to distinguish be-
tween known and novel relations, preserving the active

Table 7
Ablation experiments over novel relation discovery module on
noisy datasets.

Dataset Model Epoch

#1 #2 #3 #4 #5

FR (Noi) ARD 66.0 69.0 70.5 72.7 75.5

w/o LOF 62.8 64.4 68.5 70.5 73.4

NYF (Noi) ARD 56.8 62.5 66.6 68.3 69.3

w/o LOF 47.7 53.8 57.2 60.3 64.4

FR2.0 (Noi) ARD 48.8 51.2 52.4 53.2 53.5

w/o LOF 42.9 44.2 45.6 46.4 48.2

learning module to more efficiently select informative novel
relations without being distracted by known relations. To
demonstrate the effectiveness and significance of the novel
relation discovery, we perform ablation experiments over
LOF algorithm on three noisy variants. Table 7 shows the
experimental results, and we note that: (1) Despite the robust
learning ability of active learning on novel relations, the
model performances show different degrees of degradation
after the removal of the LOF algorithm. (2) Average of de-
cline of F1 scores in each epoch on the FewRel, NYT+FB,
and FewRel2.0 datasets is 2.82, 8.02, 6.36 respectively, with
the most severe drop on NYT+FB. The phenomenon is
intuitive, as the NYT+FB dataset contains the most known
relations; the more noise (known relations) there is, the more
confused the active learning module becomes about the
novel relations. The results demonstrate the novel relation
discovery module plays a key role as “noise reduction”.
The Impact of Different Outlier Detection Algorithms
We compare LOF with two different algorithms for the rela-
tional outlier detection, including IsolationForest [29], and
OneClassSVM [41]. We evaluate the F1-measure of these
three algorithms solely on the discovery of novel relations,
the results are reported in Table 8. Our LOF algorithm
outperforms by large margins, achieving 83.9% F1-measure
on FewRel dataset. The principle of the IsolationForest
algorithm is to cut data points and isolate data points one
by one. Thus the data needs more cuts to be isolated. The
main reason for the poor performance of this algorithm
is a large amount of the test data. For the same type of
new relations, their distribution is relatively dense, and the
number of cuts will also increase. Moreover, the dimensions
of relation representation are 2048, while IsolationForest has
poor processing capabilities for high-dimensional features.
Hence, it yields relevant poor results. OneClassSVM aims
to learn a tight decision boundary from normal data and
treats points outside the decision boundary as abnormal
points. In the relational feature space, the distribution of
known relations and novel relations are complicated. Thus
the OneClassSVM is likely to learn an over-fitting decision
boundary, resulting in poor performance.
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Table 8
F1-measure on noisy FewRel and FewRel2.0 with different
outlier detection algorithms.

Dataset Method

IF OneClassSVM LOF

FewRel 64.0 47.3 83.9

FewRel2.0 63.1 54.1 80.3

5.8. Case Study of Active Learning
As shown in Table 10, we report 8 cases selected by dis-

criminator in the first iteration on noisy FewRel2.0 dataset,
where 64 relations are pre-trained and seen. With the highest
confidence, the discriminator successfully selects sentences
with unseen relations and guarantees the diversity of relation
categories.
5.9. Additional Exploration
5.9.1. Visualization of Relation Representations

In order to intuitively demonstrate the distribution of
novel relations relative to known relations and, on the other
hand, to illustrate the benefits of introducing contrastive
loss, we visualize the relation representation hr(x) after
dimension reduction using t-SNE [33].

As illustrated in Figure 3, instances of the same known
relation type are densely clustered with a high local density,
while instances of novel relations distribute dispersedly. This
fact strongly supports the premise of the LOF algorithm.
Also, comparing subfigures 3(a) and 3(b), we observe that
contrastive loss firmly constrains the distribution of intra-
class instances. In pre-experiments on FewRel, the introduc-
tion of contrastive loss boosts the accuracy in distinguishing
known and novel relations from 79.3% to 83.9%.

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

(a) Train using only traditional
cross-entropy loss.

0.00000000

0.25000000

0.50000000

0.75000000

1.00000000

0.00000000 0.25000000 0.50000000 0.75000000 1.00000000

(b) Plus contrastive loss.

Figure 3: t-SNE visualization of relation representation. The
known and novel relations are distinguished by circular and
triangular symbols respectively.

5.9.2. Performance of our Relation Representation on
Supervised RE

To demonstrate the effectiveness of the relation repre-
sentation described in the Methodology section, we con-
duct a series of experiments on supervised RE task. First,

Table 9
Results on DDI’13 dataset. The first seven rows are the results
of the previous SOTA methods, and the bottom results are for
ours method in supervised relation learning.

Methods Pre. Rec. F1

SCNN 69.1 65.1 67.0
CNN-bioWE 75.7 64.7 69.8
MCCNN 75.9 65.2 70.2
Joint AB-LSTM 73.4 69.6 71.5
RvNN 74.4 69.3 71.7
Position-aware LSTM 75.8 70.4 73.0
BERE 76.8 71.3 73.9

Ours 92.3 84.4 86.8
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Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

BERE: AUPR=0.504, F1=0.551
BERE-AVE: AUPR=0.386, F1=0.442
BERE-POOL: AUPR=0.542, F1=0.557
Ours: AUPR=0.818, F1=0.827

Figure 4: Precision-recall curve of BERE and our model.

we conduct extensive experiments on the biomedical rela-
tion extraction benchmark DDI’13 [16] and show in Table
9. We make comparisons with various previous state-of-
the-art methods, which fall into two groups according to
the neural network architecture: convolutional neural net-
work (CNN) based methods and recurrent neural network
(RNN) based methods. For the first group, we report the
results of SCNN [58], CNN-bioWE [31] and MCCNN [36],
which uses syntax word embeddings, biomedical-related
embeddings and multi-channel word embeddings for feature
extraction, respectively. For recurrent based networks, we
report the reults of Joint AB-LSTM [40], Position-aware
LSTM [59], RvNN [27] and BERE [18]. Joint AB-LSTM
jointly trains two bidrectional LSTM (Bi-LSTM) with dif-
ferent pooling mechanisms: max-pooling for one Bi-LSTM
and attentive pooling for the other. Position-aware LSTM
adopt position information as attention mechanism for the
training of LSTM. RvNN and BERE incorporates parse-tree
information to enhance the performance of prediction. Each
model is trained on the training dataset to predict a relation
class of five pre-defined relation types for the input sequence.

To further evaluate the performance of our representa-
tion method on large-scale distantly annotated dataset, we
conduct another set of experiments on the DTI dataset.
As on the DTI dataset, previous literature has shown the
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Table 10
Cases selected by the confidence score of the discriminator and the novel relations, where red and blue represent the head and
tail entities

.
Selected sentence Novel relation

Ectopic overexpression of mir-497 promotes chemotherapy resistance in glioma cells
by targeting pdcd4, a tumor suppressor that is involved in apoptosis.

Biological process involves gene product

As full-length bid is a weaker apoptogen than tbid,we propose that the phosphorylation
of bid by jnks, followed by the accumulation of the full-length protein, delays
attainment of apoptosis, and allows the cell to evaluate the stress and make a decision
regarding the response strategy.

Biological process involves gene product

Pretreatment with dexamethasone 1 hour before cyclophosphamide injection sig-
nificantly down-regulated cyclophosphamide induced bladder nuclear factor-u03bab
dependent luminescence, ameliorated the grossly evident pathological features of acute
inflammation and decreased cellular immunostaining for nuclear factor-u03bab in the
bladder.

Ingredient of

Trastuzumab emtansine (t-dm1), an antibody-drug conjugate comprising the cytotoxic
agent dm1, a stable linker, and trastuzumab, has demonstrated substantial activity in
human epidermal growth factor receptor 2 (her2), -positive metastatic breast cancer,
raising interest in evaluating the feasibility and cardiac safety of t-dm1 in early-stage
breast cancer (ebc).

Ingredient of

Here we looked for evidence of adult hippocampal neurogenesis using immunohis-
tochemical techniques for the endogenous marker doublecortin (dcx) in 10 species
of microchiropterans euthanized and perfusion fixed at specific time points following
capture.

Gene plays role in process

Here, we explored the effects of the novel class ii-specific "histone deacetylase
inhibitors (hdacis) mc1568 and mc1575 on interleukin-8 (il-8) expression and cell
proliferation in cutaneous melanoma cell line gr -m and uveal melanoma cell line
ocm-3 upon stimulation with phorbol 12-myristate 13-acetate (pma).

Gene plays role in process

Data indicate that the structurally disordered and abnormally formed ecm of uterine
fibroids contributes to fibroid formation and growth.

Classified as

however, individuals heterozygous for both beta "e", "and", beta thalassaemia
(hbe/beta thalassaemia) have a severe clinical disorder which in some cases may
approach that seen in homozygous beta thalassaemia and which is by far the
commonest form of symptomatic thalassaemia in the indian subcontinent and south-
east asia.

Classified as

superiority of BERE compared with CNN-based and RNN-
based baselines, we mainly take BERE as the baseline of
our experiments. For fairness, we follow the settings of
BERE by using precision-recall curve, the area under the
precision-recall curve and the F1 score as the evaluation
metrics. We re-run the open-source code of BERE and its
two variants: BERE-AVE, BERE-POOL. BERE-AVE adopt
the average pooling mechanism to aggregate the semantic
information over instances in a bag. BERE-POOL uses the
max-pooling strategy. The implementation details of our
model on the DTI dataset are identical to the DDI’13 dataset.
The precision-recall curve is shown in Figure 4, which
indicates the significant performance of our representation
method.
5.9.3. Impact of The Size of BERT Model

We change the size of BERT in ARD. The results of this
ablation experiment are shown in the Table 11. We can find
that the size of BERT is not the key factor to bring gain, and

Table 11
Ablation experiments over the size of BERT model on FewRel
datasets.

Data
-set Model B3 V-measure ARI

F1 Prec. Rec. V Hom. Comp.

FR
(Ori)

BASE 68.8 55.7 90.0 79.2 73.3 86.2 55.5

LARGE 73.6 70.7 76.8 85.1 84.9 85.3 64.1

FR
(Noi)

BASE 75.7 66.1 88.8 82.2 78.5 86.2 62.2

LARGE 80.8 75.7 86.7 90.2 89.0 91.4 71.3

FR
(Imb)

BASE 70.6 63.4 57.5 81.2 74.2 68.4 59.3

LARGE 76.5 74.7 78.4 86.5 86.8 86.2 67.8

even if we use BERTBASE as the backbone, the performance
of ARD is still considerably higher than that of the baseline
model using BERTLARGE in Table 4.
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Table 12
Statistical results of dataset for COVID-19.

Relation Count

CHEBI-CHEBI 4680
CHEBI-HP 20455
GO-HP 17254
DO-DO 14430
CHEBI-DO 2415
HP-HP 48236
HP-DO 19770
GO-CHEBI 1285
GO-DO 3615
GO-GO 7303

5.10. Practical Application on Real-world Dataset
We apply the ARD framework in real-world scenarios

to verify its practicability. With the increasing number of
publications about COVID-19, it is a challenge to extract
personalized knowledge suitable for each researcher [9, 21].
[4] aims to build a new semantic-based pipeline for recom-
mending biomedical entities to scientific researchers. In this
work, the researchers utilize MER [6] as NER annotation
server. As a result, 9,000 articles are automatically anno-
tated with relevant items/concepts for COVID-19. And for
further relation extraction task, due to the expensive manual
annotation costs, the researchers merely take initial steps
towards the results, providing a small sample dataset of ten
documents, with all possible relationships between the four
types of entities identified by NER pipeline. Thus, we were
able to establish ten different types of relations, encom-
passing the four ontologies (CHEBI, DO, HPO, and GO).
We follow the relation types, and apply ARD framework in
the results. We take sample size k of 200 and sample 25
epochs. Finally, a total of 139,479 relations between entity
pairs are automatically obtained by ARD. The statistical
results of the data are shown in Table 12. We also report
the confidence of the discriminator in each epoch for U .As can be observed from the Figure 5, the confidence is
progressively increasing as the training epoch increases,
which indicates that the model is becoming more confident
in the classification results. In an ideal case, the confidence
should converge toward 0.5.

6. Conclusion and Future Work
The paper proposes Active Relation Discovery (ARD),

which aims at accurately discovering and meaningfully an-
notating new semantic relations under the General OpenRE
setting. By introducing outlier detection and active learning,
ARD solves two problems: (1) Sufficient capabilities to
distinguish between known and novel relations, with robust
performance under General OpenRE settings. (2) Avoiding
Secondary labeling of downstream tasks. Extensive exper-
iments are conducted to demonstrate the effectiveness of
ARD.
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Figure 5: Discriminator’s confidence for U in each epoch.

As a pioneering work in OpenRE, several directions can
be further explored: (1) Better methods to discriminate and
annotate novel relations inGeneral OpenRE setting. (2) Bet-
ter methods to capture the core relational features for relation
representation. (3) Combinationwith bootstrappingmethods
to partially replace active learning. (4) Combination with
lifelong learning to continuously incorporate novel relations.
(5) A universal schema for the standard of active relation
learning.
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