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Abstract

Privacy laws and regulations enforce data-driven
systems, €.g., recommender systems, to erase the
data that concern individuals. As machine learn-
ing models potentially memorize the training data,
data erasure should also unlearn the data lineage
in models, which raises increasing interest in the
problem of Machine Unlearning (MU). However,
existing MU methods cannot be directly applied
into recommendation. The basic idea of most rec-
ommender systems is collaborative filtering, but ex-
isting MU methods ignore the collaborative infor-
mation across users and items. In this paper, we
propose a general erasable recommendation frame-
work, namely LASER, which consists of Group
module and SeqTrain module. Firstly, Group mod-
ule partitions users into balanced groups based on
their similarity of collaborative embedding learned
via hypergraph. Then SeqTrain module trains the
model sequentially on all groups with curriculum
learning. Both theoretical analysis and experi-
ments on two real-world datasets demonstrate that
LASER can not only achieve efficient unlearning,
but also outperform the state-of-the-art unlearning
framework in terms of model utility.

1 Introduction

Recommender Systems (RSs) are typically built by analyzing
the data collected from users, such as users’ ratings on items.
Existing regulations, e.g., the General Data Protection Regu-
lation [EU, 2014], enforce the ability of erasing the personal
data that concern individuals, which raises the concerns of
privacy in RSs. Due to the fact that machine learning mod-
els, which have been ubiquitously applied in RSs, potentially
memorize the training data [Bourtoule er al., 2021]. Besides
simply deleting the target data, data erasure is also required
to unlearning the data lineage in RS models. In general, it
is beneficial for both users and recommendation platforms to
build an erasable RS that supports unlearning in addition to
learning. On the one hand, an erasable RS can preserve the
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Figure 1: A schematic view of learning and unlearning in recom-
mendation.

privacy of users. On the other hand, it can also enhance rec-
ommendation performance by active unlearning. This is be-
cause the performance of RSs is sensitive to the training data
which can be easily polluted by accidental mistakes or poi-
soned by intentional attack [Schafer ef al., 2007].

Figure 1 illustrates the schema of learning and unlearning
in recommendation. In the learning process (black arrows),
the platform trains recommendation models with the data col-
lected from users. In the unlearning process (blue arrows), the
platform unlearns the target data lineage according to the un-
learning requests from users. There are basically two types
of unlearning requests, (i) user-wise erasure (Eq) which un-
learns all of the data from the user(s), and (ii) data-wise era-
sure (Eo) which unlearns a portion of user data. In order to
evaluate unlearning methods, we summarize three goals of
unlearning, i.e., G1: Unlearn Completeness, G2: Computa-
tional Efficiency, and G3: Model Utility.

Recently, researches have studied the problem of Ma-
chine Unlearning (MU) which aims to unlearn the target
data lineage in machine learning models. A straightfor-
ward MU method is retraining the model from scratch on
the new dataset after deleting the target data, which per-
fectly achieves G1 and G3, but fails G2. Due to tremen-
dous computational overhead of recommendation models, ef-
ficiency is one of the key concerns for unlearning. To over-
come the issue of inefficiency, two classes of MU meth-
ods, i.e., retrain unlearning and reverse unlearning, have
been proposed [Bourtoule et al., 2021; Schelter et al., 2021;
Sekhari ef al., 2021]. Retrain unlearning basically divides the
original dataset into subsets and retrains the model on the tar-
get subset(s) to reduce computational overhead. In contrast,
reverse unlearning focuses on the target data and executes re-
verse operations.



Unfortunately, the above MU methods cannot be directly
applied into recommendation. The reason is that the basic
idea of most RSs is Collaborative Filtering (CF) [Shi er al.,
2014], but these MU methods fail to consider the collabora-
tive information across users and items. On the one hand,
retrain unlearning trains each model on a subset of the orig-
inal dataset, which means that each model can only utilize
collaborative information within the subset. Consequently,
retrain unlearning reduces total model utility (G3). On the
other hand, reverse unlearning only executes reverse opera-
tions on the target data ignoring the collaborative effect with
associated data. Thus, reverse unlearning cannot unlearn with
completeness (G1).

In this paper, we focus on user-wise erasure problem and
propose LASER for it. Following the idea of retrain unlearn-
ing, LASER naturally achieves G1. Specifically, LASER
consists of two modules, i.e, Group module and Sequential
Train (SeqTrain) module, which are constructed not only to
achieve efficient unlearning (G2), but also to enhance model
utility (G3) by preserving collaborative information. Firstly,
Group module divides the original data into balanced groups
for efficient retraining. These groups are generated based on
user similarity, which is measured by the distance of collab-
orative embedding learned via hypergraph. Then, SeqTrain
module trains the model on all groups sequentially to ag-
gregate collaborative information. To further improve model
performance in such a sequential training manner, SeqTrain
module trains the groups in an easy-to-hard order, which im-
itates the learning style in human curricula. Our theoreti-
cal analysis and empirical study demonstrate that sequential
training can improve the performance of models. Through
these two modules, LASER achieves efficient unlearning and
boosts model utility for CF-based recommendation. We sum-
marize the main contributions of this paper as follows:

* We focus on user-wise erasure and propose an erasable rec-
ommendation framework (LASER) for CF models.

* We encode the high-order collaborations via hypergraph
and propose a balanced grouping method to enhance un-
learning efficiency.

* We propose collaborative cohesion to measure the volume
of collaborative information, as well as the learning diffi-
culty. Our theoretical analysis reveals that the easy-to-hard
learning order improves model utility.

* We conduct extensive experiments on two real-world
datasets to demonstrate that LASER supports efficient un-
learning and outperforms the state-of-the-art unlearning
framework in model utility.

2 Problem Formulation

2.1 Unlearning

The main problem of building an erasable RS is unlearning
and we formulate the process of unlearning as follows: let-
ting [N] = {1, ..., N} denotes a user set, we assume that the
recommendation platform learns a model M on the dataset
D = {d;,i € [N]} where d; denotes the data collected from
user ¢. As it is illustrated by blue arrows in Figure 1, any user
i € [N] can submit an unlearning request £ C d; to unlearn
the target data. For user-wise erasure, £ = d;, and typically

|D| > |E|. In practice, the unlearning requests are often
submitted sequentially. For conciseness, we assume that the
platform processes a batch of unlearning requests together.
Finally, the platform unlearns the model M based on request
I, and produces an unlearned model M,,. Let M7 denote
the model that is retrained on D\ E from scratch. Although
retraining from scratch is extremely inefficient, M is the
ground-truth unlearned model. Thus, the three goals of un-
learning is equivalent to efficiently producing a model whose
distribution is close to that of M.

2.2 Goals of Unlearning

G1: Unlearn Completeness. Completely unlearning the tar-
get data lineage is one of the most fundamental goals of un-
learning, which means fully erasing the influence on model
parameters and making it impossible to recover.

G2: Unlearn Efficiency. Due to the considerable computa-
tional overhead of practical recommendation models, unlearn
efficiency, especially time efficiency, is an essential goal of
unlearning.

G3: Model Utility. Although unlearning too much data lin-
eage will inevitably reduce the model utility, an adequate
unlearning method should achieve comparable performance
with the ground-truth model M.

2.3 Choice of Recommendation Models

Our proposed LASER can be generalized to most existing CF
models. For conciseness, in this paper, we only consider rat-
ing data and choose two well-known CF models, i.e., Deep
Matrix Factorization (DMF) [Xue et al., 2017] and Neural
Matrix Factorization (NMF) [He et al., 2017]. Basically, the
two models decompose the user-item interaction matrix R
into two low-rank embedding matrices, i.e., a and 3, which
represent user features and item features respectively. The
two models predict unknown ratings as follows:

RPYF = cos (o(v), 0(B5)), (1)
BYMF = o (Fomr (4, ) ® Fue(i, 5)), )

where Fomr(i,j) = o(a; © B5), Fue(i, ) = oo @ B;),
o denotes layer operations, ¢ and ® denote vector concate-
nation and element-wise product respectively. Following the
original papers, we adopt normalized binary cross entropy
and Adam to train the above models.

3 LASER Framework

Generally speaking, LASER follows the idea of retraining un-
learning to achieve G1 and G2, and maintains model utility
(G3) by preserving collaborative information.

3.1 Overview

Figure 2 illustrates the structure of LASER framework, which
consists of Group module and SeqTrain module. We intro-
duce the learning and unlearning pipelines as follows:

Learning: As the black arrows show in Figure 2, firstly,
Group module divides D into disjoint groups based on the
similarity of collaborative embedding. Secondly, SeqTrain
module sorts the groups based on the learning difficulty, then
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Figure 2: Overview of LASER framework.

trains the model sequentially in an easy-to-hard order and fi-
nally saves these models. In this way, we can train the model
on the whole dataset to preserve collaborative information.

Unlearning: As the blue arrows show, once an unlearning
request E is received, Group module detects in which group
F is located and SeqTrain module sequentially retrains the
model using the previously saved models. In this way, we
can retrain the model efficiently during unlearning.

3.2 Group Module

Group module aims to partition a dataset D into S groups
such that (;c(5yPi = 0 and {J;c(q)P; = D. This paper
focuses on user-wise erasure which means the above dataset
partition is equivalent to dividing the user set [/V] into S dis-
joint groups. Partitioning unlabeled data into groups is a clas-
sic unsupervised learning problem named clustering. Thus, a
straightforward idea is to cluster users based on the observed
data. There are two grouping principles, i.e., collaboration
and balance, for effective and efficient unlearning in RSs.

Collaboration Principle

Motivation Collaboration is of great importance to enhanc-
ing RS model utility. There are two main challenges in col-
laborative grouping. Firstly, in the context of RS, directly
clustering users suffers from data sparsity. Since each user
only interacts with few items, most elements of the user rat-
ing vector, i.e., each row of the user-item interaction matrix
R, are empty. Secondly, the original R or its corresponding
bipartite graph cannot sufficiently represent the user-item col-
laboration, especially high-order relations [Ji er al., 2020].

Method In order to encode the sparse ratings and enrich
the collaborative information, we learn the hidden collabora-
tion via hypergraph. Figure 3(a) depicts a traditional bipar-
tite graph where an edge connects two vertices (a user and an
item). However, Figure 3(b) shows the high-order relations
of u; which consists of multiple vertices. Hypergraph is a
generalized structure for relation modeling, in which a hyper-
edge connects two or more vertices. Due to this property, hy-
pergraph can sufficiently model the high-order relations that
cannot be directly represented by a traditional graph.

Specifically, we take the following three steps to learn col-
laborative embedding: (i) using R to build the correspond-
ing hypergraph; (ii) for each user, performing random walk
to obtain its relations, which transforms the task to sequence
embedding; (iii) applying the sequence embedding technique,
e.g., Word2Vec [Church, 2017], to learn the collaborative em-
bedding. Due to page limit, we summarize the above process
in Algorithm 1 and present the details in Appendix A.

(a) User-item bipartite graph  (b) High-order relations
Figure 3: An illustration of an user-item bipartite graph and the high-
order relations of u; where v and 7 denote user and item respectively.

Algorithm 1 Collaborative Embedding via Hypergraph

Input: User-item interaction matrix: R
Parameter: Embedding dimension: M
Output: User embedding matrix: B € RY*M
Procedure:
1: Build hypergraph: H = BuildHypergraph(R);
2: Sample user sequence: F' = RandWalk(H);
3: Generate user embedding: B = SeqEmbedding(F);

Balance Principle

Motivation After learning the collaborative embedding, the
next step is clustering users based on their embeddings. How-
ever, traditional clustering results in unbalanced grouping,
which means that the user number in each group, i.e., group
size, varies drastically. We conduct k-means [Kanungo et al.,
2002] clustering on two real-world datasets and report the re-
sult in Appendix B.1. From it, we observe that the group-
ing distribution is highly unbalanced. Since we have no prior
knowledge about the distribution of unlearning requests, it is
better to assume that users submit unlearning requests with
equal probability. The balance principle is making the group
size evenly distributed so that it can maximize unlearning ef-
ficiency (see Appendix B.2 for theoretical explanation).

Method To achieve balanced grouping, we propose a gen-
eral method that can be applied to most existing clustering
algorithms, including but not limited to k-means clustering,
label propagation algorithm [Wang and Zhang, 2007], and
Gaussian mixture models [Reynolds, 2009]. We present the
proposed balanced grouping method in Algorithm 2. To be
specific, we set the ceiling size ¢; = [N/S] for each group
and build a priority list P to store the priority of each user-
group pair (line 3 in Algorithm 2). For example, in k-means
clustering, the pair with a smaller Euclidean distance is con-
sider to have a larger priority. During every grouping iter-
ation, we allocate the user-group pairs (i) according to their
priority, and (ii) if the group has not reached the ceiling size
(line 5-8 in Algorithm 2). We demonstrate balanced k-means
(BKM) clustering as an example in Appendix B.3.

3.3 SeqTrain Module

Instead of training models on each group in isolation and
aggregating them, SeqTrain module trains the model on the
whole dataset to preserve collaborative information. We
achieve this by training the model sequentially on all groups,
and we further study the effect of training order.

Training Order
Based on the theory of Curriculum Learning [Wang et al.,
2021], training order can make a huge difference in model



Algorithm 2 Balanced Grouping Method

Input: User embedding matrix: B, grouping number: S,
maximal iteration: 7
Output: Group label of N users: A =
Procedure:
1: t=0,¢; = [N/S] fori € [S], randomly allocate A;
2: while True do
3: P = ComputeSimilarity(B, A);

(A AN, A € 9]

4: P = Sort(P,order = descend);
5. for priority(i,j) in P do

6: if ¢; > 0 then

7: )\i:j,Cj:Cj—].;

8: end if

9:  end for
10: t=t+1;
11:  ift > 7 or A do not change then
12: break;
13:  endif

14: end while

performance. We regard each group as a learning task. Then
we aim to train the model from easier tasks to harder ones,
which imitates the learning order in human curricula. A task
can be considered as easy if the model has a relatively low
loss on it. The loss can only be obtained either after training
or during training. However, we have to decide the train-
ing order before training and cannot regroup the users during
training, which means we have to rely on predefined informa-
tion to measure the learning difficulty of each group.

For CF-based recommendation, collaborative information
contributes to better model performance, i.e., lower loss. It
is reasonable to use collaborative information as a difficulty
measurer. In order to measure the volume of collaborative in-
formation, we propose the concept of collaborative cohesion,
which calculates the cohesion of a group. The higher the col-
laborative cohesion, the easier it is for the recommendation
model to learn. The cohesion is defined by the average simi-
larity, i.e., collaboration, of users within the group. Formally,
the collaborative cohesion p is computed as:

p — Zm,y@g S’Lm(a:, y) , (3)
gl
where ¢ denotes a group and sim(x,y) computes the simi-
larity between two users. In this paper, we set sim(z,y) =
1/dist(x,y), where dist(x,y) denotes Euclidean distance of
two users. We will empirically study the validity of collabo-
rative cohesion as a difficulty measurer in Section 4.5.

Theoretical Analysis

Let 6 denote the model parameter vector and Lgy(g;) denote
the loss of the model when given the data of ¢-th group.
Adopting the widely used empirical risk minimization frame-
work, we have the empirical loss

E L@ Z LO gl (4)

Minimizing the empirical loss can be regarded as maximiz-
ing model utility [Hacohen and Weinshall, 20191, which is

Dataset User # Item # Rating #  Sparsity
ML 6,040 3,706 1,000,209 95.532%
AM 478,235 266,414 836,006 99.999%
Table 1: Summary of datasets.

% 300 4 B Retrain é 601 B Retrain

E 200 BN C-SISA £ 40 BN C-SISA

& B L-CBKM & N L CBKM

g 100 g 201

& o £ 0

1 2 4 8 16 1 2 4 8 16
Grouping # Grouping #
(a) ML (b) AM
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defined as:
s
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As collaborative cohesion p indicates the learning difficulty
of each group, introducing p can be interpreted as providing
a Bayesian prior p for model utility.

Theorem 1. Given a Bayesian prior p for the model param-
eters 0, we have:

Uy (0) = U(0) + Cov[Up, p). (6)

Proof. The proof can be found in Appendix C. O

Theorem 2 reveals that as long as Cov[Up, p| > 0, SeqTrain
module can improve the original model utility from (#) to
Uy(#). Our empirical study in Section 4.5 shows that p is
positively related to Uy which confirms that collaborative co-
hesion is a proper difficult measurer.

4 Experiments
4.1 Dataset

We evaluate LASER on two publicly accessible datasets:
MovieLens 1M (ML)' and Amazon Digital Music (AM)>.
The ML and AM datasets are widely used to evaluate CF
algorithms [Harper and Konstan, 2015; He and McAuley,
2016]. We filter out the users and items that have less than
5 interactions. We use 90% of ratings for training and the rest
for testing. Table 1 summarizes the statistics of two datasets.

4.2 Experimental Settings

We test our proposed framework on two well-known CF
models, i.e., DMF [Xue et al., 2017] and NMF [He et al.,
2017]. Specifically, we set learning rate to 0.001, total train-
ing epochs T' = 50 for ML dataset and 20 for AM dataset. The
dimension of user (item) embedding matrix is 16 and network
structures in both DMF and NMF are set as two layers (64,

"https://grouplens.org/datasets/movielens/
*http://jmcauley.ucsd.edu/data/amazon/
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Figure 5: NDCG @10 and HR@ 10 results for utility (G3) study and ablation study (Group module) on ML dataset with std under 1e-3.

— C-SISA

L-Rand

—— L-BKM —— L-CBKM

© 0.206

0208
& 0207 & 0.205
“ — #0204

(

© 0207
2 0.206 S
Z0.205
0.206

0207
S 0.206
20205

© 0.206
g S
Z 0.205
0.204 0.204

(U1 - Sp————— =
o}

2 0.206
r4

o
IS
%

2 4 8 16 2 4 8 16

(a) DMF - learn (b) NMF - learn

oY

)
)
£
los]
o
o
=
(=N
®
(9}

0.816

2 4 8 16 2 4 8 16 2 4 8 16

(d) NMF - rand@5  (¢) DMF-top@5  (f) NMF - top@5

0.814
0.813

4
£ 0812
0811

& 0.815
T

f

05811 0.814

0.815
0.814
4

-4
0.814
03813 W

0.813

m().813
S ——
2 4 8 16

©
IS
%
>

2 4 8 16

(g) DMF - learn (h) NMF - learn (i) DMF - rand@5

2 4 8 16 2 4 8 16 2 4 8 16

() NMF -rand@5 (k) DMF - top@5  (I) NMF - top@5

Figure 6: NDCG@10 and HR@10 results for utility (G3) study and ablation study (Group module) on AM dataset with std under le-3.

32). We initialize the model parameters with a Gaussian dis-
tribution A/(0,0.012). All unlearning methods for compari-
son are listed as follows:

Retrain: Retraining from scratch, i.e., M.

C-SISA: We modify the State-Of-The-Art (SOTA) unlearn-
ing framework, i.e., SISA [Bourtoule er al., 2021], to fit rec-
ommendation setting. Since the original SISA trains one
model on each user group in isolation, it can only learn the
user embeddings within the group. Thus, one has to con-
catenate fragmentary user embedding matrices to obtain the
final user embedding matrix «. We name this method as
Concatenated-SISA and C-SISA for short.

L-Rand: LASER via balanced random grouping.
L-BKM: LASER via BKM with rating data.

L-CBKM: LASER via BKM with collaborative embedding.

All models and algorithms are implemented with Python
3.8 and PyTorch 1.9. We run all experiments on the same
Ubuntu 20.04 LTS System server with 48-core CPU (In-
tel Xeon Gold 5118, 2.3GHz), 256GB RAM and NVIDIA
GeForce RTX 3090 GPU. We ran all models for 10 times and
report the means and standard deviations (std).

4.3 Computational Efficiency (G2)

We evaluate the efficiency by computing the running time of
three methods, i.e., Retrain, C-SISA, and L-CBKM (on be-
half of LASER). Note that we only report the time of unlearn-
ing, because the main problem of an erasable RS is unlearn-
ing and the three methods are theoretically similar in learning
time. We randomly unlearn 5% of users in the last group for

each dataset. In order to fully exploit the efficiency of C-
SISA, we run each model in parallel for C-SISA. As DMF
and NMF cost comparable training time, we report the run-
ning time of DMF in Figure 4 for conciseness. We can ob-
serve consistent results in both datasets, i.e., (i) our proposed
L-CBKM achieves almost comparable running time with par-
alleled C-SISA, and (ii) C-SISA and L-CBKM cost less un-
learning time as the number of groups increases. The results
show the efficiency of LASER, especially when the group
size is large which usually comes with utility loss, as we will
report later.

4.4 Model Utility (G3)

We use two common metrics, i.e., Normalized Discounted
Cumulative Gain (NDCG) and Hit Ratio (HR), to evaluate the
performance of CF models [He ef al., 2015; Xue et al., 2017].
We truncate the ranked list at 10 for both metrics and report
NDCG@10 and HR@10 during both learning and unlearn-
ing processes. In order to fully study the effect of unlearn-
ing, we define two types of user-wise unlearning request, i.e.,
rand@ K and top@ K, which denote unlearning K % random
users and the top K% users (w.r.t. the number of ratings),
respectively. We vary K in {2.5,5} for both datasets.

We compare LASER (L-Rand, L-BKM and L-CBKM)
with the SOTA MU framework C-SISA, and report the re-
sults in Figure 5 and 6, where we vary grouping number S' in
{1,2,4,8,16} and set K to 5. From them, we observe that
(i) even if the users are randomly grouped (L-Rand), LASER
outperforms C-SISA in all testing cases, which means that, in
the context of recommendation, LASER can enhance perfor-
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mance by preserving collaborative information, (ii) the dif-
ference between Retrain and other testing methods tends to
be stable as S increases, which indicates that LASER is ro-
bust with large grouping numbers, and (iii) good performance
in the learning process leads to good performance in the un-
learning process. Due to page limit, we report the results with
K = 2.51in Appendix D.1.

4.5 Ablation Study

Group Module

We compare the effectiveness of different grouping meth-
ods (Rand, BKM, and CBKM) and report the results in Fig-
ure 5 and 6. For DMF, CBKM outperforms other group-
ing methods in most of testing cases, while BKM achieves
similar performance with Rand, because it cannot properly
group the users with the sparse data. For NMF, the re-
sults are consist with DMF, except that all grouping meth-
ods achieve similar performance when S = 16. This is
probably because NMF’s strong learning ability helps it to
better capture user feature when S is large, which weakens
the effect of different grouping methods [Rendle et al., 2020;
Xu et al., 2021]. Additionally, to further compare the effect of
sparse data and collaborative embedding, we report their col-
laborative cohesion p in Appendix D.2. In summary, CBKM
groups users effectively in most cases on both datasets.

SeqTrain Module

In order to study the influence of the SeqTrain module, we
verify (i) the effectiveness of training order, and (ii) the valid-
ity of collaborative cohesion.

Training Order We compare our proposed SeqTrain (easy-
to-hard) with anti-SeqTrain (hard-to-easy) which trains all
groups in a reverse order. We set S to 8 and K to 5 for both
datasets. Figure 7 clearly shows that SeqTrain outperforms
anti-SeqTrain in all testing cases, which verifies the effective-
ness of our proposed SeqTrain module.

Collaborative Cohesion We verify the validity of p by
studying the relation between testing loss and p. We set S

to 8, sort the groups in descending order according to p, and
train DMF on each group from scratch for 7" epochs. We re-
port the testing loss in Figure 8. From it, we see that the loss
generally grows with the order of groups, which means that p
is negatively related with testing loss. That is, the larger the
collaborative cohesion, the easier the model can be trained.
In other words, p is a valid difficulty measurer which is pos-
itively related with model utility. The result of NMF is con-
sistent with DMF, which is reported in Appendix D.3.

5 Related Work

Retrain Unlearning This approach retrains the model on
D\FE in efficient ways, rather than from scratch. Cao and
Yang [2015] firstly formed the task of MU and proposed a
statistical query learning based unlearning framework. The
basic idea is to transform training samples into a reduced
number of summations. Thus, the models can retrain more
efficiently on these summations. Ginart et al. [2019] pro-
posed efficient unlearning algorithms for k-means clustering
with bounds of unlearning time complexity. Lately, Bour-
toule et al. [2021] proposed a general unlearning framework,
i.e., SISA, for most of existing machine learning models.
SISA divides the dataset into several disjoint subsets and
trains one model on each subset. Finally, SISA aggregates all
models via majority vote. When SISA receives an unlearning
request, it only needs to retrain a subset of data.

Reverse Unlearning This approach aims to withdraw the
target data lineage from a learned model through reverse
operations on E. Baumhauer, Schottle, and Zeppelza-
uer [2020] applied linear filtration on corresponding param-
eters to unlearn the entire class for logit-based classification.
Sekhari et al. [2021] focused on convex loss and proposed
an unlearning algorithm based on reverse gradient operations
with theoretical guarantee.

6 Conclusion

In this paper, we propose an erasable recommendation
(LASER) framework which consists of Group module and
SeqTrain module. The Group module partitions users into
balanced groups according to their collaborative embedding.
The SeqTrain module sequentially trains all groups in an
easy-to-hard learning order with collaborative cohesion as
the difficulty measurer. Our theoretical analysis reveals that
SeqTrain module can improve model utility. Extensive exper-
iments on two real-world recommendation datasets demon-
strate that LASER can not only achieve efficient unlearning,
but also outperform the state-of-the-art unlearning models in
terms of model utility.



A Collaboration Embedding via Hypergraph

There are three steps to learn collaborative embedding via hy-
pergraph, i.e., hypergraph building, random walk to sample
user sequence, and user sequence embedding. In this sec-
tion, we first introduce the preliminaries of hypergraph, then
present the details of the above three steps.

A.1 Preliminary of Hypergraph

Agarwal et al. [2006] showed that the hypergraph with edge-
independent vertex weight can be reduced to either clique
graph or star graph. In order to sufficiently represent the
high-order relations in recommendation, we learn collabora-
tive embedding via the hypergraph with edge-dependent ver-
tex weight [Chitra and Raphael, 2019]. For conciseness, we
refer to ‘hypergraph with edge-dependent vertex weight’ as
‘hypergraph’ in the rest of this paper.

A hypergraph can be formulated as G = {V,EW},
where ) denotes the vertex set {v;}, £ denotes the hyper-
edge set {e;} (e; € 2Y), and W denotes the weight set
{w(1, j)|for ¥i,j that e; € £,v; € e;}.

A.2 Hypergraph Building

In order to build a hypergraph, we need association rules to
connect a hypergraph with the original bipartite graph which
is equivalent to the user-item interaction matrix. There are
three rules for building vertex, hyperedge, and weight respec-
tively.

Vertex Building Rule We define each user as a vertex in
hypergraph, which means |V| = N.

Definition 1 (User’s l-order reachable neighbors). In a user-
item bipartite graph, user;(user;) is user;(user;)’s l-order
reachable neighbor if there exists a sequence of adjacent ver-
tices, i.e., path, between user; and user;, and the number of
vertices in this path is smaller than .

Hyperedge Building Rule We define the user’s [-order
reachable neighbors, which is represented as a hyperedge in
hypergraph, to model the high-order relations. Correspond-
ingly, the users, i.e., neighbors, within the neighborhood are
vertices that connected by this hyperedge. Following [Ji et
al., 20201, we set [ = 4 in this paper.

Weight Building Rule We define w(4, j) as the average rat-
ing of user; within user;’s [-order reachable neighbors.

A.3 Random Walk

A random walk on a hypergraph is typically defined as fol-
lows [Chitra and Raphael, 2019]. We modify the traditional
random walk to suit recommendation setting and present it
in Algorithm 3. Our proposed random walker migrates back
and forth between vertices and hyperedge to sample user se-
quences. From a vertex, the walker choose a hyperedge based
on its size, i.e., number of vertices it connects (line 5 in Algo-
rithm 3). From a hyperedge, the walker choose a vertex based
on its associated weight (line 6 in Algorithm 3).

Obviously, walk repetition and walk depth are two hyper-
parameters in random walk. According to our empirical
study, we set walk repetition as 4 and walk depth as 8 in this

paper.

Algorithm 3 Random Walk on Hypergraph

Input: Hypergraph: G, walk repetition: rep, walk depth: dep
Output: User sequences: F' € R(Nrep)xdep

Procedure:

1: for v; in V do

2:  for jin [rep] do
3: Start a user sequence with v;, v; 1 = v;;
4: for k in [dep] do
5: Select a hyperedge e containing v; ;, with proba-
bility proportional to |e;
6: Select a vertex v from e with probability propor-
tional to w(e, v);
7: Add v into user sequence, v; 41 = U;
8: end for
9: Complete the user sequence and add it to F’;
10:  end for
11: end for

A4 Sequence Embedding

After random walk, we have N - rep user sequences. Regard-
ing the sequence of users as the sentence of words, we can ap-
ply sequence embedding techniques in natural language pro-
cessing field to learn the collaborative embedding. In this
paper, we apply the widely used Word2Vec [Church, 2017]
to learn the embedding from sampled user sequences. The
choice of sequence embedding techniques is not a focus of
this paper, please refer to the original paper for more details.

B Balanced Grouping Method

B.1 Unbalanced Phenomenon

We conduct k-means clustering on two real-world datasets
with & = 2,4, 8,16 and report the result in Figure 9. We find
that the grouping distributions are highly unbalanced on both
datasets.

B.2 Efficiency Analysis

We use ¢; to denote the training time cost of ¢-th group which
is in proportion to the group size. Our proposed LASER
adopts a sequential training manner, therefore the retraining
time cost from ¢-th group is Zf:l c¢j. Since we assume that
users submit unlearning requests with equal probability, the
probability of a request locating in i-th group is ¢;/Z where
Z =), ¢;. Thus, the expectation of retraining time cost can
be written as:

s
E(C) =Y (O eei/z). )
=1 j=i
We prove that E(C') reaches the minimum when ¢; = Z/n,

which means balanced grouping can maximize the unlearning
efficiency.

Proof. Based on Multinomial Theorem, we can rewrite (7)
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Figure 9: Distributions of group size (user number within the group)
via k-means clustering on two datasets, i.e., MovieLens 1M (ML)
and Amazon Digital Music (AM), with k = 2,4, 8, 16.

as:

3

E(C) = ;Z((;cnz + Z)
:%(Z%iﬁ). (8)

According to Cauchy-Schwarz Inequality [Bhatia and Davis,
19951, for n random variables x;, y;, we have:

STa?d Ty > (O way)?. )
=1

i=1 =1
Setting y; = 1 for all 4, we can get a lower bound of . x?

as:
2
Z:c > ( 1T7) (10)
Taking it into (8), we have:
Z 1
E(C)> =(1+ — 11
(€)= 51+ (11

We can easily compute that setting ¢; = Z/n achieves this
lower bound of E(C). O

B.3 Balanced k-means Clustering

Our proposed balanced grouping method (Algorithm 2) can
be applied to a wide range of clustering algorithms. We take
balanced k-means clustering as an example and present the
details in Algorithm 4.

Algorithm 4 ComputeSimilarity (k-means version)

Input: User embedding matrix: B, group label: A
Output: Priority list P
Procedure:

1: P =: empty list;

2: compute N centroids with respect to A;

3: for (4, j) in all user-centroid pairs do

4:  append dist(i, j) to P;

5: end for

C Proof of Theorem 2

Theorem 2. Given a Bayesian prior p for the model param-
eters 0, we have:

Uy (0) = U(B) + Cov[Us, p]. (12)

Recall Let 6 denotes the model parameter vector and
Ly(g;) denotes the loss of the model of i-th group. Adopting
empirical risk minimization framework, we have the empiri-
cal loss

=k [Lg] = ZLg (9:), 0" = arggmin[ﬁ(é)). (13)

Minimizing the empirical loss can be regarded as maximiz-
ing model utility [Hacohen and Weinshall, 20191, which is
defined as:

Le(gz

HMO:

S
UY) = E(Uyp) = Z é
0* —argmaxZ/I( )_ (14)

Proof. With the help of the Bayesian prior p, we can formu-
late (14) as:

S
U0 :Z gz

0* fargmaxlzl_( 0), (15)
9

U,(0) =,

where p; denotes the prior probability of i-th group. As Uy
and p are two random variables in U, (6), we can rewrite (15)
as follows:

S
Uy(0) = SE[UIE[p] + Y (Us(g:) — E[Us)) (p: — Elp])
=1
= U(0) + Cov[Uy, p]. (16)
O

D More Empirical Results
D.1 Utility (G3)

We report the results of utility metrics with two unlearning
request types (rand@2.5 and top@2.5) in Figure 10 and Fig-
ure 11. We observe that the results are consistent with that of
rand@5 and top @5.
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Figure 11: NDCG@10 and HR@10 results for AM dataset with std
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D.2 Comparison of Sparse Data and Collaborative
Embedding

We compare the effect of sparse data (BKM) and collabora-
tive embedding (CBKM) in terms of collaborative cohesion-
and report the result in Figure 12. We find that our proposed
collaborative embedding can achieve much higher collabora-
tive cohesionthan the original sparse data.

D.3 Verification of Collaborative Cohesion

To verify the validity of p, we report the testing loss of NMF
in Figure 8. We observe the consistent results with DMF.
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