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Abstract

Self-supervised methods based on contrastive learning have achieved great success in unsupervised visual representation learning.
However, most methods under this framework suffer from the problem of false negative samples. Inspired by the mean shift for
self-supervised learning, we propose a new simple framework, namely Multiple Sample Views and Queues (MSVQ). We jointly
construct three soft labels on-the-fly by utilizing two complementary and symmetric approaches: multiple augmented positive
views and two momentum encoders that generate various semantic features for negative samples. Two teacher networks perform
similarity relationship calculations with negative samples and then transfer this knowledge to the student network. Let the student
network mimic the similarity relationships between the samples, thus giving the student network a more flexible ability to identify
false negative samples in the dataset. The classification results on four benchmark image datasets demonstrate the high effectiveness
and efficiency of our approach compared to some classical methods. Source code and pretrained models are available here.
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1. Introduction

Self-supervised learning (SSL) has received sufficient atten-
tion and rapid progress in the computer vision community. This
is due to its ability to learn rich semantic features using unla-
beled data [1–8]. Early self-supervised learning methods were
typically based on geometric transformations or heuristics to
design the corresponding pretext task, such as image rotation
[9]. The current mainstream SSL approach is based on the
instance discrimination task [6] under the contrastive learning
framework. Briefly, each image in the dataset is treated as a sep-
arate semantic class. In feature space, augmented views of the
same image are pulled closer and views between other images
are pushed away by the noise contrastive estimation (NCE) loss
[10]. Meanwhile, there are some milestone works to continu-
ously improve the methods under contrastive learning. For ex-
ample, MoCo [8] introduced momentum encoders and queues
to address the dilemma of memory consumption and untimely
updates of data features. SimCLR [4] increased the difficulty of
the self-supervised pre-training task by applying complex data
augmentation and additional non-linear projectors.

The problem of false negative samples has severely impeded
the ongoing development of contrastive self-supervised learn-
ing. False negative samples are defined as samples within the
negative sample set that exhibit similar semantics or categories
to the positive sample. Some works have attempted to address
the false negative sample problem by introducing nearest neigh-
bors (NN). For example, NNCLR [11] searches for the near-
est neighbors of the query sample in its imported support set
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and performs NCE loss with the positive sample. MSF [12]
enriches the semantic information of the positive sample by
searching for the top-K neighbors in the Memory Bank [6] and
performing the Mean Squared Error loss with the query sample.
CMSF [13] improves the semantic diversity of neighbor sam-
ples with an additional Memory Bank. SNCLR [14] leverages
cross-attention scores to distinguish the contribution of differ-
ent neighbor samples to the model. However, these methods
often require a predefined number of neighboring samples, and
determining this number in advance can be challenging.

In this study, we are interested in improving the reliabil-
ity and coverage of models to identify false negative samples.
Inspired by MSF, we propose a new simple Self-Supervised
Learning with Multiple Sample Views and Queues (MSVQ).
Our approach employs two complementary and symmetrical
methods within the teacher networks to generate three distinct
soft labels for the student network. Firstly, we create multiple
augmented views of the positive sample within the teacher net-
works and perform consistent similarity distillation with neg-
ative samples from the same queue. Secondly, we introduce
two separate queues into the model to generate diverse seman-
tic features for the negative samples within these queues. This
is accomplished by utilizing two momentum encoders with dif-
ferent update coefficients.

Our main contributions are summarized as follows:
• More augmented views of the positive sample. In the

teacher networks, we apply weak data augmentation to the
positive sample multiple times to enhance feature diver-
sity. It is then distilled for consistency similarity with the
negative samples in the queues to improve the reliability
of the model in identifying false negative samples.
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• Feature diversity of negative samples. We form the vari-
ability of features on the same negative samples by lever-
aging encoders with different momentum coefficients. Our
intuition is that the embedding diversity of negative sam-
ples can reduce the risk of omission for the model to iden-
tify false negative samples in feature space.

2. Related Work

2.1. Self-supervised learning

Self-supervised learning is an approach for learning generic
semantic features from data by solving pretext tasks using large
amounts of unlabeled data. In the early SSL, common pre-
text tasks included rotations [9, 15], grayscale coloring [16],
or cropping [17, 18]. However, this approach may result in se-
mantic features containing noisy information related to specific
pretext tasks, which can hinder generalization [9, 19].

In recent years, contrastive learning methods based on in-
stance discrimination tasks [1–4, 8, 20–22] have achieved rapid
development in SSL. The core idea is that the semantic features
of augmented views generated from the same image should
be invariant. There are also some classical works under this
framework. For instance, MoCo is designed to mitigate rapid
memory consumption caused by too large batchsize, and perfor-
mance decreases due to data features in the memory bank not
being updated in time. This is achieved by employing the mo-
mentum encoder and the queue. SimCLR enhances the gener-
alization of data features by introducing complex data augmen-
tation and additional nonlinear projectors. Un-Mix [23] uses
the idea of mix-up [24] to make the model predict less confi-
dently. Meanwhile, several recent studies have demonstrated
the efficiency of contrastive learning by leveraging feature sim-
ilarities among positive samples. For example, BYOL [7] pre-
vents model collapse without using negative samples based on
the introduction of predictor and Mean Squared Error (MSE)
loss. SimSiam [5] demonstrates that a simple siamese frame-
work with stop-grad can achieve favorable properties on its own
without requiring additional components.

2.2. Knowledge distillation

Knowledge distillation [25, 26] is a method where a model
(teacher network) that has learned rich semantic features is used
to transfer its knowledge to another model (student network).
While in most cases, the teacher network has a more com-
plex model structure compared to the student network. In some
work, the teacher network and the student network can also be
the same model structure [27, 28].

Recent contrastive self-supervised learning can be seen as
a structure that contains a student network and a teacher net-
work. For example, in MoCo, the student network corresponds
to an encoder with stochastic gradient descent (SGD) update
and the teacher network corresponds to an encoder with mo-
mentum update. Compared to previous work [29, 30], the stu-
dent network in the proposed MSVQ can learn rich semantic
features from multiple teacher networks with different knowl-
edge. The student network has a more flexible ability to identify

Fig. 1. Illustration of MoCo. While the similarity distribution p1,1
i can search

for negative samples (the samples marked by red blocks, i.e., false negative
samples) in the queue that are semantically similar to the query sample z1

i . But
an artificial one-hot label ignores the semantic relationship between them.

false negative samples in the dataset. MOKD [31] is the clos-
est related work to our approach that utilizes multiple teacher
networks to teach a student network. However, our approach
differs in that we use different momentum update coefficients
to construct teacher networks, rather than introducing multiple
heterogeneous models (e.g., a combination of ResNet [32] and
ViT [33]).

2.3. Consistency regularization

Consistency regularization is an approach to make the out-
put of a model consistent or similar under small perturbations
in the input [34] or model parameters [35]. It allows the model
to learn the most possible diversity of semantic features of the
input data. Inspired by this idea, some works have been ap-
plied to contrastive self-supervised learning to solve the false
negative sample problem. For example, MSF introduces top-
K neighbors of the positive sample and minimizes the distance
between the query sample and its nearest neighbors. This helps
the network learn the semantic diversity of the query sample.
On the SimCLR-based framework, NNCLR attempts to search
for nearest neighbors in the support set and performs NCE loss
with the positive sample. However, the performance of these
methods is sensitive to the number of nearest neighbors K.
Meanwhile, due to the random initialization, it is meaningless
for the model to find the nearest neighbors in the early training
stage.

CO2 [36] is based on MoCo by adding a consistency regu-
larization term to distill various augmented views of the same
image with negative samples. However, ReSSL [37] shows that
the regularization term itself can learn meaningful information
when the appropriate temperature parameter and data augmen-
tation are utilized in the teacher network. In addition, SCE
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[38] incorporates hard labels into ReSSL to enhance the dis-
criminative ability of the model. Our approach utilizes multiple
augmented views of the positive sample along with consistent
similarity distillation of negative samples within the queues. In-
spired by the concept of symmetry, we incorporate two momen-
tum encoders to generate distinct semantic features for the same
negative samples. Both of these complementary approaches are
employed to jointly improve the ability of the model to identify
false negative samples.

Fig. 2. Illustration of ReSSL. We can correspond the upper and lower branches
to the student network and the teacher network, respectively. Since the teacher
network uses an appropriate temperature parameter and weak data augmenta-
tion. p2,1

i highlights the important instance relationships and filters out some
trivial connections. Nevertheless, depending on a single teacher network to ac-
curately and consistently represent the similarity between instance samples is
challenging.

3. Methodology

In this section, first, we briefly review our baselines: MoCo
[8, 39] and ReSSL [37]. Then we introduce our proposed
MSVQ framework. Meanwhile, the algorithm and implemen-
tation details of MSVQ will also be explained.

3.1. Previous contrastive self-supervised learning and rela-
tional learning

Let X ∈ RN×H×W×C be N training samples with height H,
width W, and number of channels C. The queues Queue1 =

{z2
1 j}

Q

1
and Queue2 = {z4

2 j}
Q

1
each contain a set of Q random

embeddings of other samples. Meanwhile, f (·) is a backbone
network (e.g., ResNet [32]) and g (·) is a nonlinear projector.
First, we generate two different views by data augmentation
(T (·)) on the training samples: X1 = T1(X) and X2 = T2(X).
Next, we input these views into the student network and the
teacher network to obtain the corresponding embedding fea-
tures Z1 = gs( fs(X1)) and Z2 = gt1( ft1(X2)), respectively. In

the case of MoCo (as depicted in Fig. 1), it employs the NCE
loss, which is defined as follows:

LMoCo = −
1
N
∑N

i=1log
exp(sim(z1

i , z
2
i )/τ)∑Q+1

j=1 exp(sim(z1
i , z

2
1 j)/τ)

(1)

where z2
1Q+1 ≜ z2

i and τ is the temperature parameter. Mean-
while, sim(u, v) is the similarity measure of the two feature em-
beddings, such as cosine similarity:

sim(u, v) =
uT v
||u||2||v||2

(2)

In the context of ReSSL (as illustrated in Fig. 2), the method
utilizes distributions p1,1

i j and p2,1
i j to represent the similarity re-

lationship among the instance samples:

p1,1
i j =

exp(sim(z1
i , z

2
1 j)/τs)∑Q

k=1 exp(sim(z1
i , z

2
1k)/τs)

, j = 1, 2, ...,Q (3)

p2,1
i j =

exp(sim(z2
i , z

2
1 j)/τt)∑Q

k=1 exp(sim(z2
i , z

2
1k)/τt)

, j = 1, 2, ...,Q (4)

where τs and τt represent the temperature hyperparameters used
in calculating the relationship distributions within the student
network and the teacher network, respectively. The loss func-
tion of ReSSL is the KL divergence of P2,1 and P1,1:

LReS S L = KL(P2,1||P1,1) (5)

Both MoCo and ReSSL employ a similar approach to update
their teacher networks, as described by the following formula:

ft1 = m1 ft1 + (1 − m1) fs, gt1 = m1gt1 + (1 − m1)gs (6)

where m1 indicates the momentum update coefficient. Since
the teacher network in ReSSL is not updated directly by the
loss function, its loss function can simply use cross entropy in-
stead of KL divergence. We also employ the momentum update
mechanism, queue storage for negative samples, and KL diver-
gence to capture inter-sample relationships.

3.2. Self-supervised learning with multiple sample views and
queues

In this work, we propose two symmetric and complementary
ways to improve the reliability and coverage of the model to
identify false negative samples.

3.2.1. Multiple sample views
Inspired by some work [11, 12, 37], we incorporate multi-

ple augmented views of the positive sample into the teacher
network to comprehensively represent its semantics. This ap-
proach aids in the precise identification of false negative sam-
ples within the queue Queue1. Specifically, the training samples
denoted as X undergo data augmentation via T (·), resulting in
X3 = T3(X). Subsequently, it is projected using gt1( ft1(·)) to
obtain Z3. Finally, we calculate the similarity between Z3 and
the negative samples in Queue1, applying the softmax function

3



Fig. 3. The overall framework of MSVQ. We can consider the relationship distributions generated by the two teacher networks as three distinct soft labels, which
serve as guidance for the student network in classifying the negative samples within the queues.

to derive a distribution that represents the relationships among
these samples:

p3,1
i j =

exp(sim(z3
i , z

2
1 j)/τt)∑Q

k=1 exp(sim(z3
i , z

2
1k)/τt)

, j = 1, 2, ...,Q (7)

P3,1 serves as an extra soft label to guide the student network.
This guidance involves calculating the KL divergence between
P3,1 and P1,1. To simplify, we average its loss function with
ReSSL:

LMS V =
1
2

(KL(P2,1||P1,1) + KL(P3,1||P1,1)) (8)

The update rule of the teacher network in Multiple Sample
Views (MSV) is consistent with that of ReSSL.

3.2.2. Multiple queues
MSV can be viewed as a variant of previous work [11, 12],

with the notable distinction that MSV enhances the seman-
tics of the positive sample through multiple data augmentations
rather than identifying its top-K neighbors. From a symmetric
perspective, we also focus on the aspect of negative samples.
Our intuition is that the diversity of both is complementary and
can help achieve a more comprehensive and robust representa-
tion of the underlying data distribution.

To be specific, a teacher network gt2( ft2(·)) with a momen-
tum coefficient of m2 is employed. The training images X are
independently subjected to data augmentation using T (·) to ob-
tain X4 = T4(X), and then they are projected using gt2( ft2(·)) to
yield Z4 = {z4

i }
N
i . The following relationship distribution indi-

cates the similarity between instances:

p1,2
i j =

exp(sim(z1
i , z

4
2 j)/τs)∑Q

k=1 exp(sim(z1
i , z

4
2k)/τs)

, j = 1, 2, ...,Q (9)

p4,2
i j =

exp(sim(z4
i , z

4
2 j)/τt)∑Q

k=1 exp(sim(z4
i , z

4
2k)/τt)

, j = 1, 2, ...,Q (10)

This part is the KL divergence of P4,2 and P1,2. For simplic-
ity, we also just take the average value of its loss function with
ReSSL:

LMQ =
1
2

(KL(P2,1||P1,1) + KL(P4,2||P1,2)) (11)

The Multiple Queues (MQ) contains two teacher networks
with different update coefficients. The first teacher network is
updated in the identical way as ReSSL, while the second teacher
network uses the following update mechanism:

ft2 = m2 ft2 + (1 − m2) fs, gt2 = m2gt2 + (1 − m2)gs (12)

3.2.3. Multiple sample views and queues
As illustrated in Fig. 3, a simple organic merging of these

two symmetric ways yields our proposed method. We optimize
the student network only by minimizing the following loss:

LMS VQ =
1
3

(KL(P2,1||P1,1) + KL(P3,1||P1,1) + KL(P4,2||P1,2)) (13)

This method combines the strengths of both approaches to
generate three distinct soft labels, P2,1, P3,1, and P4,2, aiming
to mitigate the under-detection of false negative samples by the
model. These labels effectively transfer knowledge from mul-
tiple teacher networks to the student network. Further anal-
ysis and discussion of these three soft labels are presented in
Sec. 4.6.

Notably, zt j represents the semantic embedding of negative
sample j in Queuet, pi j signifies the inter-instance similarity
between the positive sample zi and the negative sample zt j. We
have included a comprehensive list of important notations in
the MSVQ framework along with their specific meanings in Ta-
ble 1. The procedure of MSVQ is summarized in Algorithm 1.
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3.2.4. Sharper distribution and friendly data augmentation
To effectively emphasize significant false negative samples

within the teacher networks and simultaneously filter out po-
tential noisy relationships in the queues, our model ensures that
τt < τs. We conduct an analysis of the impact of different τt

values on MSVQ in Sec. 4.5.1.
To reduce the impact of aggressive data augmentation [4] in

the teacher networks, we employ a weaker data augmentation
scheme [12, 37, 38] to generate more suitable soft labels. We
also conduct an analysis of the impact of various data augmen-
tation ways on MSVQ in Sec. 4.5.2.

Table 1: Notations in the MSVQ Framework.

Notation Meaning
X = {xi}

N
1 Comprising N training samples from the current batch, where each

element is regarded as a positive sample.

Queue1 = {z2
1 j}

Q

1

(Queue2 = {z4
2 j}

Q

1
)

Comprising Q negative sample features, with these features derived
from the most recent previous batches of Z2 (Z4). The update method
follows a first-in-first-out (FIFO) approach.

T (·) The data augmentation distribution is employed to generate various
augmented views. Specifically, T1(·) is utilized to apply strong data
augmentation to the student network, while Ti(·), i ∈ {2, 3, 4} is em-
ployed for applying weak data augmentation to the teacher networks.

Z Zi = {zi
j}

N

j=1
, i ∈ {1, 2, 3, 4} denote the 128-dimensional image fea-

tures obtained by projecting Xi, i ∈ {1, 2, 3, 4} through the corre-
sponding network.

P1,1 (P1,2) The similarity relationship exists between the features Z1 of the pos-
itive samples and the features of the negative samples within Queue1

(Queue2).

P2,1 (P3,1) The similarity relationship exists between the features Z2 (Z3) of
the positive samples and the features of the negative samples within
Queue1.

P4,2 The similarity relationship exists between the features Z4 of the posi-
tive samples and the features of the negative samples within Queue2.

m1 (m2) The momentum update coefficient is used to update the teacher net-
work gt1( ft1(·)) (gt2( ft2(·))). To introduce variability in the semantic
features of different teacher networks, we set m1 , m2.

τs (τt) Temperature hyperparameter for similarity distributions in the stu-
dent network (teacher networks).

4. Experiments and Results

In this section, we will compare and analyze the proposed
MSVQ with previous classical algorithms on four benchmark
image datasets.

4.1. Datasets and device performance
Most SSL methods are typically evaluated using an

ImageNet-1K dataset [40] containing almost 1.3M images.
However, due to hardware limitations, implementing this eval-
uation can be challenging for most research labs. We evaluate
the proposed method MSVQ with some classical contrastive
self-supervised methods on four datasets.

• CIFAR-10 and CIFAR-100 [41]: Both datasets comprise
60,000 color images, consisting of 50,000 training images
and 10,000 test images, all with a resolution of 32x32 pix-
els. However, they differ in the number of classes they
contain: the CIFAR-10 dataset comprises 10 classes, while
the CIFAR-100 dataset comprises 100 semantic classes.

Algorithm 1: PyTorch-style pseudocode for MSVQ
# Fs, Ft1, Ft2: encoder for student, teacher1 and

teacher2, F ≜ g (f (·))
# queue1, queue2: two queues(CxQ)
# m1, m2: momentum for teacher1 and teacher2
# τs, τt: temperature for student and teacher
# CE: CrossEntropyLoss

Ft1.params = Fs.params # initialize teacher1
Ft2.params = Fs.params # initialize teacher2
# load a minibatch X with N samples
for X in loader:

# random augmentation

X1, X2 = strong aug(X), weak aug(X)

X3, X4 = weak aug(X), weak aug(X)

Z1, Z2 = Fs.forward(X
1), Ft1.forward(X

2) # NxC
Z3, Z4 = Ft1.forward(X

3), Ft2.forward(X
4)

# l2 − normalize
Z1, Z2, Z3, Z4 = normalize(Z1, Z2, Z3, Z4, dim=1)

Z2, Z3, Z4 = Z2.detach(), Z3.detach(), Z4.detach()
# mm: matrix multiplication

logits11 = mm(Z1, queue1) # [NxC, CxQ] -> NxQ
logits12 = mm(Z1, queue2)
logits21, logits31 = mm(Z2, queue1), mm(Z3, queue1)
logits42 = mm(Z4, queue2)

loss1 = CE(logits11/τs, softmax(logits21/τt))
loss2 = CE(logits11/τs, softmax(logits31/τt))
loss3 = CE(logits12/τs, softmax(logits42/τt))
loss = (loss1+loss2+loss3)/3

loss.backward()
# SGD update: student
update(Fs.params)
# momentum update: teacher1 and teacher2
Ft1.params = m1*Ft1.params+(1-m1)*Fs.params
Ft2.params = m2*Ft2.params+(1-m2)*Fs.params
# update two queues

enqueue(queue1, Z
2)

enqueue(queue2, Z
4)

dequeue(queue1)
dequeue(queue2)

Table 2: Parameters of the experiment.

CIFAR-10 CIFAR-100 STL-10 Tiny ImageNet
Pre-training
Epoch 200 200 200 200
Batch size 256 256 256 256
Warm up epoch 5 5 5 5
Base learning rate 0.06 0.06 0.06 0.06
(m1, m2) (0.99, 0.95) (0.99, 0.93) (0.996, 0.99) (0.996, 0.99)
(τs, τt) (0.1, 0.04) (0.1, 0.03) (0.1, 0.04) (0.1, 0.04)
Queue size 4096 4096 16384 16384
Weight decay 5e-4 5e-4 5e-4 5e-4
Cropped and Resized 32 × 32 32 × 32 64 × 64 64 × 64
Fine-tuning
Epoch 100 100 100 100
Batch size 256 256 256 256
Base learning rate 1 1 1 1
Weight decay 0 0 0 0

Table 3: Data augmentation of the experiment. ’Resized Crops’ specifies the
lower and upper bounds of scale for cropping a random region based on the
area of the original image. For the other data augmentations, they indicate the
probability (denoted as ’ρ’) of being randomly applied. For instance, in the
Strong category, the probability that ”Horizontal Flip” is applied is ρ = 0.5.

Resized Crops Horizontal Flip Color Jitter GrayScale Gaussian Blur
Strong (0.2, 1.0) 0.5 0.8 0.2 0.5
Weak (0.2, 1.0) 0.9

• STL-10 [42] and Tiny ImageNet [43]: For the STL-10
dataset, the training set comprises 100,000 unlabeled color
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images and 5,000 labeled color images. Additionally, the
test set includes 8,000 labeled images. All of these im-
ages share a common resolution of 96x96 pixels, and the
dataset encompasses a total of 10 categories. Tiny Ima-
geNet comprises 120,000 images distributed across 200
classes. These images are resized to a dimension of 64×64
pixels. Specifically, each class includes 500 training im-
ages, along with 50 validation images and 50 test images.

A consistent hardware setup (1 Nvidia GTX 3090 GPU) was
used for all algorithm experiments in this study. All algorithms
are initially pre-trained using the training set. During the eval-
uation phase, we evaluate them using the test set, except in the
case of Tiny ImageNet, where the validation set is used.

4.2. Pre-training
In all datasets, we use ResNet18 [32] as the backbone net-

work f (·). Meanwhile, a nonlinear projector g(·) is added fol-
lowing the backbone network. All projectors within both the
student network and teacher networks are composed of two
fully-connected (FC) layers together with a linear rectification
function (ReLU) layer between them, where the first FC layer
is of size [512, 2048], and the second is of size [2048, 128].

To ensure a fair comparison, certain hyperparameters and
data augmentations [44] in MSVQ were aligned with those
in ReSSL. Regarding the model parameters, we employed the
SGD optimizer with a momentum value of 0.9 and a weight
decay of 5e-4 for pre-training the model over 200 epochs. In
terms of data augmentation, strong data augmentation was ap-
plied to the student network, while weak data augmentation was
employed for the teacher networks. Additional details can be
found in Table 2 and Table 3, respectively.

4.3. Fine-tuning
After the pre-training phase, we employed the widely

adopted linear evaluation protocol to assess our model. In this
protocol, we initially discarded the pre-trained nonlinear pro-
jector and fixed all parameters of the backbone network. After-
ward, we added a linear classifier to the backbone of the student
network with dimensions [512, cla], where cla represents the
number of categories in the dataset. This linear classifier was
used for the linear evaluation, enabling the model to perform
classification based on the learned features. Finally, we fine-
tuned the classifier for 100 epochs using the SGD optimizer
with a momentum of 0.9 and weight decay of 0. Further details
of these parameters can be found in Table 2.

4.4. Main results
4.4.1. Linear evaluation protocol

In Table 4, the results of other methods are copied from [37]
for best results. For a fair comparison, we have also reproduced
some recent work and marked it with *. It is clear that MSVQ
outperforms the other classical methods on most benchmarks.
Noticeably, MSVQ also has a significantly better performance
compared to the MSV and the MQ trained alone. This indicates
that the MSV and MQ methods learn complementary semantic
features of images. Meanwhile, our method requires only a
slight additional overhead without multiple backpropagations.

Table 4: Linear evaluation results. The optimal results are shown in bold, and
the suboptimal results are underlined. Results marked with ∗ were reproduced
from the official code. †: Similar to the SCE [38] network framework, batch
normalization [45] is incorporated after the first FC layer of the projector within
MSVQ.

Method BackProp CIFAR-10 CIFAR-100 STL-10 Tiny ImageNet
Supervised - 94.22 74.66 82.55 59.26
SimCLR [4] 2x 84.92 59.28 85.48 44.38
BYOL [7] 2x 85.82 57.75 87.45 42.70
SimSiam [5] 2x 88.51 60.00 87.47 37.04
MoCoV2 [39] 1x 86.18 59.51 85.88 43.36
ReSSL [37] 1x 90.20 63.79 88.25 46.60
ReSSL∗ [37] 1x 90.22 64.22 87.64 45.61
CMSF∗ [13] 2x 91.00 62.37 88.21 44.50
Un-Mix∗ [23] 2x 90.20 64.42 89.76 45.20
SNCLR∗ [14] 2x 88.50 62.40 88.24 46.14
SCE [38] 2x 90.34 65.45 89.94 51.90
MSV(Ours) 1x 90.92 65.02 89.35 46.68
MQ(Ours) 1x 90.91 65.15 89.58 46.32
MSVQ(Ours) 1x 91.46 66.44 90.41 48.09

SCE∗ [38] 2x 90.03 65.41 90.06 48.11
MSVQ†(Ours) 1x 91.28 65.82 89.71 49.51

4.4.2. Learning efficiency analysis
To reduce the influence of downstream task hyperparameters

on the model and enhance evaluation efficiency, we also employ
K Nearest Neighbors (KNN) classification to assess the pre-
trained off-the-shelf features, with K set to 200 [6]. The online
KNN classification results in Table 5 reflect that MSVQ can
learn rich semantic features in the pre-training stage. In Fig. 4,
the KNN (K=200) classification accuracy curves show that our
method has reliable learning efficiency compared to ReSSL and
MoCoV2.
Table 5: The online evaluation accuracy using KNN with K set to 200. The best
results are shown in bold and the suboptimal results are underlined. ∗ denotes
results that were reproduced from the official code. †: Similar to the SCE [38]
network framework, batch normalization is added after the first FC layer of the
projector within MSVQ.

Method CIFAR-10 CIFAR-100 STL-10 Tiny ImageNet
ReSSL∗ [37] 89.11 57.93 84.18 37.19
CMSF∗ [13] 89.30 55.57 84.11 36.79
Un-Mix∗ [23] 88.38 59.52 85.18 38.81
SNCLR∗ [14] 86.15 55.07 82.18 36.86
MSV(Ours) 89.64 59.33 85.58 38.78
MQ(Ours) 89.51 60.16 85.69 38.84
MSVQ(Ours) 90.16 60.66 86.51 40.26
SCE∗ [38] 88.41 59.30 85.45 40.17
MSVQ†(Ours) 90.23 61.63 86.56 41.81

4.5. Ablation studies
4.5.1. Sharper distribution

An appropriate temperature parameter τt can eliminate the
noisy relationship between the positive sample and the nega-
tive samples in the queues, thus providing accurate soft labels
for the student network. Table 6 provides valuable insights into
the influence of temperature parameters on our method. No-
tably, it becomes evident that extremely low or high values of
these temperature parameters are suboptimal. Intuitively, tem-
perature τt controls the degree of smoothing of the three labels
in the MSVQ. As τt approaches 0, MSVQ becomes analogous
to using three artificial one-hot codings. This means that each
label solely focuses on the most similar false negative sample
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(a) CIFAR-10 (b) CIFAR-100

Fig. 4. KNN online evaluation accuracy curve.

within the queue. Conversely, as τt approaches 0.1, the student
network is constrained to acquiring only trivial knowledge from
the teacher networks.

Table 6: Effect of different τt for MSVQ.

Dataset τs=0.1 τt=0.01 τt=0.02 τt=0.03 τt=0.04 τt=0.05 τt=0.06 τt=0.07
CIFAR-10 - 90.87 90.68 90.73 91.46 91.20 90.62 90.32
CIFAR-100 - 65.68 65.33 66.44 66.27 65.78 63.78 58.83
STL-10 - 88.68 89.21 89.64 90.41 89.56 88.96 87.75
Tiny ImageNet - 47.26 47.81 47.96 48.09 46.99 45.72 44.47

4.5.2. Data augmentation
Unlike previous methods [4] that use aggressive data aug-

mentation to encourage the learning of semantics invariant to
geometric transformations, MSVQ adopts a different approach.
Within the MSVQ framework, the teacher networks employ
milder, weak data augmentation techniques with the specific
goal of preserving image semantics to provide appropriate soft
labels for the student network. In this section, we conduct a
comprehensive study to assess the performance impact of var-
ious data augmentation approaches in teacher networks. Ta-
ble 7 demonstrates that employing traditional data augmenta-
tion techniques for teacher networks can lead to semantic loss
or distortion of the positive sample, resulting in incorrect soft
labels that may mislead the student network.

Table 7: Effect of weak augmentation in teacher networks for MSVQ.

Teacher Aug CIFAR-10 CIFAR-100 STL-10 Tiny ImageNet
Strong 88.33 59.55 86.14 39.44
Weak 91.46 66.44 90.41 48.09

4.5.3. Different momentum coefficients
Some may question the necessity of employing distinct mo-

mentum update coefficients for the two teacher networks within
the MSVQ framework. As demonstrated in Table 8, when both
teacher networks employ identical momentum update coeffi-
cients, a marginal reduction in performance is observed. We
contend that m1 , m2 serves as a means to distinguish between
gt1( ft1(·)) and gt2( ft2(·)). This differentiation enables a clear
distinction between Z2 (or Z3) and Z4, as well as among the
negative samples within Queue1 and Queue2. Consequently,

this approach maximizes the expression of semantic informa-
tion within both the positive and negative samples.

Table 8: Effect of different m2 for MSVQ.

Dataset m1 = 0.99 m2 = 0.93 m2 = 0.95 m2 = 0.97 m2 = 0.99
CIFAR-10 - 90.93 91.46 91.08 90.88
CIFAR-100 - 66.44 65.99 65.58 65.63
Dataset m1 = 0.996 m2 = 0.95 m2 = 0.99 m2 = 0.993 m2 = 0.996
STL-10 - 90.00 90.41 90.10 90.18
Tiny ImageNet - 47.59 48.09 47.55 48.05

4.5.4. The size of queues
In the context of the MSVQ framework, the size of queues di-

rectly corresponds to the number of negative samples. Table 9
illustrates the linear evaluation accuracy corresponding to var-
ious queue sizes. It is evident that larger queue sizes lead to a
substantial improvement in performance. We hypothesize that a
larger queue size augments the probability of the positive sam-
ple discovering false negative samples within the queues that
align with its semantic context. Consequently, the features ac-
quired by the model become more generalizable. However, as
we further increase the queue size, we observe performance in-
stability. We suspect that this phenomenon arises from the pres-
ence of stale features within the queues, which are not promptly
replaced when the queue size is enlarged. Therefore, it is nec-
essary for the MSVQ to strike a balance between enhancing the
chances of discovering false negative samples and ensuring the
timely update of features within the queues.

Table 9: Analysis of the size of queues (Q).

Dataset Q = 512 Q = 1024 Q = 2048 Q = 4096 Q = 8192 Q = 16384 Q = 32768
CIFAR-10 90.81 90.65 91.40 91.46 91.07 91.07 91.06
CIFAR-100 64.25 64.82 65.77 66.44 66.08 66.43 66.82
STL-10 88.10 89.30 89.60 89.69 89.76 90.41 90.11
Tiny ImageNet 44.82 45.93 47.04 47.31 47.74 48.09 48.34

4.6. Analysis and discussion

4.6.1. The position of augmented views
In addition to the default configuration described in

Sec. 3.2.3, we conducted experiments exploring two variations
of MSVQ: (i) relocating the augmented view X3 from gt1( ft1(·))
to gt2( ft2(·)), and (ii) introducing a new view X5 generated
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Table 10: An analysis of the position of augmented views in MSVQ. The best results are indicated in bold, and the suboptimal results are underlined.

Method X2 X3 in gt1( ft1(·)) X3 in gt2( ft2(·)) X4 X5 in gt2( ft2(·)) CIFAR-10 CIFAR-100 STL-10 Tiny ImageNet
MSVQ(Ours) ✓ ✓ ✓ 91.46 66.44 90.41 48.09

✓ ✓ ✓ 91.05 66.16 90.11 47.45
✓ ✓ ✓ ✓ 91.16 67.14 90.49 48.55

MSV(Ours) ✓ ✓ 90.92 65.02 89.35 46.68
MQ(Ours) ✓ ✓ 90.91 65.15 89.58 46.32
ReSSL [37] ✓ 90.20 63.79 88.25 46.60

Fig. 5. The average number of false negative sam-
ples identified by different augmented views (i.e.,
X2, X3, and X4) in teacher networks. Here, ’all’ rep-
resents the cumulative effect of all three soft labels
when utilized simultaneously.

(a) MoCoV2 (b) MSVQ

Fig. 6. t-SNE visualization of learned features on CIFAR-10, classes indicated by different colors. Best
viewed in color.

through weak augmentation in gt2( ft2(·)). The experimental re-
sults, as presented in Table 10, demonstrate that (ii) yielded
slightly better performance improvements compared to (i). This
suggests that the number of augmented views (i.e., distinct soft
labels) may have a more significant impact on performance than
the choice of the teacher network in which they are employed.

Furthermore, the default MSVQ settings yielded slight per-
formance gains compared to variation (i) across all datasets.
This was due to our experimental setup where we set the mo-
mentum update coefficient m1 to be greater than m2. Larger
momentum update coefficients reduce disturbances caused by
inconsistencies among different batches of negative samples in
the queue [8]. Given this simplicity and the optimal perfor-
mance observed, we have chosen to retain the default settings
of MSVQ.

4.6.2. Analyzing model reliability and coverage in identifying
false negative samples

We treat the distribution of relationships between {Xi}
4
i=2 and

the negative samples in the queues as three distinct soft labels.
These labels provide guidance for the student network in clas-
sifying the negative samples within the queues. Ideally, false
negative samples should receive higher prediction values in the
student network, and vice versa.

To ensure the accuracy of these three soft labels, we employ

both weak data augmentation and lower temperature parame-
ters in teacher networks. In this section, we investigate the reli-
ability and scope of these three soft labels in the identification
of false negative samples. These labels are expected to assign
higher similarity values to the false negative samples. Fig. 5
illustrates the average number of false negative samples iden-
tified by the three soft labels. In detail, we begin by arrang-
ing each of these three distributions (i.e., P2,1, P3,1, and P4,2)
in descending order. Then, we calculate the average count of
false negative samples that share the same labels as the positive
sample within the top 5 samples of each distribution. In this
context, ’all’ refers to the total number of distinct false negative
samples identified by aggregating their respective sets of false
negative samples when utilizing all three soft labels simulta-
neously. This observation implies that the three soft labels in
our model can effectively identify distinct sets of false negative
samples within the queues, resulting in the recognition of nearly
twice as many false negatives compared to when each soft label
is applied individually.

4.6.3. Visualization of features
As demonstrated by t-SNE visualization [46] in Fig. 6, our

method exhibits more distinct class boundaries and a more com-
pact internal arrangement of classes compared to MoCoV2.
This suggests that MSVQ offers a greater ability to alleviate the
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issue of false negative samples in the instance discrimination
task.

5. Conclusion

In this work, we bring in the framework of MSVQ. We
improve the reliability and coverage of false negative sample
identification by introducing two complementary and symmet-
rical methods to generate three distinct soft labels within the
teacher networks. The first method entails utilizing multiple
weakly augmented views of the positive sample, while the sec-
ond method involves employing two momentum encoders to
generate distinct semantic features for negative samples. Our
extensive experimental results on four benchmarks demonstrate
the remarkable performance of MSVQ. In future research, our
goal is to explore even more effective strategies for leveraging
semantic diversity within the realm of SSL.
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