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We demonstrate the possibility of creating domain walls described by a single component Gross-
Pitaevskii equation with attractive interaction, in the presence of an optical-lattice potential. While
it is found that the extended domain wall is unstable, we show that the external magnetic trap
can stabilize it. Stable solutions include twisted domain walls, as well as asymmetric solitons.
The results also apply to spatial solitons in planar waveguides with transverse modulation of the
refractive index.
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I. INTRODUCTION

Solitary waves, such as bright and dark solitons, are ubiquitous dynamical patterns in the fields of nonlinear optics
and matter waves [1,2]. Besides these customary waveforms, solitary coherent structures in the form of domain walls
(DWs) were also predicted in optical fibers with normal group-velocity dispersion carrying two waves with orthogonal
polarizations, circular or linear, that interact through the cross-phase modulation induced by the Kerr nonlinearity
[3,4]. Similar structures were also predicted in planar nonlinear optical waveguides [5]. The fiber-optic DWs are
distinguished by the property that, asymptotically, they contain a single polarization, with a switch between the
polarizations in a localized region. Optical-DW solutions were, in fact, found following the pattern of earlier known
solutions of the DW (alias “grain-boundary”) type in systems of coupled Ginzburg-Landau equations that describe
interactions between roll patterns [6,7] or traveling waves [8] with different orientations in a convection layer .
Domain walls may also arise in very different physical media (that, however, bear a similar mathematical descrip-

tion), namely in binary (two-component) Bose-Einstein condensates (BECs). In particular, stable DW configurations
have been predicted in quasi-one-dimensional (cigar-shaped) binary BECs [9]. Such stable solutions can also exist in
the presence of a periodic optical-lattice (OL) potential [10], combined with the parabolic magnetic trap [11].
Optical DWs, as well as high-repetition periodic DW trains, have been experimentally observed in fibers [12,13].

On the other hand, binary BECs have been experimentally achieved, for instance, in mixtures of different spin states
of 87Rb [14], including cases when an OL was used for the confinement [15]. Efforts were also made to create binary
BECs with different atomic species, such as 41K and 87Rb [16], or 7Li and 133Cs [17]. However, DWs have not yet
been observed, therefore a relevant issue is to predict more favorable conditions for their existence.
Here, we propose a setting in which patterns of the DW type can be realized in a single-component BEC with the

attractive interaction between atoms. We demonstrate that this may occur, under suitable conditions, in the presence
of the OL potential. Furthermore, we show that the corresponding DW solutions can be stabilized by the magnetic-
trap potential. Our results also predict the existence of patterns of the same type in nonlinear-optical media, such
as a multichannel nonlinear planar waveguide with transverse modulation of the refractive index [18], or, possibly, in
two-dimensional photonic crystals. In particular, the attractive character of the cubic nonlinearity, which is necessary
for the existence of DWs, is provided in optics by the usual Kerr effect.
The presentation is structured as follows: in section II, we give a detailed formulation of the model, and develop an

analytical approach to the DW solutions, based on the variational approximation (VA). In section III, we construct
the DW solution numerically, both in the absence and in the presence of the magnetic trap; we obtain a variety of
new solutions, including an asymmetric DW-type soliton and a twisted DW, as well as multi-DW patterns. Section
IV concludes the paper.
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II. FORMULATION OF THE MODEL AND VARIATIONAL APPROXIMATION

Assuming that the nonlinear interactions are weak relative to tight confinement in transverse dimensions, the
transverse size of the cigar-shaped condensate is much smaller than its length. In such a case, which can be re-
alized in strongly anisotropic traps, the Gross-Pitaevskii (GP) equation, which governs the BEC in the mean-field
approximation, assumes an effectively one-dimensional form [19]:

iψt = −ψxx + g|ψ|2ψ + V (x)ψ, (1)

where ψ is the single-atom wave function, t and x are measured, respectively, in units of 2/ω⊥ and the transverse

harmonic-oscillator length a⊥ ≡
√

h̄/(mω⊥) (m and ω⊥ are the mass and transverse confining frequency), and the

energy unit is h̄ω⊥/2. The nonlinearity prefactor g ≡ 2(2π)3/2a/a⊥ is proportional to the scattering length a of the
inter-atomic interactions (see e.g., Refs. [19,20]), a > 0/a < 0 corresponding to the repulsive/attractive interactions.
In the general case, the potential is

V (x) = Ω2x2 + V0 cos(kx), (2)

where the two terms represent the magnetic trap and the OL, respectively. In Eq. (2), Ω ≡ ωx/ω⊥ (ωx being
the axial confining frequency) is the effective strength of the magnetic trap, V0 ≡ 2Erec/h̄ω⊥ is the OL strength
(Erec ≡ h2/2mλ2laser is the recoil energy, λlaser being the wavelength of the counter-propagating laser beams which
generate the OL), and k is the wavenumber of the OL. In the experiment, it can be controlled not only by changing
λlaser, but also, more conveniently, by varying the angle θ between the laser beams, as the the local intensity in the
interference pattern is modulated at the wavelength λ ≡ 2π/k = (λlaser/2) sin(θ/2) [21].
To estimate actual physical quantities in this situation, we can take a typical example of the attractive (a < 0)

condensate of 7Li containing 103 atoms, confined in a cigar-shaped trap with the frequencies ωx = 2π × 60 Hz and
ω⊥ = 2π × 400 Hz. This implies Ω = 0.15 in Eq. (2), while the time and space units correspond to 0.8 ms and 2µm,
respectively. Finally, concerning the OL wavenumber, k = 2 (this is a value that will be dealt with in this work)
corresponds to the wavelength λ ≃ 6 µm of the interference pattern (in physical units). These values can be used for
the interpretation of the results that are presented below in terms of the dimensionless variables.
Stationary solutions to Eq. (1) are seeked for as ψ(x, t) = e−iµtu(t), where µ is the chemical potential (proportional

to the energy per atom), and the real function u obeys the equation

µu+ u′′ − gu3 − V (x)u = 0, (3)

the prime standing for d/dx. DW-like solutions are those following the pattern of the ansatz

u(x) = (A/2) [1− sgn (x− ξ)] , (4)

where A is the amplitude of the wave function at x = −∞ (assuming an infinitely long system), and x = ξ is the
location of the DW’s center. In linear quantum mechanics, a state of this type cannot exist because the atoms would
tunnel from the filled domain, x < ξ, into the empty one, x > ξ. However, in the GP equation (1), the nonlinear
mean-field term adds a negative contribution to the effective potential in the filled domain. If, as a result, a state of
the type (4) is possible with µ < 0, the tunneling will be suppressed, and a DW state may be supported.
Of course, such qualitative considerations provide no guarantee that a DW waveform will really exist. To investigate

this possibility in quantitative terms, we will first resort to the VA (variational approximation), which will be followed
by direct numerical analysis in the next section. To this end, we note that Eq. (3) can be derived from the Lagrangian,

L =
∫ +∞

−∞
Ldx, with the density

L = u2x − µu2 + V (x)u2 + (g/2)u4; (5)

in this part of the work, the potential V (x) does not include the parabolic trap, see Eq. (2).
With the use of the ansatz (4), the integral which gives the Lagrangian L diverges as x → −∞. Isolating the

diverging part, and subjecting it to the variation in A, immediately yields a result

A2 = µ/g, (6)

hence µ and g should be of the same sign. Because we actually need µ < 0 for the existence of the DW (see above),
this implies that g < 0, i.e., attraction between atoms in BECs (which occurs in 7Li [22], as mentioned above, or in
85Rb [23]), is a necessary condition for the existence of the DW.
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The actual shape of the DW differs from the simplest ansatz (4) by the presence of the oscillating part in the wave
function at x → ∞, see Fig. (1)(c) below. In the lowest approximation, treating the OL term in Eq. (3) as a small
perturbation, one can find the asymptotic form of the wave function at x→ −∞ in the form

uasympt(x) =

√

µ

g

[

1−
V0

2µ+ k2
cos (kx)

]

(7)

[the expression (6) was substituted for the amplitude], and the ansatz (4) can be modified accordingly, u =
uasympt(x) [1− sgn (x− ξ)].
The divergence of the Lagrangian does not affect the remaining variational equations, ∂L/∂ξ = 0 (cf. the situation

in the case of solitons with nonvanishing tails, where variational equations for the core of the soliton can also be
derived in a divergence-free form [24]). An eventual result is

V0 cos (kξ) =
µ

4

2µ+ k2

µ+ k2
. (8)

Equation (8) describes equilibrium between the negative pressure force acting on the DW from the filled domain (the
attraction tends to pull the atoms in) and the pinning force induced by the OL. The main conclusion following from
Eq. (8) is that a necessary condition for the existence of the DW solution is that the strength of the OL must exceed
a minimum (threshold) value

(|V0|)thr =

∣

∣

∣

∣

µ

4

2µ+ k2

µ+ k2

∣

∣

∣

∣

. (9)

We note that the vanishing of the expression (9) in the case of 2µ + k2 = 0 is a formal feature, produced by the
divergence of the oscillating correction in Eq. (7) in this case. In fact, this is a resonant case, and a proper form of
the correction can be derived using well-known methods of the nonlinear-resonance theory. We do not consider this
special case here.
Comparison with numerical results presented in the next section shows that the exact threshold value is smaller

than the one given by Eq. (9) by a factor ∼ 8. This discrepancy may be explained by the assumption, implied in the
ansatz (4), that the DW has zero width; in fact, numerical results [see Fig. 1(c) below] demonstrate that it is narrow
indeed, but still its width is not much smaller than λ = 2π/k. The VA can be extended to incorporate a finite width
of the DW; however, the analytical results then become very cumbersome, therefore they are not displayed here.

III. NUMERICAL RESULTS

We will present results of computations for a typical case within the range of parameters in which the VA predicts
the existence of the DW, namely for g = −3 and µ = −1. This case can be readily implemented in the experiment,
adjusting the magnitude of the scattering length a (which sets the value of the normalized nonlinearity parameter g)
by means of the Feshbach resonance induced by external magnetic field [25] (see also Ref. [26]); for other values of g
and µ, the results are quite similar. With fixed g and µ, in what follows we vary the parameters of the potential to
obtain different types of solutions.
The stationary equation (3) was solved by means of a standard Newton-type algorithm. Once a solution u0 to this

equation was found, its linear stability was examined, using a straightforward form of the perturbed solution,

ψ(x, t) = e−iµt {u0(x) + [δa(x) exp (−iωt) + δb(x) exp (iω⋆t)]} , (10)

where ⋆ denotes the complex conjugation. The resulting linear equations for the small perturbations δa and δb are

ωδa = − (δa)′′ + V (x)δa+ 2gu20δa− µδa+ gu20 (δb)
⋆ , (11)

ω∗δb = (δb)
′′
− V (x)δb − 2gu20δb + µδb− gu20 (δa)

∗
. (12)

These can be tackled by means of a matrix eigenvalue solver (using the finite-difference discretization with a spatial
step chosen to be ∆x = 0.2). The eigenfrequencies ω thus found will be shown in the spectral plane (ωr, ωi), where the
subscripts denote their real and imaginary parts. The configuration is linearly unstable if there is an eigenfrequency
with a non-vanishing imaginary part ωi 6= 0.
If the stationary solution is found to be unstable, a fourth-order Runge-Kutta integrator, with time step ∆t = 0.001

and no-flux boundary conditions at the edges of the domain, was used to directly simulate the development of the
instability.
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FIG. 1. (a) The norm of the domain-wall (DW) solution, P =
∫

|u|2dx (alias the normalized number of particles) vs. the
optical-lattice’s strength V0 without the external parabolic trap (Ω = 0). The inset explicitly shows that the branch starts
at a finite threshold value of the strength, (V0)thr ≈ 0.02. (b) The largest instability growth rate (imaginary part of the
eigenfrequency) of the DW solution vs. V0. This plot shows that the solution is always unstable. (c) The spatial profile of the
solution (left subplots) and the corresponding spectral plane of the stability eigenvalue (ωr, ωi) (right subplots) for V0 = 2 and
V0 = 1 (top and bottom subplots, respecively). (d) The space-time contour plot of the density |u|2 showing the evolution of the
unstable DW in the case of V0 = 2 (top subplot). The middle subplot shows the initial and final configurations (dashed and
solid lines), and the optical-lattice potential (dash-dotted line). In order to monitor the instability development, the maximum
of the density in the spatial domain is shown, as a function of time, in the bottom subplot.

Numerical results for the stationary DW solutions are displayed in Fig. 1. In this case, we use the OL potential
with k = 2 without the parabolic trap [Ω = 0 in Eq. (2)], and examine the behavior of the DW as a function of the
potential’s strength V0. The solutions indeed exist only if V0 exceeds a finite threshold value (|V0|)thr ≈ 0.02, which is
smaller than the one (9) predicted by the VA in the crude approximation. A reason for the discrepancy was discussed
above, but a principally important fact is the existence of the finite threshold.
Figure 1 shows that this family of the solutions is unstable at every value of V0, see an explanation below. An

example of the instability development included in Fig. 1 for (V0 = 2) shows that, on a relatively short time scale
(∼ 30 in this case), the instability destroys the DW configuration, leading to an apparently chaotic redistribution
of the density between different potential wells and gradual expansion of the condensate into the originally empty
domain.
The next step is to consider an effect exerted on DWs by the external magnetic (parabolic) trapping potential
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in the system (Ω 6= 0), which is typically an inherent ingredient of experimental BEC settings [20]. The trap may
partly stabilize the DW, as illustrated by Fig. 2, where the combined optical and magnetic potential is imposed, with
Ω2 = 0.01, V0 = 2 and k = 2. In this case, it is seen that the trap confines the pattern to three humps in a half
of the region |x| < RTF, where RTF =

√

|µ|/Ω is the Thomas-Fermi radius is (RTF ≈ 10 in this case; the presence
of the DW is evident from the fact that the interval 0 < x < RTF is empty). This pattern is still unstable, and its
evolution results in a structure that alternates between a large single-well pulse and a double-humped one trapped in
two adjacent wells.
The stability properties of the three-humped DW configuration considered above shed light on the origin of the

instability of the DWs. In particular, we observe in the lower part of Fig. 2(a) that this structure has two unstable
eigenfrequencies, which is to be compared with the right part of Fig. 1(c), where, in the absence of the magnetic trap,
many unstable eigenfrequencies are present. In this connection, we note that, by means of the substitution δa = w+v,
δb = w⋆ − v⋆, Eqs. (11)-(12) can be re-written in the form of

ωv = −w′′ + V (x)w + 3gu20w − µw ≡ −L+w (13)

ωw = −v′′ + V (x)v + gu20v − µv ≡ −L−v. (14)

The operator L− has u0 as its zero mode, i.e., an eigenstate with ω = 0. Hence, it follows from Sturm-Liouville theory
that, since u0 does not change its sign, the number of negative eigenvalues of L− is n(L−) = 0. On the other hand, u′0
is an ω = 0 eigenstate of the operator L+ (in the absence of external potential). Again, using Sturm-Liouville theory,
it can be deduced (cf. also [27]) that the number of negative eigenvalues of L+ (if u0 contains N separated humps) is
n(L+) = N . Consequently, |n(L+)− n(L−)| = N . One can then infer from the arguments of Refs. [28] and [29] that
there must exist N − 1 unstable real eigenvalue pairs (imaginary eigenfrequency pairs) in such a case. This clearly
explains the existence of the two unstable eigenvalue pairs in the case of the three-humped DW.
The above arguments are also supported by panels (c) and (d) of Fig. 2: Here, for a more tightly confining magnetic

trap, with Ω2 = 0.025 (the OL parameters are again V0 = 2 and k = 2), the resulting configuration is a double-humped
DW (the larger the magnetic-trap strength Ω, the smaller the Thomas-Fermi radius RTF, hence, the number of the
“humps” decreases). In this case, N = 2, and therefore, in agreement with the above arguments, only one unstable
eigenfrequency can be identified in the spectral plane (ωr, ωi), see the lower part in Fig. 2(c). Figure 2(d) shows that
the instability leads to absorption of a large fraction of the atoms from one “hump” by the other. However, a small
fraction of atoms tunnels to the next well. We have verified that the small pulse generated in this well has parity
opposite to that of the large one on which it abuts. Such opposite-parity configurations may be stable, see below.
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FIG. 2. (a) The profile and spectral plane of a three-humped DW found in the potential V (x) = 0.01x2 +2 cos(2x). (b) The
instability development of the pattern. Generally, it tends to collect the condensate in a single potential well. However, there
are also time intervals in which the atoms form two pulses in two adjacent wells (the pulses have opposite signs). (c) and (d)
The same as in (a) and (b), for a double-humped DW in the potential V (x) = 0.025x2 + 2 cos(2x).

Previous results for multi-pulse configurations in discrete nonlinear-Schrödinger models with the attractive inter-
action [27,30–35] have shown that, while patterns composed of same-parity pulses (i.e., ones with no zero crossings
between them) are always unstable, the so-called twisted localized modes (TLMs), in which adjacent pulses are of
opposite parity, may be stable. This can be seen, in the context of the above consideration, from the fact that if
there are S zero-crossings in the profile u0, then n(L−) = S and hence, the Jones-Grillakis criterion [28], [29] predicts
N − S − 1 real-eigenvalue (imaginary-eigenfrequency) pairs. Thus, if S = N − 1 (i.e., if adjacent pulses have oppo-
site parities), then the solution is potentially stable, although other types of instabilities are also known to occur in
this case [31–35], such as the oscillatory instability (accounted for by a Hamiltonian Hopf bifurcation) [36] due to a
negative eigendirection in the energy of small perturbations [37,38].
Following this argument, we looked for a twisted-DW configuration, which we were indeed able to identify, as shown

in Fig. 3. To examine the existence and stability of this type of patterns, we used continuation in the OL strength
V0, and found that it exists for V0 ≥ 0.25, see the top part of Fig. 3(a). Furthermore, it is unstable, due to the above-
mentioned oscillatory instability, in the intervals 0.25 < V0 ≤ 0.32 (i.e., just after it emerges) and 0.41 ≤ V0 ≤ 0.53,
while it is stable otherwise, see the lower part of Fig. 3(a). In the case of the instability, we simulated its evolution,
as shown in panel (c) of Fig. 3. It is observed that the instability cleaves the twisted DW through an oscillatory
perturbation [see the top and bottom subplots of panel (c) in the interval 175 ≤ t ≤ 250], and results into oscillations
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around a configuration with most of the atoms trapped in a single well. This configuration is actually an asymmetric
soliton (see also below).
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FIG. 3. (a) The branch of the twisted-DW solutions. The bottom subplot of the panel shows the most unstable eigenvalue of
small perturbations around the configuration [the instability, if any, has an oscillatory character; see panel (b)]. (b) Examples of
the twisted DW for V0 = 2 and V0 = 0.5 (top and bottom subplots) and their linear stability spectra (the dashed line indicates
the potential). (c) The evolution of an unstable twisted DW, which results in transition to an asymmetric single-humped
soliton. Panel (c) is similar to Fig. 1(d), except for the bottom part illustrating the instability development through the time
evolution of the condensate density at the bottom of the magnetic trap, |u(0, t)|2.

The latter result, as well as the natural expectation that, if the Thomas-Fermi radius RTF becomes sufficiently
small, a single-humped DW pattern may emerge, which would be a new type of an asymmetric solitary wave in the
present context, led us to search for a single-humped DW. Such a solution has been found, and is shown in Fig. 4 for
different values of V0 in the potential with Ω2 = 0.06 and k = 2. It is noteworthy that the solution is stable for all the
examined values of V0. For a small OL strength, the solution degenerates into the regular symmetric soliton, which
is possible in the one-dimensional GP equation with attraction, and has been observed in the experiment [39].
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FIG. 4. (a) The branch of asymmetric-DW solutions. (b) Profiles and stability of the solutions for V0 = 2 and V0 = 1 (top
and bottom subplots).

Finally, we examined possibilities to create composite DWs, constructed as bound states of the regular or twisted
fundamental DWs which were considered above. Such configurations have been found. Two typical examples, viz.,
bound states of double-humped DWs for Ω2 = 0.025, V0 = 2.5 and k = 2, and of twisted DWs for the same Ω2 and k
but for V0 = 1.9, are shown in Fig. 5. Naturally, as the former configuration has one pair of unstable eigenvalues per
each double-humped DW, the composite profile bears two such pairs; similarly, since each single twisted DW may be
stable, their bound state may be stable too (but it may also be subject to the oscillatory instability shown above).
The unstable evolution of the bound state of the double-humped DWs from the top part of panel (a) in Fig. 5 is
shown in panel (b) of the figure. Clearly, each of the constituent DWs is destroyed in favor of a twisted-DW pattern,
in which the constituent pulses are far separated.
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FIG. 5. (a) The bound state of double-humped DWs for V (x) = 0.025x2 + 2.5 cos(2x) (shown by the dashed line) and its
stability (right subplot). The configuration has two nearly identical unstable eigenvalues. The bottom subplot shows a stable
bound state of twisted DWs for V (x) = 0.025x2 + 1.9 cos(2x). (b) The development of the instability of the bound state of
double-humped DWs from the top subplot of (a) leading to the formation of two larger-amplitude out-of phase pulses. The
panel (b) displays similar features as Fig. 1(d) for the double-humped DW.
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IV. CONCLUSIONS

Domain-wall (DW) solutions appear in a variety of contexts in optics and matter-wave physics, in both theoretical
and experimental studies (experimentally, DWs have been observed in nonlinear optical fibers). Most of these settings
are inherently two-component ones with immiscible components, the repulsion between them making it possible to
support stable DWs.
In this work, we have investigated possibilities to create domain walls in single-component models (particularly, in

those based on the Gross-Pitaevskii equation, and relevant to the description of Bose-Einstein condensates) in the
presence of external potentials (OL and parabolic trap). The same model is relevant to the study of spatial solitons
in planar waveguides with transverse modulation of the refractive index. By means of the analytical approach, based
on variational methods, and through direct simulations we have found that DWs are possible only in the model with
intrinsic attraction, and a necessary condition is that the OL strength must exceed a threshold value. Regular domain
walls (with no zero crossings) in the OL potential are found to be unstable, to which an explanation was given. If the
magnetic trap is introduced, twisted DWs can be stable, as well as asymmetric single-pulse soliton solutions. Bound
states of elementary DWs (regular and twisted ones) have also been investigated; they have a chance to be stable in
the latter case.
A natural extension of the present study is to search for multi-dimensional counterparts of these solutions; these

results will be published elsewhere.
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[19] V.M. Pérez-Garćıa, H. Michinel and H. Herrero, Phys. Rev. A 57, 3837 (1998); L. Salasnich, A. Parola and L. Reatto,

Phys. Rev. A 65, 043614 (2002); Y.B. Band, I. Towers, and B.A. Malomed, Phys. Rev. A 67, 023602 (2003).
[20] F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).
[21] O. Morsch and E. Arimondo, in Dynamics and Thermodynamics of Systems with Long-Range Interactions, T. Dauxois, S.

Ruffo, E. Arimondo and M. Wilkens (Eds.), Springer (Berlin 2002), pp. 312-331.
[22] A.J. Moerdijk, W.C. Stwalley, R.G. Hulet, and B.J. Verhaar, Phys. Rev. Lett. 72, 40 (1994).
[23] J.P. Burke, J.L. Bohn, B.D. Esry, and C.H. Greene, Phys. Rev. Lett. 80, 2097 (1998).

9



[24] D.J. Kaup and B.A. Malomed, Physica D 184, 153 (2003).
[25] S. Inouye et al., Nature (London) 392, 151 (1998); E.A. Donley et al., Nature (London) 412, 295 (2001).
[26] P.G. Kevrekidis, G. Theocharis, D.J. Frantzeskakis, and B.A. Malomed, Phys. Rev. Lett. 90, 230401 (2003).
[27] T. Kapitula, P.G. Kevrekidis and B.A. Malomed, Phys. Rev. E 63, 036604 (2003).
[28] C.K.R.T. Jones, Ergodic Theory and Dynamical Systems 8, 119-138 (1988).
[29] M. Grillakis, Commun. Pure Appl. Math 46, 747 (1988); M. Grillakis, Commun. Pure Appl. Math. 43, 299 (1990); M.

Grillakis, J. Shatah and W. Strauss, J. Funct. Anal. 74, 160 (1987).
[30] S. Darmanyan, A. Kobyakov and F. Lederer, Sov. Phys. JETP 86, 682 (1998).
[31] P.G. Kevrekidis, A.R. Bishop and K.Ø. Rasmussen, Phys. Rev. E 63, 036603 (2001).
[32] P.G. Kevrekidis, Phys. Rev. E 64, 026610 (2001).
[33] P.G. Kevrekidis and M.I. Weinstein, Math. Comp. Simul., 62, 65-78 (2003)
[34] P.J.Y. Louis, E.A. Ostrovskaya, C.M. Savage and Yu.S. Kivshar, Phys. Rev. A 67, 013602 (2003).
[35] P.G. Kevrekidis, D.J. Frantzeskakis, B.A. Malomed, A.R. Bishop and I.G. Kevrekidis, New J. Phys. 5, 64 (2003).
[36] J.-C. van der Meer, Nonlinearity 3, 1041 (1990).
[37] Dmitry V. Skryabin Phys. Rev. E 64, 055601 (2001)
[38] T. Kapitula, P.G. Kevrekidis and B. Sandstede, Counting eigenvalues via the Krein signature in infinite dimensional

Hamiltonian systems (preprint).
[39] K.E. Strecker, G.B. Partridge, A.G. Truscott, and R.G. Hulet, Nature 417, 150 (2002); L. Khaykovich, F. Schreck, G.

Ferrari, T. Bourdel, J. Cubizolles, L.D. Carr, Y. Castin, and C. Salomon, Science 296, 1290 (2002).

10


