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Abstract

Flow and Diffusion Distributed Structures (FDS) are stationary spatially periodic
patterns that can be observed in reaction-diffusion-advection systems. These struc-
tures arise when the flow rate exceeds a certain bifurcation point provided that
concentrations of interacting species at the inlet differ from steady state values and
the concentrations are held constant. Normally, theoretical studies of these patterns
are developed without concerning a noise. In this paper we consider FDS for a more
realistic conditions and assume that the inlet concentrations are perturbed by a
small noise. When the flow rate is small, the FDS is linearly sensitive to noise at
the inlet. Even weak fluctuations destroy the stationary pattern and an oscillatory
solution appears instead. For higher flow rates the instability becomes nonlinear:
the pattern remains unaltered for a weak noise and undergoes the destruction when
the noise amplitude passes a certain threshold. We represent a detailed description
of these effects and examine two scenarios for the stabilization.

Key words: Reaction-diffusion-advection system; Flow and Diffusion Distributed
Structures; Flow Distributed Oscillations; Pattern formation; Noise
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1 Introduction

Reaction-diffusion system are known to demonstrate a variety of instabilities
that result in stationary patterns or oscillatory behavior. Flow and Diffusion
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Distributed Structure (FDS) is relatively new type of patterns that can appear
in a reaction diffusion system in presence of an open flow. The necessary
condition for this pattern to appear is oscillatory instability and constant,
non steady state concentrations of interaction species at the inlet. If these
condition are satisfied, the FDS appears when the flow rate passes above a
certain critical point. Patterns of this type were first described by Kuznetsov et
al. [1] and later they were studied in more details by Andresén et al. [2]. Soon
after discovery these patterns were observed in the experiments by Kærn and
Menzinger [3,4]. Later the experimental results were summarized in a survey
paper [5].

There is a bit confusing variety of terms concerning this type of pattern for-
mation phenomena. Initially, Kærn and Menzinger suggested the term “Flow
distributed oscillations” (FDO) [3]. Later, the abbreviation FDS was suggested
by Satnoianu [6,7]. In this paper we adhere to the last version and refer to
the structures under consideration as FDS. (See also the discussion of the
terminology in [8]).

Extensive theoretical studies of new structures are provided in [9,6,7,8]. In par-
ticular, these papers explore the relationship between FDS and other known
types of instabilities in reaction-diffusion-advection systems: Turing patterns,
DIFI and Hopf instabilities. As shown by McGraw and Menzinger in [8], the
FDS (they use the term FDO, see the remark above) is closely related to the
Hopf instability and DIFI, while the Turing pattern has a different nature.

As mentioned before, an FDS pattern emerges provided that a system demon-
strates an oscillatory instability. Often a convective instability of the oscil-
latory mode is declared as a necessary condition for FDS: arbitrary small
constant perturbation to the steady state at the inlet can grow to an FDS.
But as shown by Kuptsov [10], the FDS can also appear in an absolute insta-
bility domain. In this case, however, the transition to FDS is rigid. If the inlet
perturbation is small, the oscillatory solution dominates an FDS. However,
the increasing of the perturbation gives an advantage to the FDS and it grows
and suppresses the oscillations.

An experimental study of an FDS in presence of a differential transport is
provided by Mı́guez et al. [11,12]. They consider a remarkable variety of im-
pacts on an FDS pattern. These are a parallel formation of two neighboring
FDSs, an FDS in a system with monotonically increasing flow rate, an FDS in
2D system with sinusoidally varying y-boundary and also interaction of two
perpendicular FDSs. This analysis reveals a high degree of robustness and
structural stability of this type of patterns.

A study of forcing to FDS is also presented in a work by Kuptsov et al. in [13].
This paper provides a numerical analysis of an FDS that is perturbed by a
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small particle dragged by a flow. Papers [4,14,15] are devoted to the study
of an FDS in presence of periodic oscillations at the inlet. We shell discuss
these papers below in the final section, because they are closely related to our
analysis.

Recently, Kuptsov at al. represented a theoretical analysis of FDSs in a 2D
system with Poiseuille flow [16]. Two basic types of patterns were observed.
The first one is y-dependant version of 1D FDS. The pattern consists of curved
stationary stripes that are transverse to the flow direction. Patterns of this
type were also observed in the experiments by Mı́guez et al. [12]. The second
type of structures is specific to the 2D case: the structure consists of several
stationary longitudinal stripes. If both types of basic structures are allowed,
a more complicated pattern appears as a combination of transverse and lon-
gitudinal stripes.

All previous theoretical approaches have been developed for perfectly constant
condition at the inlet. But fluctuations, that are always present in natural sys-
tems, can influence the pattern formation. As observed in many experiments,
see for example [5] and [17], FDS near the critical point can be suppressed by
oscillatory solutions induced by the inlet fluctuations.

The effect of an inlet noise on convectively unstable distributed systems was
studied by many authors. We recall that in the convectively unstable system
a growing perturbation drifts downflow but decays when observed from any
fixed point. By contrast, absolute instability implies that the perturbation,
being initially localized, grows at any fixed point in space [18,19,1,20] (see also
reviews therein). In view of the extreme sensitivity of the convectively unstable
state to perturbations, Deissler [21], Deissler and Farmer [22], and Borckmans
et al. [23] conclude that wave-patterns may be generated and sustained due to
amplification of fluctuations from an upstream noise source. More subtle than
a straightforward amplification of noise, an interplay between fluctuations and
dynamics is suggested by Landa [24] who treat the onset of turbulence in flow
systems as a kind of noise-induced transition.

Kuznetsov [25] studied the effect of inlet noise on a spatially uniform reaction-
diffusion-advection system. (This problem is similar to the ours, but we also
apply a constant perturbation at the inlet to obtain an FDS pattern.) A noise-
induced absolute instability was observed: the inlet noise increases the critical
flow rate for transition from absolute to convective instability, and the new
critical value is proportional to the square root of the noise amplitude, i.e., it
obeys a power law.

In our previous paper [26] we already discussed the stability of FDSs to an inlet
noise. In particular, we observed that when the flow rate is close to the FDS
critical point, the noise, regardless of its amplitude, destroys the structure,
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i.e., the FDS is linearly unstable. For higher flow rates the system passes a
new critical point, thus becoming insensitive to a weak noise. Beyond this
point, noise destroys the structure only when the noise amplitude exceeds a
threshold value. The threshold grows as a power of the flow rate. We shall
refer to this case as nonlinear instability of an FDS.

The purpose of the present paper is to extend our previous study. We demon-
strate two scenarios of stabilization and develop a linear stability analysis of
an FDS pattern. Sec. 2 reviews a variety of transitions to FDS. Sec. 3 repre-
sents a qualitative picture of the destruction and stabilization of FDSs by a
noise. In Sec. 4 we summarize previous considerations and, employing Fourier
analysis, introduce two scenarios of the stabilization. In Sec. 5 this two sce-
narios are confirmed by a linear stability analysis. Finally, Sec. 6 summarizes
our results.

2 Oscillatory instabilities and transition to FDS

Before starting the main analysis let us introduce our model system and briefly
review the oscillatory instabilities that can produce FDS patterns.

We shall consider the well-known Lengyel-Epstein model for the CIMA (chlorite-
iodide-malonic acid-starch) reaction [27,28,6], assuming that the reagents are
carried by a flow in a one-dimensional reactor:

ut + φux − uxx= a− u− 4uv/
(

1 + u2
)

, (1a)

vt + rφvx − δvxx = b
(

u− uv/
(

1 + u2
))

. (1b)

Here u and v denote the dynamical variables related to the concentrations of
two chemical species, a and b are treated as control parameters, and φ is the
flow rate. The transport rates for u and v can be different: δ introduces the
differential diffusion, and r controls the differential flow. We shall study two
cases: no differential flow at r = 1 and identical ratios for diffusion and flow
at r = δ. The reactor is supposed to be semi-infinite.

Note that we use a nonstandard form of Eqs (1). Normally, in the model equa-
tions for CIMA reaction parameters δ and b are proportional to each other.
But in all our studies we always take a constant values for the parameters and
analyze the varying of the flow rate or noise amplitude. So, at each step of ob-
servations one can easily recalculate our parameters to the standard ones. But
we believe that the specific numerical values are not very important because
we do not study the system near bifurcation points. As we have examined, the
represented results remain valid for a wide variety of the parameter values.
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We shall find numerical solutions to Eqs. (1) via the semi-implicit Cranck-
Nicholson method with steps of discretization ∆x ≈ 0.1 and ∆t ≈ 0.0125.
Also, in all our numerical simulations an outlet condition (ux, vx)x=X = 0 is
applied, where X is the length of the reactor. This type of the outlet conditions
are normally used in numerical simulations of reaction-diffusion systems, see
for example [28,1]. These conditions are the best choice for a model of a semi-
infinite, i.e., very long, system. In such a system the right boundary should not
influence an overall picture. The vanish of ux and vx at the outlet effectively
prevents an upstream propagation of any numerical artifacts. They, if appear
at all, stay near the right boundary as a tiny area of oscillations.

The system (1) admits the homogeneous steady state solution

uS = a/5, vS = 1 + a2/52. (2)

In the absence of a flow the steady state can be destabilized either by Hopf or
by Turing modes whose growth rates becomes positive at

b = bH = (3a2 − 125)/(5a) (3)

and
b = bT = (125 + 13a2 − 4a

√

10(25 + a2))δ)/(5a), (4)

respectively [29,30,28]. The Hopf instability gives rise to uniform temporal
oscillations while the Turing instability produces a stationary space-periodic
pattern. Note that for the considered system supercritical values of b lie below
the bifurcation points.

When both components of the system are transported by a flow with identical
rates, i.e., r = 1, the Hopf instability remains unaltered while the Turing
structure loses its stationarity. (Of course, this takes place only for an observer
in a laboratory reference frame. The other one that moves with the flow still
registers normal Turing stripes). The frequency of temporal oscillations of the
appearing waves is proportional to the flow rate [31].

Differential flow with r 6= 1 results in the formation of new spatio-temporal
structures due to the so-called Differential-Flow Instability (DIFI) [32]. The
most interesting situation is observed outside the Hopf and Turing domains.
The homogeneous steady state of the system remains stable until the flow rate
reaches a critical point φDIFI. Above this point, a DIFI mode become unstable
and give rise to travelling waves.

In presence of a flow an instability can be either absolute or convective. The ab-
solute instability appears for small flow rates and manifests itself as a spreading
of an initially localized perturbation over the whole space. For higher flow rates
the instability becomes convective: the growing perturbation, being carried by
the flow, decays in any fixed point. A critical point φca for the transition from
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absolute to convective instability can be obtained from dispersion equation of
a system as described in [18,19,1,20] (see also reviews therein).

Figure 1 represents solutions to Eqs. (1) that are induced by the instabilities
described above. In the other words, this figure demonstrates what happens
in our system without an FDS. For all panes of the figure the initial condi-
tion at t = 0 is the homogeneous steady state perturbed by small, spatially
inhomogeneous fluctuations. The inlet is held at the steady state.

Figure 1(a) illustrates a convective Hopf instability. We observe a temporally
periodic structure with a wave number that is zero on average. Because the
initial distribution of the reacting species is inhomogeneous, Hopf oscillations
appears in different points with different initial phases. Zero wave number of
a Hopf mode means that the effective interaction between neighboring points
is very weak. As a result we observe in the figure a lot of local phase perturba-
tions. The perturbations, however, are slowly smoothed out by the diffusion.
These perturbations as well as the upstream edge of the structure travel down-
flow. This confirms the convective nature of the observed instability. Note that
this is dictated by a dispersion equation and does not depend on boundary
or initial conditions. One can easily reproduce this convective moving of the
spatio-temporal structure for different conditions at the system edges or for
another inial perturbation.

Figure 1(b) represents a spatio-temporal structure that appears due to an
absolute Turing instability. The initial state for this figure is inhomogeneous,
but, in contrast to the Hopf case, the structure forms due to the spatial in-
teraction stimulated by a differential diffusion. This process subordinates the
concentrations of the reacting species in different points and results in the
perfect spatially periodic pattern. In a spatio-temporal diagram this should
looks like a vertical stripes. But a flow transports the Turing structure. As a
result we observe that the stripes are sloped exactly along the flow. (In the
spatio-temporal diagram φ = 0.5, tmax = 200 and xmax = φtmax = 100, so that
the flow is parallel to the main diagonal).

Finally, Fig. 1(c) illustrates a DIFI structure. For the parameters values that
are used for this figure, the system is stable without a flow, but different flow
rates of the reactants produces an instability. Now both frequency and wave
number are nonzero. Observe that they have opposite signs, and DIFI waves
travel upstream. The DIFI takes place at φDIFI that is normally higher than
the critical value for absolute-convective instability transition φca. In our case
the DIFI is also convective, so that the structure is washed by a flow.

FDS patterns appear in the system when temporal oscillations are spread in
space by a flow. Every volume of an oscillating medium, being carried by the
flow, appears with different phases in different spatial points and thereby pro-
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a)

b)

c)

Figure 1. Oscillatory instabilities in the system (1). Grey levels indicate values of u.
For all panels a = 20. (a) Hopf instability at b = 6, δ = 3, r = 1, φ = 3. (b) Turing
instability at b = 6, δ = 15, r = 1, φ = 0.5. (c) DIFI at b = 12, δ = r = 3, φ = 1.5.
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duces a spatially periodic structure. The flow rate is constant, so this structure
is stationary if all portions have identical initial phases. For this to be fulfilled,
a constant boundary perturbation should be applied at the inlet. This is a per-
manent displacement of reagent concentrations from the homogeneous steady
state. A wave number of FDS can be roughly estimated as ω/φ, where ω is the
frequency of the oscillations registered in a reference frame that moves with
the flow (see discussion in [2,3,33,34]).

A Hopf mode is responsible for the formation of FDS when all components of
the system have identical flow rates. In the presence of a differential flow this
role is played by a DIFI mode. Turing oscillations can not produce an FDS
because this solution is stationary in the co-moving reference frame, so that
for a stationary observer every portion of a medium moves along the system
with constant phase. This simple conclusion is in a good agreement with the
analysis provided by McGraw and Menzinger [8]: the FDO/FDS patterns are
shown to be closely related to Hopf instability and DIFI, while the Turing
pattern formation mechanism has a quite different nature.

To realize the formation of FDS, it is enough to perturb only one of the
components and keep steady state value for the other:

u(x = 0, t) = uS + ubnd, v(x = 0, t) = vS, (5)

where ubnd is a constant perturbation of the boundary value. As before, uS

and vS represent the homogeneous steady state. When the flow rate is small,
the perturbation decays in space. A non-decaying FDS solution appears above
a critical point [1,2,6],

φFDS =

√

√

√

√

40a3b(δ + r)2 − (3a2δ + 5ab− 125δ)2r

(25 + a2)(δ + r)(3a2r − 5ab− 125r)r
. (6)

This critical value diverges at b = rbH. Without a differential flow, i.e., at
r = 1, the condition of divergence coincides with the condition for the Hopf
instability, while at r > 1 an FDS appears even if the flow-less system is stable.

If φ > φFDS and φ > φca, the transition to FDS takes place when an oscillatory
mode is convectively unstable. Because in this case growing oscillations travel
with the flow, any small inlet perturbation can freely grow to the FDS pattern.
This case is referred to as a soft transition to FDS [20,10]. Otherwise, if φFDS <
φ < φca, the oscillatory mode is absolutely unstable and tends to occupy the
whole space. Now the FDS can grow only when the inlet perturbation is high,
because it must overcome the competition from the oscillatory solution. This
is a rigid transition to FDS [20,10]. In this paper we analyze FDS for φ > φca,
i.e., we are interested in the case of the soft transition.
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3 FDS in presence of inlet noise: a qualitative picture

We introduce a noise via the following boundary condition at the inlet:

u(x = 0, t) = uS + ubnd(1 + θ ξ(t)), v(x = 0, t) = vS. (7)

Here, uS and vS denote the homogeneous steady state and ubnd is the constant
boundary perturbation. ξ(t) describes a noise with the uniform distribution
in the interval [−1, 1], and θ controls an amplitude of the noise relating to
ubnd. The particular distribution of a noise is not very important. But, as we
explain below, it should be sufficiently wide to contain required harmonics.

In our previous work [26] we have studied the stability of FDS patterns in the
Hopf oscillatory domain. In this paper we consider the following four cases.

(1) FDS appears in presence of the Hopf instability: r = 1 and bT < b < bH.
(2) FDS is observed in presence of a differential flow, r > 1. The system is

stable without a flow, i.e., b > bH and b > bT. Oscillations appear due to
DIFI when the flow rate is above a critical point φDIFI.

(3) The transition to FDS takes place when both Turing and Hopf modes are
unstable: r = 1 and b ≪ bH < bT. The Turing mode has a higher growth
rate, but the Hopf mode is also significant.

(4) FDS appears again in the presence of Hopf and Turing modes, but the
system is close to the Hopf point: b . bH. Growth rate of the Hopf mode
is small, so that this mode is much weaker than the Turing one.

The analysis developed in [26] shows that in presence of an inlet noise the FDS
is destroyed at small flow rates and appears only when the flow rate passes a
certain point of stabilization. The stabilization flow rate is found to depend
on the noise amplitude as a power law. For a fixed flow rate the FDS is stable
if the noise amplitude is small and the pattern is destabilized and destroyed
when the amplitude passes a certain threshold. In the present paper we refer
to this phenomenon as a nonlinear instability of FDS. The picture differs for
flow rates a bit above the FDS critical point φFDS. The threshold noise level
absent and FDSs are linearly unstable so that any small inlet fluctuations
destroy the pattern. We already reported this case in [26]. In Sec. 5 a detailed
investigation is provided.

3.1 Case 1: Hopf instability

Figure 2 demonstrates an interaction between an FDS and inlet noise when
only a Hopf mode is unstable. The constant part of the inlet perturbation
is small, so that the FDS in this figure has a boundary layer. A structure
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a)

b)

Figure 2. FDS in the presence of inlet noise when a Hopf mode is unstable. In panel
(a) the noise destroys the FDS pattern, while in panel (c) (see below) the FDS is
stabilized at a higher flow rate. Flow rate grows from (a) φ = 6 to (b) φ = 6.5
and (c) φ = 7. a = 20, b = 6, δ = 3, r = 1, ubnd = 0.1, θ = 0.05 (bH = 10.75,
bT ≈ 3.289).

without a boundary layer is stabilized at smaller flow rate and has a number
of peculiarities that we shall discuss below.

In Fig. 2(a) the FDS pattern disappears after several periods and a new os-
cillatory structure forms instead. This effect can be explained by a selective
amplification of Fourier components of the noise. The maximum of this ampli-
fication corresponds to a Hopf mode [26]. This results in a resonant excitation
of this mode by the noise so that a growing oscillatory solution destroys the
FDS. A corresponding Hopf structure without a noise is shown in Fig. 1(a).
Note a high degree of similarity between noise and noiseless solutions.

If an FDS has a boundary layer, i.e., ubnd is small, the amplification basically
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c)

Figure 2. (continued)

occurs inside this layer. A perturbation to the pattern always manifests itself
at the end of the boundary layer regardless of the flow rate, compare Figs. 2(a)
and (b). If ubnd is high and the boundary layer is absent, the noise also destroys
an FDS pattern. But an effective amplification ratio of a fully developed FDS
pattern is much lower, so that the length of an unperturbed FDS area can be
very long. (We do not provide an illustration because, except for the boundary
layer, the spatio-temporal diagram looks as that in Fig. 2(a)).

Figure 2(b) illustrates an intermediate situation for a higher flow rate. Now the
influence of the noise is weaker and the FDS is not totally destroyed. The over-
all structure is a composition of vertical fragments of FDS and sloped stripes
of an oscillatory solution. Observe a remarkable regularity of this composition.
This interesting structure appears because both the stationary stripes and the
oscillatory fragments are different manifestations of a Hopf solution. (Recall
that FDS is, in fact, an oscillations that are spread in space due to a flow and
diffusion.) This explains why the fragment are joined so well into continuous
step-like stripes.

This type of structures is a typical response of an FDS to a perturbation.
Kærn and Menzinger [4] first observed them in a system with oscillatory in-
let boundary [4]. The structures was referred to as pulsating waves. A more
complicated zigzag patterns are reported by Taylor et al. [17]. Also, similar
structures was described by Kuptsov et al. [13] for an FDS perturbed by a
moving particle. In addition, coexisting stationary and travelling waves have
been observed in a system without noise [7].

FDS without a boundary layer can also demonstrate spatio-temporal struc-
tures composed of stationary and oscillatory fragments. An example is shown
in Fig. 3. As mentioned above, for FDS without a boundary layer the ampli-
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Figure 3. Spatio-temporal intermittency for an FDS without a boundary layer. The
parameters are as in Fig. 2 except φ = 6.1 and ubnd = 2. Unlike Fig. 2(b), the
structure appears far from the inlet.

fication area can be very extended. In Fig. 3 the FDS at x < 1800 looks like a
noiseless pattern. However, beyond this point noise demonstrates itself. Note
that the flow rate in Fig. 3 is less then in Fig. 2(b). In the other words, an
FDS without a boundary layer is less sensible to noise and becomes stable at
a smaller value of the flow rate.

Further increase of the flow rate results in the growth of the stationary frag-
ments and shrinking of the oscillating ones. Finally, all oscillating fragments
disappear and we observe a pattern as in Fig. 2(c). The structure here looks
like a perfect FDS without a noise.

Figure 4 provides a more accurate verification of the stabilization. This figure
shows spatial distributions of variances of temporal oscillations. The distri-
butions are calculated for the diagrams in Fig. 2. Labels (a), (b) and (c) on
the curves correspond to the panels of Fig. 2. All curves grow exponentially
within the boundary layer of the FDS and nearly coincide there. In the other
words, the boundary layer amplifies noise even when the corresponding fully
developed FDS is stable. Behind the boundary layer the curves behave dif-
ferent. Curve (a) continues to grow and reaches a saturation very fast. This
corresponds to the oscillations observed in the right part of Fig. 2(a). The
intermediate curve (b) also grows, but does not tend to saturation. It varies
slowly and irregularly near a relatively high value. This occurs because time
series in this case are composed of fragments of two solutions, see Fig. 2(b).
They are irregularly arranged and their sizes are distributed within a wide
range. Curve (c) confirms the stabilization. The variance decays, therefore,
the FDS remains stable even far downflow.
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Figure 4. Spatial distributions of the variances of temporal oscillations before, curves
(a) and (b), and after the stabilization of FDS, curve (c). The curves correspond to
the panels in Fig. 2 with respective letters.

Figure 5. Intermittent time series of u recorded in a fixed spatial point for the case
represented in Fig. 2(b). Laminar phases correspond to fragments of FDS stripes.

The combination of stationary and oscillatory solutions that is demonstrated
in Figs. 2(b) and 3 can be treated as a spatio-temporal intermittency. A similar
compound structure has been analyzed by Kuptsov et al. [13]. Figure 5 demon-
strates an example of an intermittent time series. Variable of u is observed from
a fixed point in space: laminar phases, that correspond to fragments of FDS,
are interrupted by bursts of oscillations.

A characteristic feature of intermittency is a power-law divergence of the mean
length of laminar phases as a bifurcation parameter approaches a critical point.
In our case the flow rate controls the mean length of FDS fragments and the
divergence corresponds to the stabilization of FDS. Let us employ the following
algorithm: Given the flow rate, we compute a pure FDS pattern without a
noise. Then we take a point at some distance from the inlet where the FDS
is definitely fully developed (for all computations we take the same point).
Starting from this position, within the period of the FDS we seek another
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Figure 6. Mean lengthes of FDS fragments vs. flow rate measured in a fixed spatial
point. The parameters are as in Fig. 2. The dots, computed numerically, are plotted
in double logarithmic scale. In the right part the numerical data are approximated
well by a straight line that indicates a power-law dependence. The exponent, equal
to the slope of the line, is γ ≈ 73.

point where u is in the middle between its maximum and minimum values.
The value of u in this point is treated as a laminar state. Now a noise is
switched on and after a transient period the mean time of staying near the
laminar state is registered. Repeating this procedure for different flow rates,
we obtain the dependence shown in Fig. 6. When the flow rate is small, u
oscillates, as shown in Fig. 2(a), and passes the laminar state very fast. In
Fig. 6 the corresponding mean values are very small. Intermittency appears
for φ > 6.2, and the mean time spent near the laminar state starts to grow with
the flow rate. The numerical data in this part of the figure are approximated
well by a straight line in double logarithmic scale. This implies a power-law
dependence < L >= (φ − φc)

γ. Note that the exponent γ ≈ 73 is extremely
high.

3.2 Case 2: DIFI

This case, illustrated in Fig. 7, is similar to the previous one. In Fig. 7(a)
we observe how a noise excites an unstable oscillatory mode that grows to an
oscillatory solution. But now a DIFI mode is responsible for the formation of
FDS. Hence, it is the DIFI solution that appears behind the destructed FDS.
Observe the high regularity of the appearing structure. In Fig. 7(b) a higher
flow rate results in the formation of spatio-temporal intermittency similar to
the structure in Fig. 2(b). A perfect correspondence between stationary and
oscillatory fragments is also observed. The explanation is as in the previous

14



a)

b)

Figure 7. FDS with noise when a DIFI mode is unstable: (a) φ = 2.3, and (b)
φ = 2.47. a = 20, b = 12, δ = r = 3, ubnd = 0.1, θ = 1 (bH = 10.75, bT ≈ 3.289,
φDIFI ≈ 1.47 and φFDS ≈ 2.27).

case: On the one hand, the DIFI mode produces the oscillatory solution and,
on the other hand, it is responsible for the formation of FDS. Further increase
of the flow rate results in the stabilization of the FDS. Note that the noise
amplitude is very high: θ = 1. This is even higher then the constant part
ubnd = 0.1 of the inlet perturbation. But this can not prevent the stabilization.
The pattern looks as in Fig. 2(c) and is not shown here.

As one can see from Fig. 7, the boundary layer of the FDS manifests itself in
a similar way as in the case shown in Fig. 4. The boundary layer effectively
amplifies the noise, so that the oscillatory solution appears near its right edge.
A structure without a boundary layer can also amplify noise, but the area of
amplification is very extended and grows when the flow rate becomes higher.
In particular, one can observe spatio-temporal intermittency only far from the
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a)

b)

Figure 8. FDS with noise in the presence of Turing and Hopf modes with significant
growth rates. For all panels a = 20, b = 5, δ = 20, r = 1, ubnd = 0.5, θ = 0.1
(bH = 10.75, bT ≈ 21.928). Panels correspond to different flow rates: a) φ = 10, b)
φ = 12.

inlet. As in the previous case, FDS without a boundary layer is stabilized at
a smaller flow rate in comparison to the structure that has a boundary layer.
The described behavior of FDS with and without a boundary layer is typical.
We have also analyzed the effect of boundary layers for the two remaining
cases and obtained similar results.

3.3 Case 3: Turing and Hopf modes with significant growth rates

Now we assume that b ≪ bH < bT, so the system displays both Hopf and Tur-
ing significant unstable modes and the Turing mode has a higher growth rate.
As follows from direct numerical simulations, in a corresponding unbounded
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c)

d)

Figure 8. (continued) The flow rates in the panels are c) φ = 14, d) φ = 15.5.

noiseless system the Turing solution grows faster and suppresses the Hopf one.

Let us begin from small flow rates. When the FDS is affected by a noise, the
Turing mode suppresses both the FDS and Hopf solutions and we observe
almost perfect Turing structure behind a narrow FDS area, see Fig 8(a). This
figure is qualitatively similar to Figs. 2(a) and 7(a) where unstable oscillatory
modes also grow to form spatio-temporal structures in place of a destroyed
FDS.

Contrary to the previous cases, the higher flow rate in Fig. 8(b) does not
result in the reestablishment of FDS. It gives an advantage to the Hopf mode
instead. This one manifests itself as localized travelling areas of oscillations
embedded into the Turing structure.

Further increase of the flow rate makes the Hopf mode stronger, see Fig. 8(c).
The Turing waves appear now as localized perturbations to the Hopf structure.
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In the other words, we have another spatio-temporal structure produced by
the strongest oscillatory mode that suppresses the FDS.

If the flow rate continues to grow, the Hopf solution starts to give up its
area to the FDS. This produces a spatio-temporal intermittency, Fig. 8(d).
Note that a Turing structures disappear in a different manner. In this figure
there are rare localized Turing waves that are swept by the flow and decay in
space. Sufficiently far from the inlet a combination of oscillatory and stationary
solutions appears in the same manner as in the previous cases, see Figs. 2(b)
and 7(b). As the flow rate increases even further a stabilization of the FDS
takes place. We do not provide a corresponding figure because the pattern
looks like in Fig. 2(c).

3.4 Case 4: Turing instability in presence of a weak Hopf mode

This case differs from three previous. Though a Hopf mode is unstable and
give rise to the formation of FDS, there is another unstable mode, namely
the Turing one, that has much higher growth rate. When the flow rate is
small, the spatio-temporal structure is as in the previous case. Figure 9(a)
shows how a noise stimulates the growth of a Turing solution in place of
the FDS while the Hopf mode does not manifest itself at all (compare with
Fig. 8(a)). But now even when the flow rate becomes higher a Hopf solution
does not emerge. The left end of the Turing area becomes indented, and we
observe an intermittent structure, Fig. 9(b). Unlike three previous structures,
oscillatory and stationary fragments here have different origins. The stationary
FDS stripes appear due to the Hopf mode while the oscillatory segments are
produced by the Turing mode. Hence, fragments of different solutions are not
joined into continuous, smooth zig-zag structures. They overlap and partially
suppress each other instead. When the flow rate continues to grow, the FDS
segments are enlarged while the Turing areas becomes more and more rare.
Finally, the FDS becomes stable and occupies the whole space. The resulting
pattern looks like in Fig. 2(c).

4 Two scenarios of stabilization

Four cases considered above demonstrate two different scenarios of stabiliza-
tion. The first one involves cases 1, 2 and 3, while the second is represented
by the case 4. A clearer evidence of this can be provided with the Fourier
analysis: We are going to demonstrate the dependance of Fourier spectra of
time oscillations on the flow rate. This can be done with the following proce-
dure. A point is fixed near the outlet and a series of temporal oscillations is
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a)

b)

Figure 9. FDS with noise when a Turing mode is strong while a Hopf mode is
weak. Observe the formation of Turing structure in place of the FDS in panel (a),
φ = 22, and spatio-temporal intermittency in panel (b), φ = 23.5. The parameters
are a = 25, b = 10 (bH = 14, bT = 37.549), δ = 25, r = 1, ubnd = 0.5, θ = 10−5.

recorded in this point. Then the mean value of the series is subtracted and
Fourier spectrum is computed using the FFT algorithm. This is repeated for
different flow rates and the resulting Fourier amplitudes are plotted via grey
scales in Fig. 10. The panels (a), (b), (c) and (d) in this figure correspond to
Figs. 2, 7, 8 and 9, respectively.

As we already discussed in our previous paper [26], the destruction of FDS
takes place because this pattern can selectively amplify a noise and the peak
amplification corresponds to the unstable oscillatory mode. This is confirmed
in Fig. 10. We see here that Fourier components are gathered around an unsta-
ble modes of the system. The resonant interaction between selected harmonics
and internal unstable modes results in the destruction of FDS.
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a)

b)

c)

d)

Figure 10. Fourier spectra of temporal oscillations vs. flow rate at a fixed point near
the outlet. Grey levels indicate values of Fourier amplitudes. Panels (a), (b), (c) and
(d) (see below) correspond to Figs. 2, 7, 8 and 9, respectively. Dashed lines show
Hopf (H), Turing (T) and DIFI (D) frequencies. Light areas on the right parts of
the figures correspond to the stable FDS.
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Figures 10(a) and 10(b) demonstrate that the stabilization in the Hopf and
DIFI cases occurs due to the detuning of the selected harmonics from the
resonance. Bands of selected frequencies are shifted down. Though the noise is
still amplified, but the selected frequencies differ from the resonant and, hence,
can not produce intensive excitation of the oscillations. The amplitudes of the
outlet oscillations are reduced. We observe in the figure that the shaded areas
becomes lighter as the flow rate grows. This corresponds to an intermittency
in the spatio-temporal diagrams, see Figs. 2(b) and 7(b). The shift of the
frequencies is reflected in these figures by the partial straightening of the
oscillatory segments that occur due to the merging with vertical FDS stripes
(compare, for example, the Hopf structure in Fig. 2(a) and the oscillatory
areas in Fig. 2(b)).

Figure 10(c) illustrates the same scenario of the stabilization. This takes place
via the detuning of selected frequencies from the resonance with the Hopf
mode. But here another band of Fourier components appears around the Tur-
ing mode. When the flow rate is small, noise is not amplified near the weak
Hopf mode. The resonance with the Turing mode is responsible for the for-
mation of the oscillatory solution in Fig. 8(a). For a higher flow rate both
modes are excited by the noise harmonics and we observe a spatio-temporal
structure as in Fig. 8(b). Unlike the Hopf mode, the selective amplification
around the Turing frequency does not depend directly on the flow rate and
the Fourier components remain gathered around the Turing mode. But the
coefficient of amplification vanishes as the flow rate grows: the shaded area
in the figure becomes lighter. The corresponding spatio-temporal structure is
shown in Fig. 8(c). Finally, the Turing band disappears and further stabiliza-
tion proceeds as in previous panels (a) and (b) of Fig. 10. The corresponding
spatio-temporal diagram in Fig. 8(d) is also similar to the Hopf and DIFI
cases, Figs. 2(b) and 7(b), respectively.

Fig. 10(d) illustrates the second scenario of the stabilization. The selective
amplification takes place only around the Turing mode, while the Hopf mode
does not manifest itself except the small area at φ ≈ 24. The gathering of
the Fourier components near the Turing mode is similar to the case 3, see
Fig. 10(c). But now this is the main mechanism responsible for the stabiliza-
tion. Observe that the shaded area in Fig. 10(d) disappears very sharply. This
is explained by an intermittent nature of analyzed time series, see Fig. 9(b).
When the flow rate approaches the stabilization point, intervals between Tur-
ing bursts grow and sooner or later we get an interval that is longer than
the observation time. In this point the characteristic Fourier spectrum sud-
denly disappears. Though in the previous case 3 the Turing oscillations also
demonstrate a kind of intermittency with the Hopf solution, see Fig. 8(b),
the corresponding Fourier components in Fig. 10(c) disappear smoothly. It
indicates that there the intervals between Turing areas do not diverge.
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5 Linear stability analysis

In our previous paper [26] we have found that near the critical point φFDS an
FDS pattern is linearly unstable and any small perturbation applied at the
inlet can destroy it. In this section we study this effect and develop a linear
stability analysis of the FDS.

Let us first recall the discussions of Fig. 4. This figure displays spatial distribu-
tions of the variances of temporal oscillations of u. The variances, both before
and after the stabilization point, grow exponentially within the boundary layer
of FDS. The stabilization reveals itself only for a fully developed FDS while
the boundary layer always amplifies noise. We have observed this for many
parameter values and believe that this is typical for FDSs. Thus, we can ne-
glect the boundary layer and consider a fully developed periodic FDS solution
uFDS(x + P ) = uFDS(x) and vFDS(x + P ) = vFDS(x), where P is the period.
To analyze the stability of this solution we introduce a small perturbation,
u = uFDS(x) + U(x)e−iωt and v = vFDS(x) + V (x)e−iωt, where the frequency
ω plays a role of an additional parameter. ω is real because the perturbation
appears due to an external forcing that has a stationary amplitude. After the
substitution into Eqs. (1), for small U(x) and V (x) we obtain the following
linear equations with periodic coefficients:

U ′′ − φU ′ =(1− iω + 4F1(x))U + 4F2(x)V, (8a)

δV ′′ − rφV ′ = b(F1(x)− 1)U − (iω − bF2(x))V, (8b)

where F1 = vFDS(1 − u2
FDS)/(1 + u2

FDS)
2 and F2 = uFDS/(1 + u2

FDS). These
second order equations have complex coefficients. After straightforward trans-
formations they can be re-written as eight real equations of the first order.

Similar approach in a context of FDO/FDS patterns was developed by Mc-
Graw and Menzinger [8] who studied small perturbations to the steady state
and considered linear modes having real frequencies. This type of modes cor-
responds to a stationary forcing at the inlet. The essential difference of our
study is the consideration of small perturbations to a fully developed FDS pat-
tern. The linearized equations (8) in this case have periodic coefficients and
we should apply the Floquet theorem to analyze its stability properties.

As follows from the Floquet theorem [35] the system has eight eigensolutions
~ν(x) and eight corresponding eigenvalues λ for which

~ν(x+ P ) = λ~ν(x). (9)

There are four couples of λ, either real and identical or complex conjugated.
Their absolute values can be labelled as |λ|1 ≤ |λ|2 ≤ |λ|3 ≤ |λ|4. These values
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depend on the parameters of the system and on the forcing frequency ω. For
φ > φFDS the two highest values always correspond to diverging solutions of
Eqs (8), |λ|3 > 1 and |λ|4 > 1, while the others always represents a stable
solution, |λ|1 < 1. The stability of FDS is characterized by |λ|2. FDS is stable
if |λ|2 < 1 for any ω while it is unstable when |λ|2 > 1 for certain values of
ω. It is more convenient to consider a characteristic exponent that does not
depend on the period of FDS,

ρi = (ln |λ|i)/P. (10)

So, in a critical point of the linear stabilization the global maximum of ρ2(ω)
passes zero.

We compute the eigenvalue |λ|2 using the Floquet theorem. The idea of this
approach can be found, for example, in [35]. Let Â be a linear evolution opera-
tor advancing a solution over the period, Â~ν(x) = ~ν(x+P ). Each eigenvector
~ν can be decomposed over the unit basis as ~ν =

∑

8

i=1 ~eici, where ~ei are the
unit vectors and ci are the coefficients of the decomposition. Taking this into
account, we obtain from Eq. (9):

8
∑

i=1

(

ciÂ~ei
)

= λ
8

∑

i=1

(ci~ei) . (11)

These equations have a nontrivial solution for the coefficients ci if λ is an
eigenvalue of the matrix with columns Â~ei. To obtain this matrix, we find
numerically a noiseless FDS solution and extract a full period. Then, we inter-
polate it with polynomials and substitute the resulting functions into Eqs. (8).
Starting from the unit vectors ~ei (i = 1 . . . 8), we find eight solutions to these
equations over the period and obtain the sought matrix. Finally, we compute
the eigenvalues and, after sorting by their absolute values, take the second
one.

A numerical analysis shows that on the FDS onset φ = φFDS the number of
maxima of ρ2(ω) coincides with the number of linear modes, stable or unstable,
of Eqs. (1). There is at least one couple of symmetric maxima corresponding to
Hopf or DIFI modes that are responsible for the formation of FDS. Without a
differential flow, the system can also display a Turing mode. In this case ρ2(ω)
acquires another couple of maxima. For example in Fig. 11 the first maxima
from the origin correspond to the Hopf mode and the second pair correspond
to the Turing mode. All the maxima are positive, hence the FDS is unstable.

The system (8) can be considered as a linear amplifier of an inlet forcing where
ρ2(ω) is an amplification ratio. As follows from Fig. 11 the amplification is se-
lective. When a wide-band noise passes thorough the system, noise harmonics
grow if corresponding ρ2(ω) is positive. All other harmonics decay. As a re-
sult, oscillations at the outlet consist of harmonics that are gathered around
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Figure 11. Characteristic exponents ρ1 and ρ2 vs. ω. Curve ρ2(ω) has two positive
maxima indicating the instability of corresponding FDS. Positions of the maxima
coincide with the frequencies of Hopf and Turing modes that are indicated by the
dashed lines “H” and “T”, respectively. a = 15, b = 5.5, δ = 10, r = 1, φ = 13.

maxima of ρ2(ω), i.e. around linear modes of the initial system (1). This is
remarkably coincides with our qualitative observations in the above sections:
when an FDS is unstable inlet noise stimulates the growth of an unstable
linear mode to an oscillatory solution.

When the flow rate grows the structure of ρ2(ω) varies in two different ways.
The first one is illustrated in Fig. 12. This corresponds to the first scenario of
the FDS stabilization that is represented in Fig. 10(a,b and c) and has been
discussed in Sec. 4. Different curves in Fig. 12 are plotted for different flow
rates:

(1) The curve ρ2 has two positive maxima. Selected noise harmonics excites
oscillatory mode which destroy the FDS. Hence the is linearly unstable.

(2) The first maximum moves towards the origin while the second one be-
comes negative. The Turing mode can not be excited any more, but the
other one (i.e., the Hopf mode in this figure, but also it can be a DIFI
mode) destroys the pattern. The system is still unstable.

(3) The first maximum continues the moving to origin. Thus, frequencies of
selected noise harmonics differ more and more from the Hopf frequency.
Because of this detuning the excitation of Hopf oscillations becomes less
effective.

(4) Two symmetric maxima (the left one is not shown) merge with a central
minimum and these three extremums transform into a single maximum
at the origin. Now all the noise harmonics have non-positive amplification
ratio and those which are close to the Hopf mode are even suppressed. As
a result, the noise can not excite oscillations. The FDS is linearly stable.
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Figure 12. First scenario of the FDS stabilization. Bullet points show the successive
positions of the right maximum (the left symmetric maximum is not shown) as the
flow rate grows. Line “H” indicates the Hopf frequency and “T” mark the Turing
frequencies for different flow rates. a = 15, b = 4, δ = 10, r = 1, φ1 = 7, φ2 = 8,
φ3 = 9, φ4 = 11.

Because the second couple of maxima passes zero first, it does not play an
important role in the stabilization. Thus, we classify as the first scenario all
cases when these maxima absent at all. For example, these cases are shown in
Fig. 10(a,b).

Fig. 13 corresponds to the second scenario that has been shown in Fig. 10(d):

(1) There are two positive maxima and the FDS is linearly unstable.
(2) The first maxima merge (only the right part of the symmetric curve is

shown) but the second ones are still positive and thus responsible for the
instability of FDS.

(3) The second couple of maxima pass zero (only the right one is shown in
the figure). As a result, no oscillations are excited and the FDS becomes
stable.

So we see that two scenarios of the FDS stabilization that have been revealed
from numerical simulations now are confirmed by a linear stability analysis.

We can provide a direct verification of linear nature of the instability of FDS
near the critical point φFDS. Let us suppose that the inlet perturbation is nearly
equal to the saturated FDS amplitude, so that we can neglect the boundary
layer of an FDS pattern. In the presence of inlet noise with an amplitude θ,
the FDS occupies an area of a finite size, say h. At the right edge of this area
the noise reaches the amplitude θ1 which is sufficient to destroy the FDS. If
the instability is linear, we can write θ1 = θehρ2 , where ρ2 ≡ ρ2(ωmax) is the
characteristic exponent responsible for the stability of FDS. Hence, the size of
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Figure 13. Second scenario of the linear stabilization of FDS. Bullet points show
how the second maximum becomes negative as the flow rate grows. a = 20, b = 9,
δ = 20, r = 1, φ1 = 23, φ2 = 30, φ3 = 35.

Figure 14. Size of an area of a localized FDS h vs. logarithm of the noise amplitude
θ. Observe linear dependance as predicts Eq. (12) a = 20, b = 3.5, δ = 3, r = 1.

an FDS area varies linearly with the logarithm of the noise amplitude as

h = (ln θ1 − ln θ)/ρ2. (12)

This equation can easily be verified directly. Solving numerically Eqs. (1)
for different noise amplitudes, we can find corresponding sizes of the FDS
area. Fig. 14 displays the resulting curves obtained for different flow rates. As
expected, h decays linearly with ln θ.

Eq. (12) can be used for experimental measuring of the critical flow rate of
linear stabilization φ0. A factor in Eq. (12) is the reciprocal characteristic ex-
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ponent ρ2(ωmax). To find this factor one needs to vary amplitude of the inlet
fluctuations and measure the size h of the FDS area. Unfortunately, it is not
easy to perform this practically. But because we deal with a linear problem,
each inlet harmonic is amplified separately. So we can substitute the fluctu-
ations with the most amplified harmonic 1 . The size h of the corresponding
FDS area should be equal to that producing by a wide-band inlet noise. The
frequency of this harmonic is ωmax. This value may be calculated using the
Floquet theorem as we have done above for our system. Thus varying the
amplitude θ of the inlet forcing and measuring corresponding sizes h one can
obtain a line h(ln θ) and then calculate ρ2 as an inverse slope of this line.
After that one needs to repeat the measuring at different flow rates. Knowing
ρ2 vs. flow rate, one can extrapolate the dependance ρ2(φ) to a point where
ρ2 vanishes and find the critical flow rate φ0.

6 Summary and results

We studied the stability of FDS patterns in presence of a noise at the inlet.
The following picture was revealed. If the flow rate is not so high, fluctuations
at the inlet stimulate the growth of an oscillatory mode and thus prevents the
formation of FDS. For higher flow rates, however, an FDS pattern becomes
linearly stable. We found two scenarios of the linear stabilization: 1) detuning
of the most amplified noise harmonics from the resonance with an oscillatory
mode; 2) stopping of a noise amplification.

In our previous paper [26] we showed that linearly stable FDS pattern still
can be destructed by a noise if its amplitude is sufficiently high. A threshold
value of the noise amplitude depends on the flow rate as a power law. Or
vice versa: for a fixed noise amplitude there is a flow rate above which an FDS
pattern becomes stable. This was referred to as a nonlinear instability of FDS.
In present paper we consider all possible FDSs: 1) FDS is a stationary spatial
distribution of Hopf oscillations; 2) FDS emerges because of presence a DIFI;
3) FDS based on the Hopf mode appears when also a Turing mode is present
and both Hopf and Turing modes have high growth rates; 4) FDS appears
when the Turing mode is much stronger then the Hopf mode. These numerical
experiments confirm our previous analysis. Also, the numerical simulations
reveal two scenarios of the stabilization that remarkably correspond to those
found within a linear approach.

Let us consider an equation for a perturbation to FDS. (Now we mean the

1 Experiments where FDS is forced by a periodic oscillations at the inlet are re-
ported by Kærn and Menzinger [4,5] and also similar problem is considered by
Taylor at al. [17].

27



nonlinear equation whose linearized version has been studied in Sec. 5, see
Eq. (8).) Our observations can be summarized in terms of bifurcations of
the perturbation equation. A qualitative picture is following. When an FDS
is linearly unstable, the perturbation equation has a kind of unstable fixed
point. A bifurcation takes place when the flow rate grows and our analysis
predicts two scenarios for this. The result of the bifurcation is the split of the
unstable fixed point into a stable fixed point and unstable limit cycle. This
corresponds to a nonlinear instability of the FDS. Small inlet noise decays
because the system remains close to the stable fixed point. But higher noise
brings out the system above the unstable limit cycle. An amplification of noise
results in the destruction of FDS. If we increase the flow rate while keeping
the noise amplitude unaltered, a position of the limit cycle changes and the
system returns back to a vicinity of the stable fixed point. The unstable limit
cycle inherits properties of the unstable fixed point, so that two scenarios of
stabilization are observed when the system passes this cycle. These are the
scenarios that are obtained in numerical experiments in Secs. 3 and 4.

The destruction of FDS in presence of an inlet noise takes place because this
periodic pattern serves as a selective amplifier of the forcing. The highes am-
plification takes places at frequency equal to an unstable oscillatory mode.
This resonant interaction excites the oscillatory solution that suppresses the
FDS. Hence, the specific type of an inlet forcing is not very important. The
sufficient requirement is that its spectrum contain harmonics close the reso-
nance. In particular, it means that our results remains valid for a Gaussian
noise. We tried this type of noise. The results were qualitatively similar.

A pure periodic forcing at the inlet is already studied well. As reported
in [4,5,17], the inlet oscillations of concentrations stimulate the destruction
of FDS provided that the frequency is close to the natural frequency of a
system. In the other words, the destruction takes place when the forcing is
in the resonance with a mode responsible for the formation of FDS. A minor
decreasing of the inlet frequency from the resonance results in the pulsating
waves as in [4] or in the zigzag patterns [17]. These structures are very sim-
ilar to our intermediate situations represented in Figs. 2(b) and 7(b). These
results, in fact, corresponds to our first scenario of the FDS stabilization via
detuning from the resonance.

Also the resonance with the natural frequency of a system is reported by
McGraw and Menzinger [15]. They apply a periodic modulation to the flow
rate and observe a localized FDS area suppressed downstream by an oscillatory
solution. It is interesting that the suppression takes place not only at the
natural frequency. The resonance and further suppression is also observed at
nonlinear rations 2 : 1 and 3 : 1!

Finally, we suggest an idea for an experimental measuring of a flow rate of
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linear stabilization. Applying to the FDS inlet a weak periodic forcing with
specific frequency one can find a characteristic exponent that is responsible
for the linear instability. One needs to find this exponent for different flow
rates and then extrapolate the dependance to a point where the exponent
vanishes. A corresponding flow rate is the sought critical value of the linear
stabilization.

This work was partially supported by grant of RFBR (no. 04-02-04011).
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