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Abstract

We introduce in this paper a multivariate threshold stochastic volatility model for multiple financial return time series. This
model allows the dynamic structure of return and volatility to change according to a threshold model while accounting for the
interdependence of financial returns. Through the threshold volatility modeling, we can understand the impact of market news on
volatility asymmetry. Estimation of unknown parameters are carried out using Markov chain Monte Carlo techniques. Simulations
show that our estimators are reliable in moderately large sample sizes. We apply the model to three market indice data and estimate
time-varying correlations among the indice returns.
© 2008 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

It is a stylized fact that financial data exhibit changes in volatility over time and these changes tend to be serially cor-
related. A popular model for modeling this changing variance property is the autoregressive conditional heteroscedastic
(ARCH) model introduced by Engle [17] and is extended to generalized ARCH (GARCH) by Bollerslev [6]. An alter-
ative volatility modeling strategy is the stochastic volatility (SV) model, originated by Taylor [34]. Although GARCH
models have been the main stream in the industry to model financial assets, many research papers have documented
advantages of using SV models, including Harvey et al. [19], Jacquier et al. [21,22], Kim et al. [23], Danielsson [13,14]
and So et al. [31]. Readers can refer to Ghysels et al. [15] and Shephard [28] for more extensive review of SV models.

Since the first multivariate SV (MSV) model proposed by Harvey et al. [19], theoretical researches on MSV models
class have been conducted. The extension to multivariate class enables us to analyze the financial returns across different
securities and markets. The knowledge of returns correlation structure is vital in many financial applications, especially
in risk management. Furthermore, it enhances statistical inference and volatility forecasting. For example, So et al. [32]
introduced a MSV model that can explain any lead–lag relationship of the volatility structure. Asai and McAleer [3]
considered two types of asymmetric MSV model. Asai and McAleer [4] developed a dynamic correlation MSV model.
Basic MSV models have been modified to capture different features of financial data or to reduce the dimensionality of
the parameter space. Factor MSV models were built up to handle high dimension financial data [10,12]. So and Kwok
[30] developed a multivariate long memory SV model, which was showed to be more consistent with empirical stylized
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facts than traditional MSV models. Detailed reviews and comparisons on MSV models are given in Danielsson [14],
Asai and McAleer [2] and Yu and Meyer [38].

Asymmetry effect in volatility of financial assets means different responses in volatility to good and bad news.
In particular, bad news tends to increase future volatility more than good news does. A popular explanation of such
asymmetry is the leverage effect given by Black [5] and Christie [11], in which asymmetric SV and MSV models
were developed on the basis of the leverage effect [1,2,8,20]. Empirical results in Asai and McAleer [1,3] suggested
that multivariate models are more preferable than univariate models in modeling asymmetry. Besides, the asymmetry
effect can also be modeled using thresholds structure. This has been studied in the time series and univariate GARCH
literature extensively [16,26,35,36]. Recently, a multivariate threshold GARCH model with time-varying correlations
has been proposed by Kwan et al. [24]. In the univariate SV literature, So et al. [33] proposed a threshold SV (THSV)
model, in which the asymmetry effect is modeled through a threshold setting that the autoregressive parameters in the
SV equation change according to the sign of the previous returns. The THSV model successfully captures the mean
and variance asymmetries simultaneously, and was demonstrated through the strong evidence of asymmetries in the
empirical data. However, the multivariate extension of the model has not been developed in the literature. This paper
aims to fill this gap.

The THSV model is developed from the stochastic volatility model proposed by Taylor [34]. Asymmetric effect in
variance is modeled through the threshold setting that the two regimes are determined by the sign of lagged returns.
In addition, the model also considers the mean asymmetry since the dependence on the sign of previous returns in the
magnitude of returns was discussed in the literature [25]. Under these considerations, the THSV model incorporates a
threshold type of model structure into the autoregressive dynamic of both returns and volatility as follows:

st =
{

0 if rt−1 < 0

1 if rt−1 ≥ 0
,

rt = ψ0st + ψ1st rt−1 + yt,

yt = √
htut, ut ∼ N(0, 1),

log ht+1 = αst+1 + φst+1 log ht + ηt, ηt ∼ N(0, σ2).

A multivariate THSV (MTHSV) model is developed based on this model.
The lack of a closed form expression of the likelihood function makes the estimation of the parameters of SV models

being a major topic in the literature. Many estimation methods developed for univariate SV models have been extended
to be applicable in multivariate cases, including Quasi-Maximun Likelihood [30], Simulated Maximum Likelihood
[14], as well as Markov Chain Monte Carlo (MCMC) [8,10,31,33,37]. MCMC methods are also applied in this paper.

The rest of this paper is organized as follows. Section 2 introduces the MTHSV model and discusses the method-
ologies and procedures of the Bayesian analysis of the model. Section 3 discusses the parameter estimation of our
model. Section 4 presents a simulation experiment to study the effectiveness of our Bayesian estimator. An empirical
analysis on three stock market indices is presented in Section 5. A conclusion is given in Section 6.

2. A multivariate THSV model

2.1. Model definition

Let rt = (r1t , r2t , . . . , rkt)′ be the k-dimensional time series of interest. In practice, the row of rt represents different
security returns in a portfolio. If one would like to investigate the relationship among different stock markets, the row
of rt would be the market indices. One major advancement in this paper is to allow different time series structure in
rt based on recent changes in a threshold variable. By doing this, we can use extra information to determine the time
evolution of returns and volatility. We define a set of Bernoulli random variables st by

st =
{

0 if zt−1 < 0

1 if zt−1 ≥ 0
, (1)
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where zt is the threshold variable. In general, zt can be a function of the k-dimensional return variable rt or any
exogenous variable. The MTHSV model is given by the following equations:

rt = �0st +�1st rt−1 + yt

yit = √
hituit , i = 1, . . . , k,

where ut = (u1t , u2t , . . . , ukt)′ ∼ Nk(0, I)

αt+1 = �0st+1 +�1st+1αt + ηt , ηt ∼ Nk(0, 	η),

(2)

where ut and ηt are stochastically independent multivariate white noise processes, yt = (y1t , y2t , . . . , ykt)′ and αt =
(log h1t , log h2t , . . . , log hkt)′. This MTHSV model generalizes the MSV model in Harvey et al. [19] to allow the
coefficient matrices �0st , �1st , �0st+1 and �1st+1 to depend on zt . Then, the mean and volatility asymmetries can be
incorporated in the SV modeling while accounting for the interdependence among security returns. Following So et
al. [33], we parameterize �0st , �1st , �0st+1 and �1st+1 as

�0st = �0 +
st, �1st = �1 + Cst

�0st = �0 + �st, �1st = �1 +Dst
.

The k × 1 vectors �0,
,�0, � and the k × k matrices �1, C,�1,D are unknown parameters to be estimated. To
facilitate further discussion, we use the following notations ht = (h1t , h2t , . . . , hkt)′, Ht = (h′

1, h
′
2, . . . , h

′
t)

′, Rt =
(r′1, r

′
2, . . . , r

′
t)

′, St = (s1, s2, . . . , st)′ and Yt = (y′
1, y

′
2, . . . , y

′
t)

′ for the rest of the paper. In particular, the conditional
variance of yt , i.e. Var(yt|Ht) is H̃t = diag{h1t , h2t , . . . , hkt}.

The model specification in (2) implies that rit are uncorrelated time series. In dealing with real market returns data, we
suggest doing the pre-whitening by principle component analysis to make possible correlated rit become uncorrelated.
Specifically, let r̃t be financial returns at time t and (λ̂1, ê1), (λ̂2, ê2), . . . , (λ̂k, êk) be the eigenvalue–eigenvector pairs
of the sample covariance matrix of the pre-transformed returns r̃1, r̃2, . . . , r̃n and ê = (ê1, . . . , êk)′. Then, we obtain
rt = êr̃t which is fitted to the MTHSV model in (2). This pre-whitening step will help us capture the time-varying
correlation of financial returns.

2.2. Finding smoothed correlations

In the risk management point of view, it is important to model the time-varying correlations among different time
series because the correlations play an essential role in measuring portfolio risk. In order to understand the relationship
in different time series, we compute Corr(r̃at, r̃bt|Ht,Rt−1, θ), the conditional correlation of r̃at and r̃bt given Ht and
Rt−1 for a, b = 1, . . . , k, under the MTHSV model. Consider the mean equation in (2) and the principle component
transformation rt = ê r̃t . Since the inverse of ê, ê−1 = ê′ always exists, we can transform the mean equation back to
r̃t = ê′�0st + ê′�1st rt−1 + ê′yt . Let (ê′)a be the a-th row of ê′. For 1 ≤ a, b ≤ k,

Cov(r̃at, r̃bt|Ht,Rt−1, θ) = Cov((ê′)a yt, (ê′)b yt|Ht,Rt−1, θ) = (ê′)aH̃t(ê′)′b.

Therefore, we have the conditional correlation given by

Corr(r̃at, r̃bt|Ht,Rt−1, θ) = (ê′)aH̃t(ê′)′b√
(ê′)aH̃t(ê′)′a

√
(ê′)bH̃t(ê′)′b

. (3)

Simulation techniques described in Section 3 were adopted to estimate the smoothed correlation Corr(s)(r̃at, r̃bt), which
is defined as the posterior mean of Eq. (3).

3. Bayesian analysis

In the Bayesian analysis of the MTHSV model, MCMC technique is adopted and the implementation is outlined in
this section. Let θ denote a vector of all unknown parameters including	η,�0,
,�1, C,�0, �,�1 and D. We begin
with the full conditional density of unknown variables. Let ω = [r′0, H

′
n, θ

′]′ be the variable of interest. Following the
idea in the derivation of the univariate case in So et al. [33], the multivariate version of the full conditional density is
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derived as

f (ωi|ω−i, Rn) ∝
n∏
t=1

|H̃t|−1/2 exp

{
−1

2
y′
t H̃

−1
t yt

}

×
n∏
t=2

1

h1th2t . . . hkt
|	η|−1/2 exp

{
−1

2
η′
t−1	

−1
η ηt−1

}
f (h1|θ, r0)f (θ)f (r0). (4)

According to Liu et al. [27], parameters convergence will be slow if highly correlated parameters are treated
individually. As a result, it is suggested to treat highly correlated parameters as a block in order to speed up the
convergence rate. In this paper, we use the same grouping of parameters as in So et al. [33], since it is believed that high
correlation within the parameter groups still exist in the multivariate case. The three groups for θare: the first group is the
mean equation parameters �0,
,�1, C; the second group is the variance equation parameters �0, �,�1,D; and the
last group is	η. The mean and variance parameters can be sampled from their full conditional densities directly, which
are extracted from (4). With the use of conjugate priors, the multivariate normal prior induces a multivariate normal
conditional density. Therefore, the sampling of the mean parameter and variance parameters is quite straightforward
since they are sampled from well known distributions. Similar idea is also applied in the drawing of r0. Full details are
provided in the Appendix A.

If we drew 	η directly from its full conditional density, the speed of convergence would be slow since Hn is a
latent variable of the MTHSV model. According to Liu et al. [27], integrating out Hn can speed up the convergence.
Therefore,	η is drawn from f (	η|θ−	η, r0, Rn) instead of its full conditional density to enhance the convergence. To
facilitate the sampling, symmetric random-walk Metropolis algorithm is applied here. If we draw the covariance matrix
	η directly in the Metropolis step, boundary problem occurs and results in a slow convergence. To avoid this problem,
it is proposed to draw the correlation matrix �η of	η and its variance components separately in two Metropolis steps.
Let

	η =

⎛⎜⎜⎜⎜⎝
σ11 σ12 · · · σ1k

σ21 σ22 · · · σ2k

...
...

. . .
...

σk1 σk2 · · · σkk

⎞⎟⎟⎟⎟⎠ ,
and

�η =

⎛⎜⎜⎜⎜⎝
1 ρ12 · · · ρ1k

ρ21 1 · · · ρ2k

...
...

. . .
...

ρk1 ρk2 · · · 1

⎞⎟⎟⎟⎟⎠
be the corresponding correlation matrix.

3.1. Drawing the variance components of 	η

Let σ denote (log σ11, log σ22, . . . , log σkk)′, and σ(i) be the i-th candidate. At the i-th iteration, simulate a new
iterate σ(i+1) according to the k-dimensional normal transition probability function

σ(i+1) = σ(i) +G, G ∼ Nk(0,S1)

and accept the new iterate σ(i+1) with acceptance probability

min

{
1,
f (σ(i+1)|θ−	η, r0, Rn)

f (σ(i)|θ−	η, r0, Rn)

}
.
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Otherwise, set σ(i+1) = σ(i). S1 is the step size that controls the size of a Metropolis step. In order to have fast
convergence, the optimal acceptance rate from our experience is between 0.2 and 0.5. The acceptance probability can
be computed by noting that

f (σ|θ−σ, r0, Rn) ∝ f (Rn|θ, r0)f (σ)

∝ f (Yn| θ)f (σ).

It can be shown that the conditional distribution of Yn, f (Yn|θ) can be computed by one pass of the Kalman Filter [18]
under the Gaussian state space model in Eq. (5).

3.2. Drawing the correlation matrix �η of 	η

Re-construct the element of the upper triangular matrix of�η intoρ = (ρ12, ρ13, . . . , ρk−1,k)′. Similar to the drawing
of σ, the M–H step for sampling ρ is implemented by drawing a new candidate ρ(i+1) from a k(k − 1)/2-dimensional
multivariate normal with mean zero and covariance S2, and accept the new candidate with probability

min

{
1,
f (Yn|θ(i+1))f (ρ(i+1))

f (Yn|θ(i))f (ρ(i))

}
.

An uniform prior for ρ, i.e. f (ρ) = I(A), where A is the event of that 	η is positive definite and I(.) is an indication
function.

3.3. Drawing the latent variable Ht

It remains the drawing of the latent variableHt to complete the MCMC sampling scheme. As originated in Shephard
and Pitt [29], multi-move sampler is an efficient tool for sampling latent state variables in non-Guassian univariate
state space models and it enhances the convergence as compared with a single-mover sampler [21]. In order to use the
multi-move sampler, the MTHSV model has to be formulated into a partial non-Gaussian multivariate state space form.
Let ϕt = (log y2

1t , log y2
2t , . . . , log y2

kt)
′

and εt = (log u2
1t , log u2

2t , . . . , log u2
kt)

′
. The rather complicated distribution

of εit , log χ2
1, can be approximated by a mixture of normal distributions, i.e. f (log u2

it) ≈∑P
j=1qjf (log u2

it|γit = j),

where log u2
it|γit = j ∼ Nk(μj − 1.2704, τj), qj = Pr(γit = j), γit is a discrete mixing variable having values from

1 to P and P = 7 is selected in this paper as suggested in Kim et al. [23]. Since the rows of εt are independent, the
distribution of εt can be described by k independent log χ2

1 random variables. The drawing of γt can be done directly
through its full conditional density with the use of an independent normal conjugate prior. Given the γt’s and under
the normal mixture approximation, the state space form of the MTHSV model can be written as follows:

ϕt = αt + εt

αt+1 = �0st+1 +�1st+1αt + ηt, t = 1, . . . , n
(5)

where εt|γt ∼ Nk(μ̃γt , τγt ), γt = (γ1t , γ2t , . . . , γkt)′, μ̃γt = (μ̃γ1t , μ̃γ2t , . . . , μ̃γkt )
′, and τγt = diag {τγ1t , τγ2t , . . . , τγkt },

given μ̃γit = μγit − 1.2704, i = 1, . . . , k, and ηt ∼ Nk(0, 	η).
Adopting the idea of applying the multi-move sampler for multivariate state space models in Carter and Kohn [7],

we decompose f (α1, α2, . . . , αn|γ1, γ2, . . . , γn, θ, Yn), the conditional joint density of α1, α2, . . . , αn into

f (αn|γ1, γ2, . . . , γn, θ, Yn)
n−1∏
t=1

f (αt|αt+1, γ1, γ2, . . . , γn, θ, Yt).

Therefore we can draw the state vectors from αn to α1 sequentially. After running the Kalman filter one time, the
optimal estimator for the state vector and its MSE matrix, At and Pt , for t = 1, . . . , n, are generated. Conditioned on
γ’s , θ and Yt , it can be seen that (αt, αt+1)′ follows a multivariate normal distribution and the Kalman filter gives the
following full conditional distribution of (αt, αt+1)′|γ1, . . . , γn, θ, Yt

N2k

((
At

�0st+1 +�1st+1At

)
,

(
Pt Pt�

′
1st+1

�1st+1Pt �1st+1Pt�
′
1st+1

+	η

))
.
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Using the formula of conditional distribution for multivariate normal variable, αt| αt+1, γ1, . . . , γn, θ, Yt follows the
k-dimensional normal with

mean = At + (Pt�′
1st+1

)(�1st+1Pt�
′
1st+1

+	η)
−1(αt+1 −�0st+1 −�1st+1At)

variance = Pt − (Pt�′
1st+1

)(�1st+1Pt�
′
1st+1

+	η)
−1(�1st+1Pt),

for t = n− 1, . . . , 1.
As a result, with the i-th MCMC iterateH (i)

t , the conditional correlation Corr(r̃at, r̃bt|H (i)
t , Rt−1, θ

(i)), 1 ≤ a < b ≤ k

can be evaluated for i = M + 1, . . . ,M +N accordingly. Then, the following Monte Carlo estimator of the smoothed
correlation Corr(s)(r̃at, r̃bt),

̂Corr(s)(r̃at, r̃bt) = 1

N

M+N∑
M+1

Corr(r̃at, r̃bt|H (i)
t , Rt−1, θ

(i)), t = 1, . . . , n,

can be obtained.

4. Simulation study

In this section, we will illustrate the proposed Bayesian estimation through a simulation study. Time series of length
n = 4000 are simulated from a three-dimensional model (k = 3). The parameters are chosen according to empirical
stylized facts and presented under ‘True values’ in Table 1. For example, 	η is set so that the implied correlations of
the volatility series are reasonably large, in which

�η =

⎛⎜⎝ 1 0.6 0.5

0.6 1 0.8

0.5 0.8 1

⎞⎟⎠ .
The mean parameter matrices �0st and �1st have small magnitude in their entries to reflect the weak autoregressive
dynamic in financial returns. We also select�10 to have large diagonal values to indicate high persistence in volatility
in the lower regime (st = 0). The diagonals of �10 are larger than that of �11 to incorporate the empirical fact that
usually the lower regime has higher persistence in volatility [9]. The weighting of the threshold variables were selected

Table 1
Sample means of the posterior mean for the 2 regimes based on 100 simulation replications

True values Lower regime (st = 0) Upper regime (st = 1)

	η

(
0.5 0.23 0.16

0.23 0.3 0.2
0.16 0.2 0.2

) (
0.548(0.065) 0.221(0.044) 0.138(0.041)
0.221(0.044) 0.323(0.054) 0.185(0.039)
0.138(0.041) 0.185(0.039) 0.223(0.035)

) (
0.548(0.065) 0.221(0.044) 0.138(0.041)
0.221(0.044) 0.323(0.054) 0.185(0.039)
0.138(0.041) 0.185(0.039) 0.223(0.035)

)

�00

(
0.1
0.1
0.1

) (
0.104(0.058) 0.089(0.067) 0.099(0.045)

)′ (
0.302(0.041) 0.300(0.037) 0.299(0.033)

)′

�10

(
0.1 0.2 0.1
0.3 0.2 0.1
0.1 0.1 0.4

) (
0.100(0.037) 0.196(0.037) 0.098(0.049)
0.293(0.028) 0.194(0.028) 0.093(0.039)
0.100(0.008) 0.099(0.012) 0.399(0.023)

) (
0.399(0.017) 0.099(0.018) −0.201(0.018)
0.602(0.017) 0.298(0.019) 0.201(0.016)
0.500(0.009) 0.202(0.009) 0.499(0.010)

)

�00

(
0.1
0.1
0.1

) (
0.115(0.068) 0.104(0.072) 0.100(0.056)

)′ (
0.156(0.039) 0.153(0.038) 0.138(0.034)

)′

�10

(
0.9 0.1 0.1
0.1 0.8 0.2
−0.2 0.2 0.7

) (
0.792(0.077) 0.240(0.109) 0.040(0.124)
0.173(0.064) 0.684(0.084) 0.282(0.096)
−0.210(0.087) 0.224(0.115) 0.662(0.075)

) (
0.558(0.055) 0.247(0.082) 0.179(0.101)
0.191(0.054) 0.515(0.062) 0.281(0.068)

−0.019(0.069) 0.192(0.076) 0.443(0.061)

)
Standard errors are given in parentheses.



312 M.K.P. So, C.Y. Choi / Mathematics and Computers in Simulation 79 (2008) 306–317

Table 2
Daily returns summary statistics in the whole sample period and in the two regimes

Whole sample Lower regime (st = 0) Upper regime (st = 1)

Mean

(
0.035
0.028
0.043

) (−0.265
−0.388
−1.023

) (
0.303
0.398
0.993

)

Covariance

(
1.156 0.462 0.279
0.462 1.083 0.499
0.279 0.499 2.851

) (
1.353 0.432 0.010
0.432 1.099 0.196
0.100 0.196 2.414

) (
0.828 0.278 −0.100
0.278 0.777 0.022
−0.100 0.022 1.325

)

Correlation

(
1.000 0.413 0.154
0.413 1.000 0.284
0.154 0.284 1.000

) (
1.000 0.355 0.055
0.355 1.000 0.120
0.055 0.120 1.000

) (
1.000 0.347 −0.096
0.347 1.000 0.022

−0.096 0.022 1.000

)

Skewness

(−2.063
−0.771
−3.419

) (−3.566
−1.918
−9.758

) (
0.770
1.017
3.155

)

Kurtosis

(
44.085
13.862
83.169

) (
64.979
18.760
202.164

) (
7.735
7.511
27.317

)

so that the contribution of each of the three returns are nearly the same,

st =
{

0 if 0.4r1,t−1 + 0.3r2,t−1 + 0.3r3,t−1 < 0

1 if 0.4r1,t−1 + 0.3r2,t−1 + 0.3r3,t−1 ≥ 0
.

Simulated data of sample size n = 4000 are generated for 100 independent replications. For each replication,
M +N = 10000 iterations are carried out with the first M = 2000 burn-in iterations discarded before analyzing the
posterior distribution. We investigate the properties of the posterior mean estimator in Table 1 which presents the
sample mean of the 100 posterior mean estimators, together with the corresponding standard errors computed by the
sample standard deviations of the 100 posterior means. The mean of the posterior mean estimators are close to their
respective true values, indicating that the biases of estimation by the posterior means are small. In fact, we observe
very close estimates from both posterior mean and median on the average. Moreover, all standard errors are reasonably
small. In summary, the experiment evidents that both posterior mean and posterior median can provide us reliable
estimates for the unknown parameters in the MTHSV model.

5. Empirical application

5.1. Describing data

The data we use for empirical analysis are daily closing price of three major market indices, namely SP500 of US,
FTSE100 of UK and Hang Seng Index (HSI) of Hong Kong. All data are obtained from Datastream International
dated from 3 July 1985 to 30 June 2005, giving a total of 5165 return observations. The daily return is defined as the
log-difference of the index price, yt = (log pt − log pt−1) × 100, where pt is the closing price at time t and “log” in
the formula is the natural logarithm. Typical volatility clustering feature with some spikes of high volatility that may
be explained by market crashes or well-known financial events can be observed from the plot of the three daily return
series1. From the summary statistics of the returns data in Table 2, highest correlation is observed between the returns
of SP500 and FTSE100 (0.413), and the least is between SP500 and HSI (0.154). Besides, the data also exhibit standard
properties of asset returns time series, including close to zero sample mean, negative sample skewness and excess sam-
ple kurtosis. One of the key issues before executing the MCMC scheme for the empirical data is to decide the threshold
variable. A reasonable choice is the lagged one daily return of SP500 since the US stock market plays a major role in the
world market movement. We define the lower regime (st = 0) and the upper regime (st = 1) by the lagged one SP500
return less than and greater than zero respectively. It turns out that 47% and 53% of the returns are in the lower and upper

1 Time series plots are available on request.
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Table 3
Posterior mean estimates and the respective posterior standard deviations of the parameters for the empirical application

Parameter Lower regime (st = 0) Upper regime (st = 1)

	η

(
0.212(0.035) 0.185(0.024) 0.017(0.013)
0.185(0.024) 0.171(0.026) 0.019(0.013)
0.017(0.013) 0.019(0.013) 0.015(0.004)

) (
0.212(0.035) 0.185(0.024) 0.017(0.013)
0.185(0.024) 0.171(0.026) 0.019(0.013)
0.017(0.013) 0.019(0.013) 0.015(0.004)

)
�0st

(
0.151(0.032) 0.072(0.027) 0.056(0.018)

)′ (
0.012(0.030) 0.035(0.024) 0.011(0.017)

)′

�1st

(
0.137(0.021) 0.432(0.033) −0.250(0.039)
−0.049(0.015) −0.027(0.028) −0.153(0.034)
0.021(0.010) 0.151(0.019) −0.217(0.024)

) (
0.146(0.019) 0.428(0.031) −0.227(0.036)
−0.030(0.014) −0.023(0.025) −0.026(0.031)
−0.001(0.009) 0.049(0.017) −0.147(0.021)

)
�0st

(
0.331(0.083) 0.361(0.049) −0.064(0.053)

)′ (
0.303(0.071) 0.286(0.044) −0.074(0.026)

)′

�1st

(
0.968(0.025) −0.390(0.099) 0.405(0.109)
−0.012(0.028) 0.555(0.057) 0.429(0.058)
−0.018(0.025) 0.199(0.071) 0.830(0.069)

) (
0.947(0.036) −0.458(0.076) 0.460(0.081)
−0.032(0.036) 0.522(0.033) 0.475(0.034)
0.006(0.021) −0.049(0.034) 0.972(0.031)

)
eigenvalues of �1st

(
0.143 0.143 0.015

)′ (
0.132 0.082 0.082

)′

eigenvalues of �1st

(
0.990 0.990 0.373

)′ (
0.976 0.929 0.537

)′

regimes respectively. From Table 2, which presents summary statistics of returns in the two regimes, it is observed that
the variance of the three indices are all higher for the lower regime than that for the upper regime. The correlation struc-
ture of the three time series is also quite different when the US market goes up rather than going down. The above findings
give supportive evidence of the mean and variance asymmetry that a threshold volatility model should be necessary.

5.2. MTHSV model estimation

As discussed in Section 2, we first perform the pre-whitening on the three-dimensional return vector r̃t , in which
the three entries represent the return of SP500, FTSE100 and HSI at time t. The transformation based on principle
component analysis to produce an uncorrelated rt = êr̃t is

ê =

⎛⎜⎝ 0.2058 0.2838 0.9366

0.7442 0.5762 −0.3381

−0.6355 0.7655 −0.0926

⎞⎟⎠ .
We then fit the MTHSV model in (2) to rt using the Bayesian method in Section 3. To implement our MCMC sampling
scheme for the empirical data, 100000 iterations are preformed, with the first 20000 burn-in iterations being discarded.
Table 3 reports the posterior mean and the corresponding standard derivation (in parentheses) of the parameters for the
two regimes. The eigenvalues (in descending order) of �1st and �1st are also given in the table. To explore the mean
asymmetry implied by the model, we reproduce the mean equation of r̃t as

r̃t =

⎛⎜⎝ 0.0241

0.0451

−0.0641

⎞⎟⎠+

⎛⎜⎝−0.0163 −0.0308 −0.0253

0.2987 −0.1173 −0.0113

0.3712 0.1259 −0.0663

⎞⎟⎠ r̃t−1 + ê−1yt, if st = 0,

and

r̃t =

⎛⎜⎝ 0.0331

0.0214

0.0770

⎞⎟⎠+

⎛⎜⎝ 0.0036 0.0431 −0.0004

0.2448 −0.0508 −0.0097

0.3777 0.1285 0.0363

⎞⎟⎠ r̃t−1 + ê−1yt, if st = 1.

in the lower and upper regimes. It is evident that the coefficients in the autoregressive matrix are predominantly
negative in the lower regime with magnitude larger than that in the upper regime. Therefore, clear mean asymmetry is
documented from the MTHSV parameters. From Table 3, we can observe clear variance asymmetry from the different
values in �0st and �1st for different st . In fact, the largest eigenvalue of �1st in the lower regime is substantially
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larger than that in the upper regime, indicating that the variance in the lower regime is more persistent. This kind of
persistence asymmetry has not been documented in the literature.

5.3. Smoothed correlation among the three returns

In this subsection, we analyze the time-varying correlation Corr(s)(r̃at, r̃bt) among the three indices. In the subsequent
discussion, we let Corr(r12), Corr(r13) and Corr(r23) be the smoothed correlation between the daily returns of SP500
and FTSE100, SP500 and HSI, FTSE100 and HSI, respectively. Fig. 1 displays the plot of the three correlations. The
mean along the horizon are 0.347, 0.069 and 0.163 respectively. The result seems reasonable as the highest correlation is
found between the returns of SP500 and FTSE100, with no negative correlation segment. In the plots of the correlations,
we have highlighted three segments that are worth analyzing.

The first segment covers the period from 1985 to 1992. A spike in the correlations is observed during
the 1987 worldwide crash, Black Monday. The impact of the Black Monday on Hong Kong market emerged
when the Hong Kong exchange was re-opened after four-day closing. HSI fell dramatically for more than
40% on that day and the corresponding correlations (Corr(r13), Corr(r23)) rise quickly to the local maxi-
mum levels of 0.183 and 0.364 respectively. The second spike happened on 5 June 1989 when Corr(r13)
and Corr(r23) suddenly jumped to high points, which are the global maxima along the horizon. In fact,
it is not surprising to have such high correlation, since HSI dropped dynamically for 582 points on that
day.

The second segment covers the period from December 1992 to March 1996. During this period, Hong Kong market
exhibited high correlation with the US and UK market. Under the prospective economy in the 1990s, speculation
in the stock market was a rising atmosphere, which was indicated by the high turnover in this period. Besides,
as the negotiation of Hong Kong 97 handover issue became increasingly intensive during this period, investors
were very sensitive to the political relationship among Hong Kong, China and Britain. The first two local peaks

Fig. 1. Plot of the smoothed correlation among the three indices from 3 July 1995 to 30 June 2005.
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of Corr(r13) and Corr(r23) in this period are likely due to the political reason of the handover issue. To conclude,
the reasons for the high correlation period are the increasingly close financial relationship with the US and UK
market.

The third segment is from October 1997 to August 1998. The first extraordinary high correlation time period is
attributed to the 1997 Asian financial crisis that affected Hong Kong and other markets from October 1997 to around
January 1999. It caused a highly correlated period among all three series. Negative values in Corr(r13) and Corr(r23)
are recorded from April 2002 to August 2003. We divide this period into two parts to discuss: April 2002–October
2002 and March 2003 - June 2003. The main cause for the first part can be the September 11 incidence in 2001. Its
economic impact on the US market was critical. On the contrary, the shadow of the incidence did not affect the Hong
Kong and China markets much. During this period, the China economy was expanding quickly, from which Hong
Kong benefited a lot. The opposite situation caused the negative correlations between the returns of HSI and SP500. In
the second part, the US economy revived gradually, however, the SARS (severe acute respiratory syndrome) outbreak
in Hong Kong causes Corr(r13) and Corr(r23) still being negative. The SARS induced a serious economic consequence
to Hong Kong. As there were only rare cases of SARS in US and UK, the effect to their economy was insignificant
and thus making the HSI returns negatively correlated with the SP500 and FTSE100 returns.

6. Conclusion

In this paper, we introduce a multivariate threshold stochastic volatility model to incorporate both mean and volatility
asymmetries in financial time series. We also derive how to estimate dynamic correlation in the series. Bayesian
estimation by MCMC is demonstrated to be effective and reliable. When applying our model to real data, we confirm
the evidence of the asymmetries from the model parameter estimates. We also identify asymmetry in the volatility
persistence. From the MTHSV modeling, the estimated dynamic correlation help us understand the interdependence
of US, UK and HK stock markets in the past twenty years.
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Appendix A. Posterior distribution of the mean and variance parameters

Let βi = [�i0, δi, (�i1, . . . , �ik)′, (Ci1, . . . , Cik)′]′, i = 1, . . . , k and β = [β′
1, β

′
2, . . . , β

′
k]

′. The full conditional
density of β can be obtained by

f (β|θ−β, r0, Hn, Rn) ∝
n∏
t=1

exp

{
−1

2
(rt −�0 −
st − (�1 + Cst)rt−1)′ H̃−1

t

×(rt −�0 −
st − (�1 + Cst)rt−1)} f (β). (6)

Extracting from (6), the full conditional density for βi is proportional to

exp

{
−1

2
(βi − μi)

′	−1
i (βi − μi) − 1

2
(βi − μ0i)

′�−1
0i (βi − μ0i)

}
,
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with N2k+2(μ0i, �0i ) being the prior distribution of βi and

μi = (X′
iXi)

−1X′
iYi, 	i = (X′

iXi)
−1

Yi = (h−1/2
i1 ri1, h

−1/2
i2 ri2, . . . , h

−1/2
in rin)

′

Xi =

⎛⎜⎜⎜⎜⎝
h

−1/2
i1 s1h

−1/2
i1 h

−1/2
i1 r10 h

−1/2
i1 r20 · · · h

−1/2
i1 rk0 s1h

−1/2
i1 r10 s1h

−1/2
i1 r20 · · · s1h

−1/2
i1 rk0

h
−1/2
i2 s2h

−1/2
i2 h

−1/2
i2 r11 h

−1/2
i2 r21 · · · h

−1/2
i2 rk1 s2h

−1/2
i2 r11 s2h

−1/2
i2 r21 · · · s2h

−1/2
i2 rk1

...
...

...
...

. . .
...

...
...

. . .
...

h
−1/2
in snh

−1/2
in h

−1/2
in r1,n−1 h

−1/2
in r2,n−1 · · · h

−1/2
in rk,n−1 snh

−1/2
in r1,n−1 snh

−1/2
in r2,n−1 · · · snh

−1/2
in rk,n−1

⎞⎟⎟⎟⎟⎠ .

Bayesian results on regression give βi|θ−βi , r0, Hn, Rn ∼ N2k+2(μpi, 	pi ), where

	pi = (	−1
i +�−1

0i )
−1
, μpi = 	pi (	

−1
i μi +�−1

0i μ0i).

For the sampling of the variance parameters, we let βi = [�i0, �i, (�i1, . . . , �ik)′, (Di1, . . . , Dik)′]′, i = 1, . . . , k,
and β = (β′

1, β
′
2, . . . , β

′
k)

′. Observe that the term f (h1|θ, r0) in (4) has little effect on the joint conditional posterior
density. By neglecting this term, we have

f (β|θ−β, r0, Hn, Rn) ∝
n∏
t=2

exp
{

−1/2(αt −�0st −�1st αt−1)′	−1
η (αt −�0st −�1st αt−1)

}
f (β). (7)

Using multivariate regression results, the joint conditional density is proportional to

p(B|	η, Y,X) ∝ exp{−1

2
(β − β̂)

′
	−1 ⊗ (X′X)(β − β̂)},

where (β̂1β̂2· · ·β̂k) = (X′X)−1
X′Y , thus we derive β̂ = (β̂′

1, β̂
′
2, · · · , β̂′

k)
′
, 	 = 	η ⊗ (X′X)−1 where ⊗ denotes the

Kronecker or direct matrix multiplication, and

Y =

⎛⎜⎜⎜⎜⎝
log h12 log h22 · · · log hk2

log h13 log h23 · · · log hk3

...
...

. . .
...

log h1n log h2n · · · log hkn

⎞⎟⎟⎟⎟⎠

X=

⎛⎜⎜⎜⎜⎝
1 s2 log h11 log h21 · · · log hk1 s2 log h11 s2 log h21 · · · s2 log hk1

1 s3 log h12 log h22 · · · log hk2 s3 log h12 s3 log h22 · · · s3 log hk2

...
...

...
...

. . .
...

...
...

. . .
...

1 sn log h1,n−1 log h2,n−1 · · · log hk,n−1 sn log h1,n−1 sn log h2,n−1 · · · sn log hk,n−1

⎞⎟⎟⎟⎟⎠
Incorporating the prior distribution of Nk(2k+2)(μ0,�0)I(A2), where A2 represents the domain constraint for the
variance parameters that all elements of |�1st | < 1 and the absolute value of diagonal elements of�1st are larger than
the corresponding off-diagonal elements in the same row, (7) is proportional to

exp

{
−1

2
(β − μ)′	−1(β − μ) − 1

2
(β − μ0)′�−1

0i (β − μ0)

}
I(A2).

Therefore, we haveβ|θβ, r0, Hn, Rn ∼ Nk(2k+2)(μp,	p), where	p = (	−1 +�−1
0 )

−1
, μp = 	p(	−1μ +�−1

0 μ0).
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