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Abstract

The aim of this manuscript is to give a practical overview of meshless methods (for solid mechanics) based on global weak forms
through a simple and well-structured MATLAB code, to illustrate our discourse. The source code is available for download on our
website and should help students and researchers get started with some of the basic meshless methods; it includes intrinsic and
extrinsic enrichment, point collocation methods, several boundary condition enforcement schemes and corresponding test cases.
Several one and two-dimensional examples in elastostatics are given including weak and strong discontinuities and testing different
ways of enforcing essential boundary conditions.
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1. Introduction

The finite element method has been used with great success in many fields with both academic and industrial
applications. It is however not without limitations. Due to mesh-based interpolation, distorted or low quality meshes
lead to higher errors, necessitate remeshing, a time and human labour consuming task, which is not guaranteed to be
feasible in finite time for complex three-dimensional geometries.

Additionally, due to the underlying structure of the classical mesh-based methods, they are not well suited to treat
problems with discontinuities that do not align with element edges. One strategy for dealing with moving discontinuities
in mesh-based methods is remeshing or discontinuous enrichment. However, remeshing is costly, still difficult in three
dimensions and requires projection of quantities between successive meshes and consequential degradation of accuracy.
An alternative to remeshing in a finite element context is the extended finite element method (XFEM) [6,79,24,45,23,22]
enriches the approximation space so that weak and strong discontinuities can be captured.

Meshless methods (MMs) were born with the objective of eliminating part of the difficulties associated with reliance
on a mesh to construct the approximation. In MMs, the approximation is built from nodes only. One of the first meshless
methods is the smooth particle hydrodynamics (SPH) method by Lucy [77] and Gingold and Monaghan [54]. It was
born to solve problems in astrophysics and, later on, in fluid dynamics [20,81,80]. Libersky et al. [71] were the
first to employ SPH in solid mechanics (impact). Since the original SPH version suffered from spurious instabilities
and inconsistencies [97,9,101], many improvements were incorporated into SPH [12,88,20,21,61,62,35,36,100,105].
While SPH and their corrected versions were based on a strong form, other methods were developed in the 1990s,
based on a weak form. Major applications of these methods are in solid mechanics. The element-free Galerkin (EFG)
method [14] was developed in 1994 and was one of the first meshless methods based on a global weak form. The
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reproducing kernel particle method (RKPM) [73] was developed 1 year later. Though the final equations are very
similar to the equations of the EFG method, RKPM has its origin in wavelets. In contrast to RKPM and the EFG
method, that use a so-called intrinsic basis, other methods were developed that use an extrinsic basis and the partition
of unity concept. This extrinsic basis was initially used to increase the approximation order similar to a p-refinement
as, e.g. in the hp-cloud method [40,72]. Melenk and Babuška [78] pointed out the similarities of meshless and finite
element methods and developed the so-called partition of unity finite element method (PUFEM). The method is very
similar to the hp-cloud method. Generally, PUFEM shape functions are based on Lagrange polynomials, while the
general form of the hp-cloud method also includes the MLS-approximation. Strouboulis et al. [91] pointed out in their
generalized finite element method (GFEM) that different partition of unities can be used for the usual approximation
and the so-called enrichment. In the XFEM [6,79,94], the extrinsic enrichment was modified such that it can handle
strong discontinuities without remeshing. Moreover, XFEM is based on a local PU concept.

Another class of meshless methods are methods that are based on local weak forms. The most popular method is the
meshless local Petrov–Galerkin (MLPG) method [2–4]. The main difference of the MLPG method to methods such
as EFG or RKPM is that local weak forms are generated on overlapping subdomains rather than using global weak
forms. The integration of the weak form is then carried out in these local subdomains. Atluri [1] introduced the notion
“truly” meshless since no construction of a background mesh is needed for integration purposes. Another well known
method that was mainly applied in fluid mechanics is the moving point method [83,82,75].

Some major advantages of MMs are (i) h-adaptivity is simpler to incorporate in MMs than in mesh-based methods,
(ii) problems with moving discontinuities such as crack propagation, shear bands and phase transformation can be
treated with ease, (iii) large deformation can be handled more robustly, [30,29], (iv) higher-order continuous shape
functions, (v) non-local interpolation character and (vi) no mesh alignment sensitivity. Beside these advantages, MMs
are not without disadvantages. The MMs shape functions are rational functions which requires high-order integration
scheme to be correctly computed. The treatment of essential boundary conditions is not as straightforward as in mesh-
based methods since the MMs shape functions are not interpolants. They do not satisfy the Kronecker delta property.
In general, the computational cost of MMs is higher than one of FEM.

To avoid some difficulties inherent in MMs, MMs were coupled successfully to finite element methods, see, e.g.
[18,56,47,58,48,49]. Meanwhile, hybrid methods are available that exploit the advantages of meshfree methods and
finite elements [55,74,60,106,107], e.g. the shape functions fulfill the Kronecker delta property while simultaneously
exploiting the smoothness and higher-order continuity of meshfree shape functions.

The purpose of this manuscript is to give a practical overview of meshless methods, especially with respect to their
computer implementation. Common issues in MMs are approximation, integration of the weak form, imposing essential
boundary conditions, how to efficiently compute shape functions and how to incorporate strong and weak discontinu-
ities. In addition, the weighted residual methods such as collocation and Galerkin procedures are also stated with exam-
ples. Advanced issues in application of MMs to fracture mechanics, coupling MMs with finite elements are reviewed.

Computer implementation aspects of the EFG and enriched EFG are given in detail through a MATLAB code.1 In
particular, the source code of the program includes intrinsic and extrinsic enrichment for cracks and material interfaces.

The paper is organized as follows. Section 2 gives a detailed description of MMs including their approximations,
imposition of essential boundary conditions, numerical integration of the weak form. Some of the typical MMs such
as the element-free Galerkin method are introduced. The computer implementation aspects are introduced in Section
3. Section 4 presents some numerical examples on linear elasticity.

2. Meshless methods

2.1. Basic approximations

Meshless approximations for a scalar function u in terms of the material (Lagrangian) coordinates can be written as

u(x, t) =
∑
I ∈S

ΦI (x)uI (t) (1)

1 Which is available at http://www.civil.gla.ac.uk/∼bordas/codes/efgMatlab/EFGMatlabCode.rar.

http://www.civil.gla.ac.uk/~bordas/codes/efgMatlab/EFGMatlabCode.rar
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Fig. 1. Discretization using meshless methods: nodes, domains of influence (circular shape).

where ΦI : Ω → R are the shape functions and the uI ’s are the nodal values at particle I located at position xI and S is
the set of nodes I for which ΦI (x) /= 0. Note, that the above form is identical to an FEM approximation. However, in
contrast to FEM, the shape functions in Eq. (1) are only approximants and not interpolants, since uI /= u(xI ). Therefore
special techniques are needed to treat displacement boundary conditions, that will be discussed in a subsequent section.

2.2. Kernel (weight) function

The shape functions ΦI are obtained from the kernel functions, often called window or weighting functions, which
are denoted by wI : Ω → R. The kernel functions have compact support. The support size is defined by the so called
dilatation parameter or smoothing length. It is critical to solution accuracy, stability and plays the role of the element
size in the finite element method (Fig. 1).

The final characteristics of weight functions is its functional forms. The weight function should be continuous and
positive in its support. For all the meshless methods that we will review in this paper, the continuity of the shape
function will be determined solely by the continuity of the kernel function, for details see, e.g. [57]. For example, if
the kernel function is C2, then the corresponding shape function is also C2.

Some commonly used weight functions are

• the cubic spline weight function:

w(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2

3
− 4r2 + 4r3, r ≤ 1

2
4

3
− 4r + 4r2 − 4

3
r3,

1

2
< r ≤ 1

0, r > 1

(2)

• the quartic spline weight function:

w(r) =
{

1 − 6r2 + 8r3 − 3r4, r ≤ 1

0, r > 1
(3)

with

r = ||xI − x||
dI

(4)

where dI is the support size of node I.
In two dimensions, circular and rectangular supports are usual.
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• Circular support:

w(x − xI ) = w

( ||xI − x||
dI

)
(5)

• Rectangular support:

w(x − xI ) = w

( |xI − x|
dx
I

)
w

( |yI − y|
d

y
I

)
(6)

The derivatives of the weight functions can be computed using the chain rule. For example, for circular supports,
we have

wk(r) = wr(r)rk = wr

xk − xIk

rd2
I

(7)

2.3. Completeness

Completeness, often referred to as reproducibility, in Galerkin methods plays the same role as consistency in finite
difference methods. Completeness means the ability of an approximation to reproduce a polynomial of a certain order.
An approximation is called zero-order complete if it reproduces constant functions exactly. It is called linear (first
order) complete if it reproduces linear functions exactly, and so on for higher orders of completeness.

2.4. Partition of unity

A partition of unity (PU) is a paradigm where a domain is divided into overlapping subdomains ΩI , each of which
is associated with a function ΦI (x) which is nonzero only in ΩI and has the following property:

N∑
I=1

ΦI (x) = 1 in Ω (8)

Let us recall Eq. (1). There are basically two ways to increase the order of completeness of that approximation.
The first opportunity is to increase the completeness of the shape function intrinsically, i.e. by increasing the order of
completeness of the shape functions directly. Alternatively, the order of completeness may be increased by modifying
Eq. (1) using the partition of unity (PU) concept. In this case, a low-order approximation space (low-order shape
functions ΦI ) is enriched with additional functions, which increases the order of completeness. These two concepts
will be explained subsequently.

2.5. Intrinsic meshless methods

2.5.1. Smooth particle hydrodynamics
One of the oldest MMs is the smoothed particle hydrodynamics (SPH) [77]:

uh(x) =
∫

Ω

w(x − y, h)u(y) dΩy (9)

While the continuous form of SPH is second-order complete, it can easily be shown that the discrete SPH form:

uh(x) =
N∑
I

w(x − xI )uI �VI (10)

cannot even reproduce constant fields, and hence is not a partition of unity. In Eq. (10), �VI is some measure of the
domain surrounding node I.
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2.5.2. Reproducing kernel particle method (RKPM)
The reproducing kernel particle method (RKPM) [73] is an improvement of the continuous SPH approximation. In

order to increase the order of completeness of the approximation, a correction function C(x, y) is introduced into the
approximation:

uh(x) =
∫

Ωy

C(x, y)w(x − y)u(y) dΩy (11)

where K(x, y) = C(x, y)w(x − y) with C(x, y) is defined such that the approximation is n th order consistent p:

u(x) = pT(x)a (12)

p(x)u(x) = p(x)pT(x)a (13)∫
Ωy

p(y)w(x − y)u(y) dΩy =
∫

Ωy

p(y)pT(y)w(x − y) dΩya (14)

This is a system of equations for a, which can then be substituted into the approximation uh(x) = pT(x)a, it yields:

uh(x) = pT(x)

[∫
Ωy

p(y)pT(y)w(x − p) dΩy

]−1 ∫
Ωy

p(y)w(x − y)u(y) dΩy (15)

with the correction function:

C(x, y) = pT(x)

[∫
Ωy

p(y)pT(y)w(x − y) dΩy

]−1

p(y) = pT(x)[M(x)]−1p(y) (16)

To evaluate this continuous expression, numerical integration must be employed. This step leads from the reproducing
kernel method to its discrete version, the reproducing kernel particle method [73]:

uh(x) =
∫

Ωy

C(x, y)w(x − y)u(y)dΩy =
N∑

I=1

C(x, xI )w(x − xI )uI �VI

= pT(x)[M(x)]−1
N∑

I=1

p(xI )w(x − xI )uI �VI (17)

The moment matrix M(x) is also computed by numerical integration:

M(x) =
∫

Ωy

p(y)pT(y)w(x − y)dΩy =
N∑

I=1

p(xI )pT(xI )w(x − xI ) �VI (18)

An interesting remark is observed if we choose �VI = 1: the RKPM and MLS are the same (see next section).

2.5.3. Moving least squares (MLS) approximation
This method was introduced by Shepard [90] in the late 1960s for constructing smooth approximations to fit a

specified cloud of points. It was then extended in [65] for general surface generation problems. The most famous
application of MLS approximation is probably within the element-free Galerkin (EFG) method, [17,16,7,19].

The approximation uh: Ω → R of the function u: Ω → R is posed as a polynomial of order m but with non-constant
coefficients. The local approximation around a point x̄ ∈ Ω, evaluated at a point x ∈ Ω is given by

uh
L(x, x̄) = pT(x)a(x̄) (19)

where p(x) is a complete polynomial of order m:

pT(x) = [1 x x2, . . . , xm] (20)
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and a(x) contains non constant coefficients that depend on x (hence the name “moving”):

aT(x) = [a0(x) a1(x) a2(x), . . . am(x)] (21)

The unknown parameters aj(x) are determined at any point x, by minimizing a functional J(x) defined by a
weighted2 average over all nodes I ∈ {1, . . . , n} where the parameters uI are specified, of the difference between the
local approximation uh

L(xI, x) and the value uI , at node I, of the function u to be approximated:

J(x) =
n∑

I=1

w(x − xI )[uh
L(xI, x) − uI ]

2 =
n∑

I=1

w(x − xI )[pT(xI )a(x) − uI ]
2

(22)

where n is the number of nodes in the neighborhood of x where the weight function w(x − xI ) /= 0.
An extremum of J in Eq. (22) with respect to the coefficients a(x) can be obtained by setting the derivative of J

with respect to a(x) equal to zero. The following equations result:

n∑
I=1

w(x − xI )2p1(xI )[pT(xI )a(x) − uI ] = 0

n∑
I=1

w(x − xI )2p2(xI )[pT(xI )a(x) − uI ] = 0

...
n∑

I=1

w(x − xI )2pm(xI )[pT(xI )a(x) − uI ] = 0

(23)

After rearrangements, the above becomes:

n∑
I=1

w(x − xI )p(xI )pT(xI )a(x) =
n∑

I=1

w(x − xI )p(xI )uI (24)

Or more compact as

A(x)a(x) = B(x)u (25)

where

A(x) =
n∑

I=1

w(x − xI )p(xI )pT(xI ) (26)

and

B(x) = [w(x − x1)p(x1) w(x − x2)p(x2) . . . w(x − xn)p(xn)] (27)

Solving for a(x) from Eq. (25) and substituting it into Eq. (19), the MLS approximants can be defined as

uh(x) = pT(x)[A(x)]−1B(x)u (28)

Recalling the form of the approximation defined in Eq. (1):

uh(x) =
N∑

I=1

ΦI (x)uI = �T(x)u (29)

we can immediately write the MLS shape functions as

�T(x) = pT(x)[A(x)]−1B(x) (30)

2 Weight function w defined in Section 2.2.
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Fig. 2. (a) Particle arrangement for a regular moment matrix for a linear complete MLS basis. (b) Particle arrangement for a singular moment matrix
for a linear complete MLS basis.

or, for the shape function ΦI associated with node I at a point x:

ΦI (x) = pT(x)[A(x)]−1w(x − xI )p(xI ) (31)

The matrix A(x) is often called moment matrix, it is of size m × m. This matrix must be inverted wherever the MLS
shape functions are to be evaluated. Obviously, this fact is one drawback of MLS-based MMs because of computational
cost and the possibility that this moment matrix may be singular.

Consider a linear basis in one dimension, the moment matrix then becomes:

A(x) = w(x − x1)

[
1 x1

x1 x2
1

]
+ w(x − x2)

[
1 x2

x2 x2
2

]
+ · · · + w(x − xn)

[
1 xn

xn x2
n

]
(32)

It is clear from this equation that if n = 1, i.e. point x is covered by only one nodal support while the basis is linear
(m = 2), then the matrix is singular and cannot be inverted. Therefore, a necessary condition for the moment matrix to
be invertible is that n ≥ m. Note also that if n = m, the nodes have to be arranged in different coordinate directions,
otherwise the matrix will be singular as well, see Fig. 2.

It can be seen graphically that the MLS shape functions are indeed a partition of unity in Fig. 3 in 1D. Consider
an interval 0 ≤ x ≤ 4 divided into four (4) equal domains. The weight and shape functions of all five (5) nodes are
plotted in Fig. 3. The functions associated with the centre node are represented by a heavy line. In this example, the
weight function is the quartic spline, the size of all five (5) domains of influence is 2.5. Remark that the MLS shape

Fig. 3. Weight and shape function of the central node: (a) weight function and (b) shape function.
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Fig. 4. MLS shape functions and derivatives with quadratic basis.

functions do not satisfy the Kronecker delta property.3 The derivatives of the MLS shape functions are given in Fig. 4.
To get smooth graphs, we computed these derivatives at 150 sampling points on the interval 0 ≤ x ≤ 1. An important
property of the first derivatives can be observed from this figure: the first derivative of node I vanishes at this node.
This makes MLS-collocation–MMs unstable.

For two and three dimensions, x becomes vector x and the basis p(x) is given by (only for two dimensions):

• Linear basis:

pT(x) = [1 x y] (33)

• Quadratic basis:

pT(x) = [1 x y x2 y2 xy] (34)

3 The shape function associated with a node is not exactly equal to one at this node (in the present case, it is about 0.7, for the centre node), and
this shape function is not exactly zero at the other nodes in the domain.
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Fig. 5. Weight and MLS shape function: (a) weight function and (b) shape function.

If p(x) is chosen to be a zeroth order basis, i.e. p(x) = 1, then the resulting MLS shape function is given by

Φ0
I (x) = w(x − xI )

n∑
I

w(x − xI )

(35)

which is known as the Shepard function, the lowest order form of MLS shape functions. Note that the basis p is often
shifted by (x − xJ )/dI since the shifting improves the conditioning of the moment matrix. A two-dimensional graphical
representation of the quartic spline with the corresponding linear complete MLS shape function is shown in Fig. 5.
The first spatial derivatives of the shape functions in the x- and y- directions are depicted in Fig. 6.

2.6. Extrinsic meshless methods

2.6.1. The partition of unity finite element method
In [78], a method called partition of unity finite element method (PUFEM) was developed. The approximation in

the PUFEM is given by

uh(x) =
N∑

I=1

φ0
I (x)

l∑
j=1

pj(x)vjI =
N∑
I

φ0
I (x)pT(x)vI (36)

Fig. 6. MLS shape function first derivatives: (a) Φx and (b) Φy .
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where φ0(x) are usually shape functions based on Lagrange polynomials. The coefficients vjI are nodal unknowns. The
attractive property of the approximation is that it is the number of terms xk which dictates the order of completeness
of the approximation. Another useful property of this approximation is that, special enhancement functions, usually a
known feature of the sought solution, are easily incorporated into the approximation through this extrinsic basis.

By examining Eq. (19), we see that in MLS approximations, the basis p(x), and hence the order of consistency, cannot
be varied from node to node without introducing a discontinuity in the approximation. This means that p-adaptivity is
not naturally obtained by intrinsic enrichment. Regions with different order of consistency may be obtained, but need
to be blended together, to acertain continuity between the regions.

2.6.2. hp-clouds
The approximation in the hp clouds method [40] writes, at any point x ∈ Ω:

uh(x) =
N∑
I

φI (x)

⎛
⎝uI +

l∑
j

pj(x)vjI

⎞
⎠ (37)

where the pj form the so-called extrinsic basis since it contains both high-order monomials and enhancement func-
tions as well. Enhancement functions or enrichment functions are usually introduced into the approximation space
to capture special properties such as discontinuities, singularities, boundary layers, or other relevant features of a
solution.

Different partitions of unity can be used for the standard and enhanced/enriched parts of the approximation [91]:

uh(x) =
N∑
I

φk
I (x)uI +

M∑
I

φm
I (x)

l∑
j

pj(x)vjI (38)

where φk
I (x) and φm

I (x) are meshless shape functions of order k and m, respectively.

2.6.3. A simple example with extrinsic global enrichment
To show the power of enrichment, consider a one-dimensional problem featuring large localized gradients, as shown

below:

u,xx(x) + b(x) = 0, x ∈ [0, 1]; u(0) = 0, u(1) = 1 (39)

with

b(x) =
{

{2α2 − 4[α2(x − 0.5)]
2} exp{−[α(x − 0.5)]2}, x ∈ [0.42, 0.58]

0, otherwise
(40)

The exact solution of this problem is

u(x) = x + exp{−[α(x − 0.5)]2}x ∈ [0, 1] (41)

At first, the standard EFG method with linear-complete shape functions, a discretization of 30 evenly-spaced particles
(29 intervals) and four Gauss points in each interval is employed. The numerical displacement is compared to the exact
displacement in Fig. 7(a). It is worth noting that the numerical solution cannot capture the local character of the
exact solution (around x = 0.5). In order to obtain acceptable results, the discretization must be heavily refined in the
neighbourhood of the large gradients, otherwise, spurious oscillations appear (Fig. 7(b)).

In order to capture the local character, the exact solution can be incorporated into the meshless approximation. For
such a simple one-dimensional problem, one can choose global enrichment:

uh(x) =
∑

I

ΦI (x)uI + bΨ (x) with Ψ (x) = exp{−[α(x − 0.5)]2} (42)

The result obtained with this approximation (30 uniform nodes and 4 Gauss points for each of 29 subcells) is given
in Fig. 7(c) with excellent agreement between numerical and exact solution.

The global enrichment strategy has the advantage that only one additional unknown is added for each special
function to be added. It has the drawbacks that (1) the enrichment function must have local character, i.e. have a
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Fig. 7. One-dimensional problem with localized solution: comparison between EFG and enriched EFG solutions.

compact support “small” relative to the domain size, to ensure that the left hand side matrix remains banded; (2) the
discrete equations are modified, which complicated the implementation into existing codes. The local (extrinsic) PU
enriched formulation is given by

uh(x) =
∑
I ∈S

ΦI (x)uI +
∑

J ∈Sc

ΦJ (x)Ψ (x)aJ (43)

where Sc is the set of nodes whose supports contain the point x = 0.5. The displacements obtained with global
enrichment, PU-enrichment and the exact solution are plotted in Fig. 8(a). In all computations, the cubic spline with
circular support and radius r̄ = s �x with s = 2.5, �x is the nodal spacing, is employed.

It is obvious that, the number of enriched nodes changes when the size of nodal supports varies. Precisely, when
s increases, the number of enriched nodes increases, hence increase the number of problem unknowns. Therefore,
choosing a proper value for the support size is necessary in both computational cost and accuracy. Fig. 8(b) shows the
results obtained with various support sizes.
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Fig. 8. Comparison of enrichment strategies and effects of nodal support size.

2.7. Weighted residual methods

Considering a partial differential equation on a domain Ω with boundary Γ , defined by the differential operator L:
u �→ Lu and the linear form f : Ω → R:

Lu(x) = f (x) in Ω (44a)

u = ū on Γ (44b)

One of the most general techniques to solve such an equation numerically is the weighted residual method. In this
method, the unknown field u is approximated by trial functions � and nodal parameters u in the form u ≈ uh = �Tu.
Replacing u with uh in the PDE gives:

∀x ∈ Ω, εh(x) = Luh(x) − f (x) (45)

where εh is the residual error, which is non-zero, since an approximation function, living in a function space of finite
size, cannot fulfill the original equation exactly everywhere in Ω.

A set of test functions � are chosen and the system of equations is determined by setting εh orthogonal4 to this set
of test functions:∫

Ω

�εh dΩ = 0 or
∫

Ω

�(Luh(x) − f (x)) dΩ = 0 (46)

∫
Ω

�

[
L

(
N∑

I=1

ΦI (x)uI − f (x)

)]
dΩ = 0 (47)

In the above equations, it was implicitly assumed that integrals are capable of being evaluated. This places certain
restrictions on the families to which functions Ψ and Φ must belong. In general, if n th order derivatives occur in the
operator L, then the trial and test functions must be Cn−1 (n − 1 continuous derivatives). Usually, integration by parts
is applied in Eq. (47) to lower the order of derivation, decreasing the order of continuity required for the test and trial
spaces. The form of the partial differential equation is called the weak form associated with the strong form given in
Eq. (44).

4 In the sense of the inner product 〈u, v〉 =
∫

Ω
uv dΩ.
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In order to obtain the discrete equations, the unknown function u(x) and the test function � are approximated by

uh(x) =
N∑

I=1

ΦI (x)uI and �(x) =
N∑

I=1

ΨI (x)δuI (48)

where δuI are arbitrary coefficients, and uI are unknowns of the problem.
The choice of the functions ΨI (x) leading to different methods such as collocation and Galerkin methods which are

described in the next section.

2.7.1. Collocation method
Assume the xI to denote the set of points in the computational domain, in the collocation method, the test functions

� are chosen to be Dirac delta distributions δ(x − xI ). Because of the sifting property of the Dirac delta distributions,
the weak form, Eq. (47), reduces to the strong form, evaluated at all the nodes in the domain. The discrete equation
can be written as

Luh(xI ) = f (xI ), I ∈ Ω − Γ (49a)

u(xI ) = ū(xI ), I ∈ Γ (49b)

The above is a set of algebraic equations whose unknowns are uI .
The collocation method has two major advantages, namely (i) efficiency in constructing the final system of equations

since no integration is required and (ii) shape functions are only evaluated at nodes rather than at integration points
as in other methods. The price to pay is that, one must evaluate high-order derivatives of MMs shape functions which
is quite burdensome. In addition, two other drawbacks are difficulties in imposing natural boundary conditions and
non-symmetric stiffness matrix.

To better illustrate the method, consider the problem of a string on an elastic foundation with the governing equations:

−a
d2u

dx2 (x) + cu(x) + f = 0, 0 < x < 1; u(0) = u(1) = 0 (50)

with specific parameters for the solution are chosen a = 0.01, c = 1 and f = −1. The domain is divided into an equally
spaced set of nodes located at xJ , J = 1, . . . , N where the boundary points are nodes x1 and xN . By imposing the
equations given in Eq. (50) at the N nodes, we obtain the following equations:

−a
d2

dx2

(
N∑

I=1

ΦI (xJ )uI

)
+ c

(
N∑

I=1

ΦI (xJ )uI

)
+ f = 0, J = 2, . . . , N − 1 (51a)

N∑
I=1

ΦI (x1)uI = 0,

N∑
I=1

ΦI (xN )uI = 0 (51b)

The Eq. (51a) is rewritten in the familiar form:(
−a

N∑
I=1

ΦI,xx(xJ ) + c

N∑
I=1

ΦI (xJ )

)
uI + f = 0, J = 2, . . . , N − 1 (52)

which is of the familiar form Ku = f where the assembly procedure is performed by looping on separate sets of nodes
(herein, there are interior and essential boundary nodes).

It is worth noting that, using the point collocation method, one must deal with high-order derivatives (here second
order).5 Hence the meshless shape functions must have at least continuous second-order derivatives, which is the case
if the kernel (weight) function is C2 continuous. The numerical solution obtained with the point collocation method is
given in Fig. 9.

5 The second derivatives of MLS shape functions are given in Section 3.2.
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Fig. 9. String on elastic foundation: point collocation solutions.

2.7.2. Galerkin methods
The trial and test functions in Galerkin methods are given by

uh(x) =
N∑

I=1

ΦI (x)uI, δuh(x) =
N∑

I=1

ΨI (x)δuI (53)

If different shape functions are used for the approximation of the test and trial functions, a Petrov–Galerkin method
is obtained, otherwise we have a Bubnov–Galerkin method.6 We will assume now that ΨI = ΦI though all derivations
apply also for a Petrov–Galerkin method.

As an example, the problem of a string on an (using the divergence theorem – integration by parts – in Eq. (50))
elastic foundation is solved again, but now with a Galerkin-based meshless methods. The weak form of this problem is

a

∫ 1

0
vxux dx + c

∫ 1

0
vu dx + f

∫ 1

0
v dx = 0 (54)

where v is the test function. The discrete equations are obtained by substituting the approximations of u and v into the
above:(

a

∫ 1

0
ΦI,xΦJ,x dx + c

∫ 1

0
ΦIΦJ dx

)
uJ + f

∫ 1

0
ΦI dx = 0 (55)

The above has the familiar matrix form Ku = f where

KIJ =
∫ 1

0

(
aΦI,xΦJ,x + cΦIΦJ

)
dx, fI = −f

∫ 1

0
ΦI dx (56)

The exact solution of this problem is given by

u(x) = 1 − cosh(mx) − (1 − cosh(m))
sinh(mx)

sinh(m)
, m =

( c

a

)1/2
(57)

The numerical solutions obtained with the element free Galerkin method are given in Fig. 10.

6 Often called Galerkin method.
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Fig. 10. String on elastic foundation: EFG solutions.

2.8. Discrete equations for elastostatics

Consider a domain Ω, bounded by Γ . The boundary is partitioned into two sets: Γu and Γt . Displacements are
prescribed on Γu whereas tractions are prescribed on Γt . The weak form of linear elastostatics problems is to find u in
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the trial space,7 such that for all test functions δu in the test space8:∫
Ω

ε(u) : C : ε(δu) dΩ =
∫

Γ

t̄ · δu dΓ +
∫

Ω

b · v dΩ (58)

Substitution of approximations for u and δu into the above gives the discrete equations:

Ku = f (59)

with

KIJ =
∫

Ω

BT
I CBJ dΩ, fI =

∫
Γt

ΦI t̄dΓ +
∫

Ω

ΦIb dΩ (60)

In two dimensions, the B matrix is given by

BI =

⎡
⎢⎣

ΦI,x 0

0 ΦI,y

ΦI,y ΦI,x

⎤
⎥⎦ (61)

Note that we have omitted Dirichlet boundary conditions in our formulations. The incorporation of Dirichlet bound-
ary conditions will be discussed in the next section. Note also that if an extrinsic basis is used the nodal vector u
will contain additional unknowns, see Section 2.6. Different methods can now be constructed by using different shape
functions. If we choose Dirac delta functions for the test function, we have a collocation method. Otherwise we obtain
a Galerkin method.

2.8.1. Integration
The major disadvantage of MMs using Galerkin method is the numerical integration of the weak form. This is due

to the non-polynomial (rational) form of most meshless shape functions (MLS for instance). So, exact integration is
difficult to impossible for most meshfree methods. The most frequently used techniques include:

Direct nodal integration. The integrals are evaluated only at the nodes that also serve as integration points:∫
Ω

f (X) dΩ =
∑
J ∈S

f (XJ )VJ (62)

The quadrature weights VJ are usually volume associated with the node. The volume is obtained from a Voronoi
diagram that is constructed at the beginning of the computation. This approach is more efficient than using full
integration. However, nodal integration leads to instabilities due to rank deficiency similar to reduced integrated finite
elements. We would also like to remark that nodal integrated meshless methods are very similar to meshless collocation
methods [13,5,10].

Stabilized nodal integration. Chen et al. [31] proposed the stabilized confirming nodal integration using strain
smoothing. They recognized that the vanishing derivatives of the meshfree shape functions at the particles cause of
the instabilities. In their strain smoothing procedure, the nodal strains are computed as the divergence of a spatial
average of the strain field. The strain smoothing avoids evaluating derivatives of the shape functions at the nodes and
hence eliminates defective modes. An excellent overview of different methods to stabilize nodal integration is given
by Puso et al. [85]. Recently, the smoothed Finite Element Method (SFEM) was introduced, by coupling this stabilized
conforming nodal integration to finite elements, resulting in a higher stress accuracy, insensitivity to volumetric locking,
superconvergence, at the cost of stability (in some instances). The interested reader is referred to the review paper [109]
and the contributions in [108,110,111,112].

7 Contains C0 functions.
8 Contains C0 functions but vanishes on Γu.
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Stress point integration. Adding additional stress points to the nodes is another possibility to avoid instabilities due
to rank deficiency:∫

Ω

f (X) dΩ =
∑

J ∈SN

f (XJ )VN
J +

∑
J ∈SS

f (XJ )VS
J (63)

where the superimposed N denote nodes and the superimposed S denote stress points. Note that all kinematic values
are obtained via the nodes and only stresses are evaluated at these stress points. This concept of stress points was
first introduced in an SPH setting in one dimension by Dyka and Ingel [46] and later on extended into higher-order
dimensions by Randles and Libersky [89] and Belytschko et al. [9]. Note that there is a subtle difference between
the stress point integration of Randles and Libersky [89] and Belytschko et al. [9]. While Randles and Libersky [89]
evaluate stresses only at the stress point, Belytschko et al. [9] evaluate stresses also at the nodes. A slightly different
approach was proposed by Cueto-Felgueroso et al. [34]. For large deformations, rules have to be found to move the
stress points.

Support-based integration. In the method of finite spheres, the integration is performed on every intersections of
overlapping supports. A truly meshfree method for integrating the weak form over overlapping supports, related to the
supports of the meshfree approximation was developed independently by Duflot and Nguyen-Dang [43](called moving
least square quadrature) and Carpinteri et al. [27](called partition of unity quadrature). This integration technique is
improved in Carpinteri et al. [28] and Zhang et al. [103] to take cracks into account.

Background mesh or cell structure. The domain is divided into integration cells over which Gaussian quadrature is
performed:∫

Ω

f (X) dΩ =
∑
J

f (ξJ )wJ det J ξ(ξ) (64)

where ξ are local coordinates and det J ξ(ξ) is the determinant of the Jacobian, i.e. the mapping from the parent into
the physical domain. If a background mesh is present, nodes and the vertices of the integration usually coincide
(as in conventional FEM meshes, Fig. 11). When cell structures are utilized, a regular array of domains is created,
independently of the particle position [38].

MMs which are based on local weak forms such as MLPG adopt integration over the shape function supports or
intersection of supports. Interested readers should refer to [2–4,70] and references therein for details.

Methods based on nodal and stress point integration are frequently employed in dynamics and where large defor-
mations are expected. We will consider only methods that employ Gauss quadrature and utilize a background mesh.
These methods are more accurate and they are ideally applicable to small and moderate deformation.

Fig. 11. Integration in Galerkin-based MMs: background mesh (left) and background structure cells (right).
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2.8.2. Essential boundary conditions
Due to the lack of the Kronecker delta property of MMs shape functions, the essential boundary conditions cannot

be imposed as easily as in FEM. Several techniques have been proposed, namely (i) methods based on the modification
of the weak form and (ii) methods using modified shape functions. This section gives a brief description of these
methods, for more details, one should refer to [57].

Methods based on the modification of the weak form includes the Lagrange multiplier method, the penalty method
and Nitsche’s method. In order to understand these methods, the so-called variational principle should be first presented.

A variational principle specifies a scalar quantity, named functional Π, which is defined by an integral form:

Π =
∫

Ω

F (u, ux, . . .) dΩ +
∫

Γ

E(u, ux, . . .) dΓ (65)

where u is the unknown function, F and E are differential operators. The solution to the continuum problem is a function
u which makes Π stationary with any arbitrary variations δu:

δΠ = 0 with any δu (66)

2.8.2.1. Lagrange multipliers. Let us consider a general problem of making a functional Π stationary with constraints:

C(u) = 0 on Γ (67)

To satisfy the above constraint, we build the following functional:

Π̄(u, λ) = Π(u) +
∫

Γ

λTC(u) dΓ (68)

The variation of this new functional is given by

δΠ̄ = δΠ +
∫

Γ

δλTC(u) dΓ +
∫

Γ

λTδC(u) dΓ (69)

In order to derive the discrete equations, the Lagrange multipliers must be approximated (l is the number of shape
functions required to approximate the multipliers on the boundary, e.g. If two-noded finite elements are used, l = 2):

λ(x) =
l∑

I=1

NL
I (x)λI (70)

There are several choices for the approximation space for the Lagrange multipliers, i.e. choices of NL
I (x), namely,

(i) finite element interpolation on the boundary Γ , (ii) meshless approximations on this boundary and (iii) the point
collocation method which uses the Dirac delta function:

NL
I (x) = δ(x − xL

I ) (71)

where xL
I is a set of points locating along the boundary Γ . Using this method, the system of equations of elastostatics

is given by[
K G

GT 0

]{
u

λ

}
=

{
f

q

}
(72)

with

GIK = −
∫

Γu

ΦINK dΓ = −
[

ΦI (xK) 0

0 ΦI (xK)

]
(73)

qK = −
∫

Γu

NKū dΓ = −ū(xK) (74)

It is obvious that one drawback of the Lagrange multiplier method is the introduction of additional unknowns to the
problem. In addition, from Eq. (72), there are now zero terms on the diagonal of the matrix which makes the matrix
no longer positive definite.
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2.8.2.2. Penalty function. We have the functional for the problem given in the preceding sections:

Π̄(u, α) = Π(u) + α

2

∫
Γ

C(u)TC(u) dΓ (75)

Applying the penalty method to elastostatics, we obtain the following weak form:∫
Ω

εT(u) : C : ε(v) dΩ =
∫

Γ

t̄ · v dΓ +
∫

Ω

b · v dΩ + α

∫
Γu

u · v dΓ − α

∫
Γu

ū · v dΓ (76)

which gives the equation Ku = f, where

KIJ =
∫

Ω

BT
I CBJ dΩ − α

∫
Γu

ΦIΦJ dΓ (77)

fI =
∫

Γt

ΦI t̄ dΓ +
∫

Ω

ΦIb dΩ − α

∫
Γu

ΦI ū dΓ (78)

The main advantage of the penalty method compared with the Lagrange multiplier approach is that no additional
unknowns are required. However, the conditioning of the matrix much depends on the choice of the penalty parameter.
What is more, in the penalty method, the constraints are only satisfied approximately.

Recently, the augmented Lagrangian method has been proposed by Ventura [98] to handle essential boundary
conditions in meshfree methods. This method has been shown to be stable and effective, particularly in contact
problems where it has replaced the penalty and Lagrangian multipliers methods.

2.9. Discontinuities

There are mainly four approaches to model discontinuities in meshless methods, namely (i) modification of the weight
function such as the visibility method, the diffraction method and the transparency method [11,63,84], (ii) modification
of the intrinsic basis [50] to incorporate special functions, (iii) methods based on an extrinsic MLS enrichment [50] and
(iv) methods based on the extrinsic PUM enrichment [99,113–118]. More recently, the augmented Lagrangian method
has been used to model strong discontinuity (crack problems) in Carpinteri [25] and weak discontinuity (material
discontinuity) in Carpinteri [26].

2.9.1. Modification of weight function
The visibility method [8,15] was the first method to incorporate strong discontinuities into meshless methods. In

the visibility method, the crack boundary is considered to be opaque. Nodes that are on the opposite side of the crack
are excluded in the approximation of the displacement field. Difficulties arise for particles close to the crack tip since
undesired interior discontinuities occur, see Fig. 12. Non-convex boundaries cannot be treated by the visibility criterion
correctly either.

The diffraction method [84] is an improvement of the visibility method. It removes the undesired interior discon-
tinuities as shown in Fig. 13. The diffraction method is also suitable for non-convex crack boundaries. The method is
motivated by the way light diffracts around a sharp corner but the equations used in constructing the domain of influence
and the weight function bear almost no relationship to the equation of diffraction. The method is only applicable to
radial basis kernel functions with a single parameter. The idea of the diffraction method is to treat the crack as opaque
but to evaluate the length of the ray by a path which passes around the corner of the discontinuity, see Fig. 13. It
should be noted that the shape function of the diffraction method is quite complex with several areas of rapidly varying
derivatives that complicates quadrature of the discrete Galerkin form. Moreover, the extension of the diffraction method
into three dimensions is complex.

The transparency method was developed as an alternative to the diffraction method by Organ et al. [84]. The
transparency method is easier to extend into three dimensions than the diffraction method. In the transparency method,
the crack is made transparent near the crack tip. An additional requirement is usually imposed for particles close to
the crack. Since the angle between the crack and the ray from the node to the crack tip is small, a sharp gradient in
the weight function across the line ahead of the crack is introduced. In order to reduce this effect, Organ et al. [84]
imposed that all nodes have a minimum distance from the crack surface.
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Fig. 12. Undesired introduced discontinuities by the visibility method.

2.9.2. Modification of the intrinsic basis
In methods that use an intrinsic basis such as the EFGM, the intrinsic basis can be modified according to the

crack kinematics [50]. In LEFM, generally the asymptotic near-tip displacement field of the Westergaard solution is
introduced into the basis p:

pT(X) = [
1, X, Y,

√
r sin(θ/2),

√
r cos(θ/2),

√
r sin(θ/2) sin(θ),

√
r cos(θ/2) sin(θ)

]
(79)

where r is the radial distance to the crack tip and θ the angle to the crack. One drawback of intrinsic enrichment is that
it has to be used in the entire domain. Otherwise, undesired discontinuities are introduced. To reduce computational
cost, a blending domain is often introduced where the higher-order basis is decreased to a basis of lower-order (in our
case linear complete basis) continuously.

[44] suggested an alternative intrinsic enrichment by enriched kernel functions:

wc(X) = α
√

r cos
θ

2
w4(X)

wp(X) = α
√

r

(
1 + sin

θ

2

)
w4(X)

wp(X) = α
√

r

(
1 − sin

θ

2

)
w4(X)

(80)

where w4(X) is the quartic spline and the factor α controls the amplitude of the enriched kernel function compared
with the amplitude of the regular nodes. The value of α is usually set to 1. The indices c, m and p stand for cos, minus
sin and plus sin, respectively. An advantage of this method is that no blending domain needs to be introduced.

Fig. 13. (a) Scheme of the visibility method and (b) scheme of the diffraction/transparency method.
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2.9.3. Methods based on an extrinsic MLS enrichment
Another possibility to model cracks in meshless methods is to introduce the analytical solution extrinsically [50]:

uh(X, t) =
∑
J ∈ S

p(XJ )Ta(X, t) +
nc∑

K=1

(
kK

I QK
I (XI) + kK

I QK
II (XI)

)
(81)

where nc is the number of cracks in the model, uh is the approximation of u, p is the usual polynomial basis and kI
and kII are additional degrees of freedom associated with mode-I fracture and mode-II fracture. The functions Qi

I and
Qi

II, i = 1, 2 describe the near-tip displacement field and are given by

Q1
I (X) = 1

2G

√
r

2π
cos(0.5θ)(κ − 1 + 2 sin2(0.5θ)) (82)

Q2
I (X) = 1

2G

√
r

2π
sin(0.5θ)(κ + 1 − 2 cos2(0.5θ)) (83)

Q1
II(X) = 1

2G

√
r

2π
sin(0.5θ)(κ + 1 + 2 cos2(0.5θ)) (84)

Q2
II(X) = − 1

2G

√
r

2π
cos(0.5θ)(κ − 1 − 2 sin2(0.5θ)) (85)

where G is the shear modulus and κ is the Kolosov constant defined as κ = 3 − 4ν for plane strain and κ = (3 −
ν)/(1 + ν) for plane stress conditions where ν is the Poisson’s ratio.

One advantage of the MLS extrinsic enrichment is that the stress intensity factors can be directly obtained without
considering the J-integral. Therefore, the enrichment has to be introduced globally, which comes with additional
computational cost.

2.9.4. Methods based on an extrinsic PUM
Motivated by the XFEM [79], an extrinsic PU enrichment for meshless methods was presented in [99]:

uh(x) =
∑
I ∈S

ΦI (x)uI +
∑

J ∈Sc

ΦJ (x)H(x)aJ +
∑

K ∈Sf

ΦK(x)
4∑

α=1

bαBα(x)
K (86)

where ΦI are MLS shape functions. The Heaviside function and the branch functions are given by

H(x) =
{

+1 if (x − x∗) · n ≥ 0

−1 otherwise
(87)

where x∗ is the projection of point x on the crack:

B(r, θ) ≡ [B1, B2, B3, B4] =
[

(r, θ)
√

r sin
θ

2
,
√

r cos
θ

2
,
√

r sin
θ

2
cos θ,

√
r cos

θ

2
cos θ

]
(88)

where r and θ are polar coordinates in the local crack front coordinate system. A two-dimensional plot of the branch
functions is shown in Fig. 14 The set Sc includes the nodes whose support contains point x and is cut by the crack, see
Fig. 15 whereas the set Sf are nodes whose support contains point x and the crack tip xtip, see Fig. 16.

Using the Galerkin procedure as described in previous sections, the usual discrete equations are obtained with only
one difference in the B 9 matrix which is now larger:

B = [Bstd|Benr] (89)

9 With the assumption that nodes on essential and natural boundaries are not enriched. For more details, refer to [93].
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Fig. 14. Two-dimensional plot of branch functions. It is clear that the first function is discontinuous through crack face.

Fig. 15. The elements of set Nc are nodes whose support contains point x and cut by the crack.

Fig. 16. The elements of set Nf are nodes whose support contains point x and the crack tip xtip.
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Fig. 17. Enrichment function Ψ with discontinuous derivative.

where Bstd is the standard B and Benr is the enriched B matrix:

Benr
I =

⎡
⎢⎣

(ΦI ),xΨI + ΦI (ΨI ),x 0

0 (ΦI ),yΨI + ΦI (ΨI ),y
(ΦI ),yΨI + ΦI (ΨI ),y (ΦI ),xΨI + ΦI (ΨI ),x

⎤
⎥⎦ (90)

where ΦI (x) can be either the Heaviside function H(x), or the branch functions Bα(x). This enriched EFG can be
implemented within an available EFG code with little modification.

2.9.5. Discontinuous derivatives
For PDEs with discontinuous coefficients, the solutions usually have discontinuous derivatives along the disconti-

nuity. While it is trivial to treat discontinuous derivatives such as material interfaces in FEM by meshing the domain
such that the element edges are aligned with the interface, it is not so simple in MMs. There are different approaches
to treat discontinuous derivatives such as the Lagrange multiplier method, the global enrichment approach [13], the
local or PUM-enrichment strategy [92]. In the global enrichment method, a special function Ψ whose derivative is
discontinuous through the line of discontinuity (material interface for instance) is added into the approximation space:

uh(x) =
∑

I

ΦI (x)uI + bΨ (x − xa) (91)

where Ψ (x) is the enrichment function and b is additional unknown of the problem, Ψ has the form (see Fig. 17 to see
its discontinuous derivative):

Ψ (x) = 〈x − xa〉 −
∑

I

φI (x)〈xI − xa〉 (92)

with

〈x〉 =
{

0 if x < 0

x if x ≥ 0
(93)

As an example, consider the following problem:

(E(x)u,x),x + x = 0, 0 ≤ x ≤ 10; u(0) = u(10) = 0 (94a)

E(x) =
{

1 0 ≤ x < 5

0.5 5 ≤ x ≤ 10
(94b)
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The weak form of this problem is given by

−
∫ 1

0
v,x(x)E(x)u,x(x) dx +

∫ 1

0
v(x)x dx = 0 (95)

Trial and test functions are constructed by Eq. (91), it results in (using the arbitrariness of δui and δb):∫ 1

0
ΦI,x(x)E(x)ΦJ,x(x)uJ +

∫ 1

0
ΦI,x(x)E(x)Ψ,x(x)b dx −

∫ 1

0
ΦI (x)x dx = 0,

∫ 1

0
Ψ,x(x)E(x)ΦJ,x(x)uJ dx +

∫ 1

0
Ψ,x(x)Ψ,x(x)b dx −

∫ 1

0
Ψ (x)x dx = 0 (96)

In matrix form:[
K B

BT g1

]{
u

b

}
=

{
f

g

}
(97)

with

KIJ =
∫ 1

0
ΦI,x(x)E(x)ΦJ,x(x) dx, BI1 =

∫ 1

0
ΦI,x(x)E(x)Ψ,x(x) dx (98)

fI =
∫ 1

0
ΦI (x)x dx, g =

∫ 1

0
Ψ (x)x dx, g1 =

∫ 1

0
Ψ,x(x)Ψ,x(x) dx (99)

The results obtained with this enrichment are plotted in Fig. 18. It is clear that without enrichment, the discontinuity
in the derivative of the unknown function cannot be captured.

It is clear that with this global enrichment method, one must choose smartly the enrichment function, namely
this function must have local character (discontinuous derivative through a material interface, for instance) and zero
elsewhere. The choice of this function is not trivial in two dimensions, especially for complex interfaces. For these
cases, the local PUM-enrichment strategy works best. To model a discontinuity in the derivative (or weak discontinuity),
the following approximation is used:

uh(x) =
∑
I ∈S

ΦI (x)uI +
∑

J ∈Sc

ΦJ (x)|f (x)|aJ (100)

where f is the signed distance to the discontinuity line and Sc is the set of nodes whose support is cut by this line.

Fig. 18. Strain computed with and without enrichment.
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Fig. 19. Numerical solution with the PUM enrichment strategy.

The problem of a one-dimensional bar with two materials is now solved again with this so-called local enrichment
strategy. In the computation, 21 equally spaced particles are used, in each of the 20 intervals, 3 Gauss points are
employed. The size of the circular nodal support is 2 �x where �x is the nodal spacing. The solution is given in Fig. 19
and a comparison with the solution obtained by 21 linear finite elements is also given.

2.10. Error estimation and adaptivity

Due to the absence of a mesh, h-adaptivity is easier to incorporate in MMs than in mesh-based methods. Also p-
adaptivity and r-adaptivity is conceptually easier to implement in a meshfree framework. To drive the adaptivity, a local
error estimator – or, at least, an indicator – is necessary. The most significant works on error estimation in the frame
of MMs are as follows. Duarte and Oden, in [39], present an a posteriori error estimator and use it in an hp-adaptive
method. [64] developed an a posteriori approximation error in order to adaptively refine corrected derivative in meshfree
methods. [32] suggest a residual-based error estimator based on the difference between a recovered stress field and a
raw EFG field, like in the well-known ZZ error estimator in the FEM [104]. This estimator is used in an adaptive method
for static cracks in [33] and for propagating cracks in [69]. This estimator is also found in [67,68]. Other estimators
and adaptive methods are proposed in [59,66,87,86,102,52,51,53]. Global strict bounds on the energy are obtained by
a dual meshfree method in [42]. An excellent overview on adaptive Galerkin meshfree methods is given in [76].

The very recent work of Duflot and Bordas [119–121] on error measures for extended finite element methods may
be a good starting point for further developments of error estimators in the context of meshfree methods with intrinsic
(see Section 2.9.2) or extrinsic (see Section 2.9.4) enrichment.

3. Computer implementation aspects

There are considerable differences between the finite element methods and meshless methods, which leads to
different computer implementation of MMs compared to FEM. We could cite (i) computation of shape functions and
their derivatives, (ii) assembly procedure, (iii) imposing essential boundary conditions and (iv) post-processing step.
This section gives details on how to write an EFG code. In addition, the PUM-enriched EFG is also presented. The
Matlab language is chosen.

3.1. General meshless procedure

1. Node generation including node coordinates and associated weight functions. At each node, one must specify (i)
the shape of the domain of influence (for example, circular), (ii) size of this support (radius for circular support)
and (iii) the functional form (for instance the quartic spline function).
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2. Insert integration points (coordinates and weights) in the domain.
3. Insert integration points along traction and essential boundaries.
4. Integrate on the domain. For each Gauss point xg:

• Find nodes within the support of xg.
• For each of these nodes, compute, the weight function, shape function and shape function derivatives.
• Compute B matrix.
• Compute and assemble K matrix.

5. Integrate on the boundaries. Integrate forces along the traction boundary to form the nodal force vector f and also
on the essential boundary to impose essential boundary conditions.

6. Solve the resulting system of equations (obtain the fictitious displacement field, if the approximation does not have
the Kronecker delta property).

7. Reconstruct the true nodal displacement from the fictitious displacements.

3.2. Efficient shape function computation

The computation of the MLS shape functions as well as its derivatives involves the inverse of the moment matrix
which becomes burdensome in two and three dimensions. An efficient approach, presented in [11,41] is reproduced
here for completeness.

In order to avoid the direct computation of the inverse of the moment matrix, the MLS shape function is usually
written in the form:

ΦI (x) = cT(x)wI (x)p(xI ), where A(x)c(x) = p(x) (101)

with

A(x) =
n∑

I=1

wI (x)p(xI )pT(xI ) (102)

To efficiently compute c(x), the LU factorization of A is performed together with backward substitution:

LUc(x) = p(x), Uc(x) = L−1p(x), c(x) = U−1L−1p(x) (103)

The first derivatives of the shape functions are given by

ΦI,k(x) = cT
k (x)p(xI )wI (x) + cT(x)p(xI )wI,k(x) (104)

with

ck(x) = A−1
k (x)p(x) + A−1(x)pk(x) = −A−1(x)Ak(x)A−1(x)p(x) + A−1(x)pk(x)

= A−1(x)[−Ak(x)c(x) + pk(x)] = A−1(x)bk (105)

and

Ak(x) =
n∑

i=1

wi,k(x)p(xi)pT(xi) (106)

The second derivatives (usually necessary in point collocation method, in plate and shell modeling or for stabilization
schemes based on finite increment calculus [122]) are computed in the same manner:

ΦI,kl(x) = cT
kl(x)p(xI )wI (x) + cT

k (x)p(xI )wI,l(x) + cT
l (x)p(xI )wI,k(x) + cT(x)p(xI )wI,kl(x) (107)

with

ckl(x) = A−1(x)
(
pkl(x) − Al(x)ck(x) − Ak(x)cl(x) − Akl(x)c(x)

)
(108)

where

Akl(x) =
n∑

I=1

wI,kl(x)p(xI )pT(xI ) (109)
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Listing 1. Stiffness matrix assembly.

3.3. Gauss point generation

Assume that the integration is performed with background integration cells. In two dimensions, each integration
cell is a four node quadrilateral element with shape functions NI and nodal coordinates x0 (I = 1, . . . , 4). For each
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Gauss point (ξgp, wgp) of a given cell, the isoparametric mapping is used to get its global coordinates xgp:

xgp =
4∑

I=1

NI (ξgp)xI (110)

and its global weight is given by

w = wgp × detJ (111)

where J is the Jacobian of the physical-parent transformation.

3.4. Assembly procedure

The assembly procedure in MMs is performed on the domain of influence of the point under consideration (often a
Gauss point). If we store the nodal unknowns uI as follows:

uT = [u1 v1 u2 v2 . . . un vn] (112)

where n is the number of nodes. Then a node I will contribute to the (2I − 1) th row and the (2I) th column. If we
denote the variable index containing the number of nodes within the support of a given Gauss point, then the assembly
procedure at this Gauss point is given in the following listing.

Listing 2. Stiffness matrix assembly.

In collocation methods, assembly of the stiffness matrix is done row by row, i.e. degree of freedom by degree of
freedom.

3.5. Integration on the essential boundaries

3.5.1. Point collocation method
Recall the formulas for matrix G and vector q:

GIK = −ΦI (xK)S (113)

qK = −Sū(xK) (114)

where S is a diagonal matrix of size 2 × 2 in two dimensions, and Sii = 1 if the displacement is imposed on xi and
Sjj = 0 otherwise. xK are collocation points.

Assume that, along the essential boundary Γu, m collocation points are used. Then we have m × 2 constraint
equations (in two dimensions). Hence, the dimension of G is 2n × 2m with n the number of nodes in the domain.
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Listing 3. Point collocation for imposing essential BCs.

3.5.2. Finite element interpolation for Lagrange multiplier
For ease of reading, the equations are recalled:

GIK = −
∫

Γu

ΦINKS dΓ, qK = −
∫

Γu

NKSū dΓ (115)

Let us discretize the essential boundary with (m − 1) two-noded finite elements. For each element, ngp Gauss points
are used. The shape functions for a two-node element are given by (le is the length of the element)

N1(x) = 1 − x

le
, N2(x) = 1 − N1(x) (116)

Fig. 20. Selection of enriched particles (filled particles): (a) discontinuous enriched particles; (b) near tip enriched particles.



V.P. Nguyen et al. / Mathematics and Computers in Simulation 79 (2008) 763–813 793

Listing 4. Finite element Lagrange multipliers.

3.6. Enriched EFG

In comparison to the EFG, the enriched EFG has the following differences:

• Detection of non-enriched and enriched particles.
• Treatment of enriched (additional) degrees of freedom.
• Computation of stiffness matrices.

The selection of enriched particles with circular support is illustrated in Fig. 20. It suffices to compute the signed
distances from particles to the crack line and the distances from particles to the crack tip and compare these dis-
tances to the radius of the domains of influence. This procedure, implemented in Matlab, is given in the following
listing.
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Listing 5. Selection of enriched particles.

Due to the presence of additional degrees of freedom (dofs) the assembly procedure has to be revised. We use
fictitious nodes to handle these additional dofs. At a H-enriched node (discontinuous enrichment), we add one phantom
node and, at a tip enriched node, we add four phantom nodes. The numbering of these fictitious nodes start from the
total number of true nodes plus one. For example, if there are five nodes numbered from one to five where the third
node and fifth is enriched with the Heaviside function and the fourth node is a near tip enriched one, then, we have
5 + 2 × 1 + 1 × 4 = 11 nodes. Then, at the third node, we add a phantom node numbered 6, at the fourth node, we add
four fantom nodes numbered 7, 8, 9, 10 and at the fifth node, a phantom node numbered 11 is added. An array named
pos is built to contain the number of these fantom nodes. It is an array of dimension numnode × 1 where numnode is
the number of true nodes. For this example, pos is pos = [0 0 6 7 11].

Listing 6. Selection of enriched particles (or nodes).

In two dimensions, at a certain node numbered i there are always two unknowns associated with equation num-
bers 2i − 1 and 2i in the global matrix. If this node is a discontinuous-enriched node, then it has two additional
unknowns associated with equation numbers at 2 × pos(i) − 1 and 2 × pos(i) in the global matrix. If it is a near tip
enriched node, then it has eight additional unknowns with equation numbers (2 × pos(i) − 1, 2 × pos(i)),(2 × (pos(i) +
1) − 1, 2 × (pos(i) + 1)),(2 × (pos(i) + 2) − 1, 2 × (pos(i) + 2)) and (2 × (pos(i) + 3) − 1, 2 × (pos(i) + 3)), where
each pair corresponds to each added phantom node. Listing 7 gives the implementation in Matlab of this assembly
procedure.
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Listing 7. Assembly procedure.

The B matrix at a Gauss point gp is composed of two parts: the standard and the enriched part, where the standard
part is always computed and the enriched part is only computed if in the nodes whose supports cover gp, there exist
enriched nodes. This is implemented in Matlab and given in the following listing.
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Listing 8. Stiffness matrix computation.
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4. Numerical examples

In this section, numerical examples in linear elasticity are presented with the purpose to verify the Matlab code.

4.1. The Timoshenko beam

Consider a beam of dimensions L × D, subjected to a parabolic traction at the free end as shown in Fig. 21. The
beam is considered to be of unit depth and is in plane stress state. This problem was solved previously by Dolbow and
Belytschko [37].

The parabolic traction is given by

ty(y) = − P

2I

(
D2

4
− y2

)
(117)

where I = D3/12 is the moment of inertia (second moment of area). The exact displacement solution for this problem
is

ux(x, y) = − Py

6EI

[
(6L − 3x)x + (2 + ν)

(
y2 − D2

4

)]
,

uy(x, y) = P

6EI

[
3νy2(L − x) + (4 + 5ν)

D2x

4
+ (3L − x)x2

]
(118)

Fig. 21. The Timoshenko beam.
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Fig. 22. 18 × 7 regular nodes distribution for the Timoshenko beam.

and the exact stresses are

σx(x, y) = −P(L − x)y

I
, σxy(x, y) = − P

2I

(
D2

4
− y2

)
, σy(x, y) = 0 (119)

In the computations, material properties are taken as E = 3.0 × 107, ν = 0.3 and the beam dimensions are D = 12
and L = 48. The shear force is P = 1000. The regular node distribution together with the background mesh used for
numerical integration of the weak form are shown in Fig. 22. In each integration cell, 4 × 4 Gauss quadrature is used.
A linear basis and cubic spline weight function are used in the MLS approximation. Circular nodal support of radius
3.5 times the nodal spacing is employed.

We check the error in the energy and displacement norm. The energy norm is given by

eenergy =
[

1

2

∫
Ω

(
εnum − εT

exact

)
: D : (εnum − εexact) dΩ

]1/2

(120)

and the displacement norm is given by

edisplacement =
√∫

Ω

[(unum − uexact) · (unum − uexact) dΩ] (121)

where εnum and εexact are the numerical strain vector and exact strain vector, respectively. The same notation applies
to the displacement vector unum and uexact. The calculation has been done with the same Gauss quadrature as given
above and the node distributions are 17 × 5, 33 × 9, 65 × 17 and 133 × 34.

In Table 1, the vertical displacement at point (L, 0) calculated by EFG is compared with the exact solution. This
table shows excellent agreement between EFG and the analytical solution.

The stresses at the center of the beam (x = L/2, y ∈ [−D/2, D/2]) are computed and compared with the exact
solution. Eleven Gauss points along the vertical line x = L/2 are used in the computation. Fig. 23 shows very good
agreement between the EFG result and the exact stresses. In addition, the distribution of the normal stress in the beam
is plotted in Fig. 24. It is of particular interest that very smooth stresses were obtained without any additional treatment
as is necessary in FEM (stress extrapolation or stress recovery).

Table 1
Comparison of vertical displacement at end of beam

Nodes uy exact uy EFG Error (%)

7 × 5 −0.0089 −0.0083 −6.74
11 × 5 −0.0089 −0.0087 −2.24
15 × 9 −0.0089 −0.0088 −1.12
20 × 9 −0.0089 −0.0088 −1.12
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Fig. 23. Stresses comparison: (a) shear stress; (b) normal stress.

In Fig. 25, we show the error in the energy and in the displacement norm. h is the horizontal spacing between the
nodes and e is the error. The convergence rate in the energy norm is 1.43.

4.2. Plate with hole

Consider an infinite plate with a centered circular hole under unidirectional tension along the x-direction. The plate
dimension is taken to be L × L and the circle of radius a (Fig. 26).

The exact stress in the plate is given by

σx(r, θ) = 1 − a2

r2

(
3

2
cos 2θ + cos 4θ

)
+ 3

2

a4

r4 cos 4θ (122a)

σy(r, θ) = −a2

r2

(
1

2
cos 2θ − cos 4θ

)
− 3

2

a4

r4 cos 4θ (122b)

σxy(r, θ) = −a2

r2

(
1

2
sin 2θ + sin 4θ

)
+ 3

2

a4

r4 sin 4θ (122c)

where r, θ are the usual polar coordinates centered at the center of the hole.

Fig. 24. Distribution of normal stress in the beam.
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Fig. 25. Convergence in the energy (top) and displacement (bottom) norm. The optimal rates are 1.0 and 2.0, respectively.

The boundary conditions include (i) essential boundary conditions on the bottom uy(x, y = 0) and left edges
(ux(x = 0, x = L, y) = 0); (ii) natural boundary conditions on the right and top edges on which traction t̄ computed
from the exact stress given in Eq. (122) are applied. More precisely:

t̄i = σijnj (123)

On the right edge, n = (1, 0), hence t̄T = (σx, σxy). Similarly, on the top edge, the imposed traction is t̄T = (σxy, σy).
In the computation, the material properties are taken as a Young modulus of 103, a Poisson’s ratio equal to 0.3,

and the geometry is such that L = 10 and a = 1. The background mesh constructed for the numerical integration is
given in Fig. 27(a). Another possibility is the structured cells as shown in Fig. 27(b). However, the background mesh
is chosen for simplicity. For each background cell, a 4 × 4 Gauss quadrature is employed (Fig. 27).
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Fig. 26. Plate with a hole: (a) whole domain; (b) 1/4 model with irregular nodes.

The cubic spline function serves as a weight function. The domain of influence for all nodes is a circle with varying
radius. They are chosen such that the support is small for nodes near the hole and bigger for nodes near the edges.

The essential boundary conditions are imposed with the boundary point collocation method where collocation points
are coincident with nodes along the bottom and left edges.

The stress σx computed at nodes are plotted and compared to the exact solution (Fig. 28). With a coarse discretization
of 99 nodes, quite accurate results are obtained.

4.3. Infinite plate with a center crack

Consider an infinite plate containing a straight crack of length 2a and loaded by a remote uniform stress field σ.
Along ABCD the closed form solution in terms of polar coordinates in a reference frame (r, θ) centered at the crack
tip is

ux(r, θ) = 2(1 + υ)√
2π

KI

E

√
r cos

θ

2

(
2 − 2υ − cos2 θ

2

)
,

uy(r, θ) = 2(1 + υ)√
2π

KI

E

√
r sin

θ

2

(
2 − 2υ − cos2 θ

2

)
(124)

Fig. 27. Gauss points: (a) background mesh; (b) structured cells.
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Fig. 28. Stress plot: (a) EFG σx; (b) exact σx.

where KI = σ
√

πa is the stress intensity factor, υ is Poisson’s ratio and E is Young’s modulus. ABCD is a square of
10 mm × 10 mm, a = 100 mm; E = 107 N/mm2, υ = 0.3 and σ = 104 N/mm2.

The geometry of the computational domain ABCD is shown in Fig. 29. Displacement of nodes on the bottom, right
and top edges are prescribed by Eq. (124).

The crack is modeled by different techniques described in Section 2.9. The deformed configuration is plotted in
Fig. 30 for the enriched partition of unity method (see Section 2.9.4) where the level set method is used to represent
the geometry of the crack.

Numerical integration is performed on a background mesh of 20 × 20 rectangular elements. On each element, a
6 × 6 Gauss quadrature is adopted.

Fig. 29. Infinite cracked plate under remote tension: geometry and loads.
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Fig. 30. Computed deformed configuration (scaled).

The error in the energy norm is illustrated in Fig. 31(a) for visibility, diffraction and transparency method. Note
that we did not use any crack tip enrichment. The convergence rate of these methods are similar though the absolute
error is smaller for the diffraction and the transparency method. Fig. 31(b) shows the normalized SIF KI . Also for
local convergence, the diffraction and transparency methods perform better. There is barely a difference in the results
for the transparency and diffraction method.

The error in the energy norm is illustrated in Fig. 32(a) for some enriched methods (with crack tip enrichment),
Sections 2.9.2 and 2.9.4. We have also included the results obtained with the visibility criterion in this figure. The
methods that include the crack tip enrichment give more accurate results and a much better convergence rate which
is expected of course. The most accurate results and the highest convergence rate of 0.94 are obtained with extrinsic
MLS enrichment. However, the computational cost is higher since the enrichment is applied in the entire domain.
The extrinsic PU enrichment gives a convergence rate of 0.86 and is only slightly less accurate than the extrin-
sic MLS enrichment. The intrinsic PU enrichment lies in between these two results. The same observation can be
made for local convergence. The fact that the SIFs can be directly obtained is a major advantage of the extrinsic
MLS enrichment and probably leads to more accurate results with respect to local convergence. Nevertheless, also

Fig. 31. (a) Error in the energy for the mode I problem using the visibility, diffraction and transparency criterion; (b) normalized stress intensity
factor vs. h.
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Fig. 32. (a) Error in the energy for the mode I problem using the intrinsic and extrinsic PU enrichment, respectively, and the extrinsic MLS
enrichment; (b) normalized stress intensity factor vs. h.

the PU enrichment based method give excellent local convergence, see the scale of the y-axis in Figs. 31(b) and
32(b).

4.4. Infinite plate with a center inclusion

Consider an infinite plate with a center inclusion. For the computation, the square domain has dimensions 10 × 10
with a circular inclusion of radius 1 as shown in Fig. 33. The matrix properties are E1 = 1000, ν1 = 0.3 whereas
material characteristics of the inclusion are taken as E2 = 1, ν2 = 0.3. The traction along the vertical direction is
applied on the top edge while nodes along the bottom edge are constrained along the vertical direction. One more
constraint is imposed to avoid rigid body modes.

This problem is solved with both PUM-enriched EFG and the extended finite element method XFEM (this
XFEM code is written in Matlab and available from the website http://www.civil.gla.ac.uk/∼bordas). The particle
arrangement is uniform (20 × 20) as well as the finite element mesh (20 × 20 four noded quadrilateral elements) and
are given in Fig. 34. It is emphasized that the particles and the finite element mesh are independent of the shape and
position of the inclusion.

For numerical integration of the EFG weak form, a background mesh is built with 6 × 6 Gauss quadrature for
each cell, whereas, for the XFEM weak form, usual Gauss quadrature is adopted for elements which are not cut
by the inclusion’s boundary, while, for elements that are cut by the inclusion boundary, element partitioning is
used.

Fig. 35 gives a comparison of the vertical displacement fields computed by both methods.

Fig. 33. Infinite plate with circular inclusion.

http://www.civil.gla.ac.uk/~bordas
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Fig. 34. Domain discretization with enriched nodes: (a) meshless particles; (b) finite element mesh.

Fig. 35. Vertical displacement field: (a) EFG solution and (b) XFEM solution.

4.5. Quasi-static crack propagation

We study the cracked speciment of Fig. 36, also known as double cantilever beam (DCB). The dimensions are as
follows: length L = 300 mm, height h = 100, initial crack length a = 138 mm, the load P = 100 N and mechanical
properties E = 200 GPa and ν = 0, 3, and we assume plane strain conditions.

Fig. 36. Geometry of the double cantilever beam.
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Fig. 37. Stress intensity factors for a crack growth increment �a = 5 mm at each step.

A perturbation of the crack direction is introduced at the crack tip: angle 4.8◦ and length dx = 12 mm, which,
physically, could be associated with the presence of a defect (void, inclusion) in the vicinity of the crack tip.
The crack propagation phenomenon is studied experimentally by Sumi et al. [96] who show the unstable nature
of the crack path, which either curves downwards or upwards. The crack path is represented by a dashed line in
Fig. 36. Sumi [95] solve this problem by the finite element method and Fleming et al. [50] by meshfree meth-
ods (either with refined point distributions in the vicinity of the crack tip or with intrinsic enrichment of the MLS

Fig. 38. Crack path (�a = 8 mm).
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Fig. 39. Crack path (�a = 5 mm).

basis). We solve the problem using both a standard EFG method (node distribution 49 × 17) and an enriched EFG
method.

The evolution of the stress intensity factors during propagation are shown in Fig. 37 where we see that the crack is
predominantly loaded in mode I. The slightly negative SIF is sufficient to curve the crack path in the direction of the top
edge of the beam. We compare the experimental results to our numerical results in Figs. 38–40 for crack propagation
increments, at each step of 8, 5 and 3 mm, respectively. We note that enrichment significantly improves the results.

Fig. 40. Crack path (�a = 3 mm).
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Fig. 41. Crack paths for various crack growth increments.

Fig. 41 shows the different crack paths obtained for three values of the crack growth increment. We note that the latter
should not be “too small”, otherwise, the nodal supports and J integral domains also become small which decreases
the role of near-tip enrichment and poor accuracy in the stress intensity factors calculation, which exhibit spurious
oscillations.

5. Conclusions

We have given an overview of meshless methods, that are based on a global weak form, with emphasis on imple-
mentation aspects. The meshless methods described in this manuscript are especially well-suited for Solid Mechanics
applications and we have applied them to linear elastic material problems.

The meshless methods were classified into two categories, methods that are based on an intrinsic basis and methods
based on an extrinsic basis. The latter class of methods were found especially useful for problems where information
of the solution can be built into the approximation though it is also possible to include such information into certain
intrinsic meshless methods. We have discussed properties, advantages and drawbacks of meshless methods compared
to standard finite elements for simple examples. A summary is already given in the introduction of this manuscript.

Since standard meshless methods do not fulfill the so-called Kronecker–Delta property, essential boundary con-
ditions cannot be enforced as easily as in finite element methods. We have summarized different opportunities how
to incorporate essential boundary conditions and discussed two of them in more detail, the penalty method and the
Lagrange multiplier method. Both methods are also described with respect to their implementation.

Different integration techniques used in meshless methods based on a global weak form were summarized: nodal
integration, stress-point integration and background integration. We have decided to use background integration since
background integration is best suited to the range of problems we studied here, i.e. small deformations. Background
integration is the most accurate way of obtaining the discrete equations.

We have also given an overview of how to incorporate strong discontinuities, i.e. cracks, and weak discontinuities,
i.e. material interfaces, into meshless methods. There are basically six ways how to handle cracks in MMs. The earliest
methods use the visibility method that consider the crack as opaque. The diffraction and transparency is an extension
of the visibility method that removes certain inaccuracies, i.e. undesired discontinuities. Newer approaches are based
on the PU concept. In these methods, the information of the solution is incorporated in the approximation. That can
be done intrinsically or extrinsically. We have also proposed an extrinsic enrichment based on an MLS technique.
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With respect to LEFM, the main advantage of an MLS extrinsic enrichment is that SIFs are obtained directly from
the analysis. The drawback of the method is that it uses global enrichment in contrast to local enrichment typically
employed in PU based methods.

This paper is addressed to students or researchers who would like to have a quick start with meshfree meth-
ods, especially with respect to Solid Mechanics applications and Fracture Mechanics. Therefore, we have illustrated
the capabilities of some methods for very simple examples. For the EFG-method, we have given and discussed
a Matlab code for several problems discussed in Section 3. This includes the imposition of essential boundary
conditions and different types of enrichment. The Matlab code can be downloaded from the following website:
http://www.civil.gla.ac.uk/∼bordas/codes/efgMatlab/EFGMatlabCode.rar

As a glimpse into the future, it can be interesting to ask the question of the competitivity of meshfree methods
compared to newly emerging techniques such as the extended finite element method. Meshfree techniques benefit from
higher order continuity, which is very useful when solving fracture mechanics problems, since it provides a smoother
stress distribution around the crack fronts.

Meshfree methods also seem to handle large deformations more naturally as the distortion of the cloud of points
appears to have a smaller influence on accuracy (at least for Galerkin meshfree methods) than in finite elements.
Adaptivity is also simplified in such problems. Despite these advantages, meshfree methods are more cumbersome to
implement and computationally expensive.

Extended finite element methods (and partition of unity FEM techniques in general) appear as bringing together the
advantages of the finite element method (simplicity, ease of implementation, robustness and computational efficiency)
and some of those of meshfree methods (ability to treat discontinuities and singularities independently of the mesh).

An important drawback of the XFEM is the lack of smoothness of the resulting derivatives, as repeatedly admitted
in the literature (e.g. [23,119–121]). What is more, XFEM, as FEM, cannot deal with distorted meshes very well, which
would decrease its direct applicability to problems involving high mesh distortion.

The recent inception of the smoothed finite element method (SFEM) [108,110–112,125,126], regained interest in
polygonal interpolation [127] and, in particular, the recent discovery of maximum entropy approximations [123,124]
may help bringing some more flexibility to the XFEM. This could help to further bridge the gap between FEM and
meshfree methods.

The SFEM is quite insensitive to mesh distortion and allows computations to be carried out on arbitrary polygonal
meshes. Coupling the SFEM with the idea of quad (oct) -tree refinement proposed in [128] or enrichment adaptivity
advocated in [119–121] appears promising as suggested by the preliminary results presented in the review paper [109].

Another item for future research concerns the mathematical theory of meshfree methods. A unified theory of the
approximation properties and stability of meshfree methods has attracted a lot of recent interest, yet, a potential
unified theory appears to be still eluding us. The influence of the shape and size of the domains of influence and point
constellation on accuracy and stability in MM based on local/global weak forms or collocation methods alike, remains
unclear.
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[53] L. Gavete, M.L. Gavete, B. Alonso, A.J. Martën, A posteriori error approximation in EFG method, Int. J. Numer. Methods Eng. 58 (2003)

2239–2263.
[54] R.A. Gingold, J.J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Monthly Notices R. Astron.

Soc. 181 (1977) 375–389.
[55] S. Hao, W.K. Liu, Moving particle finite element method with superconvergence: nodal integration formulation and applications, Comput.

Methods Appl. Mech. Eng. 195 (2006) 6059–6072.
[56] A. Huerta, S. Fernández-Méndez, Enrichment and coupling of the finite element and meshless methods, Int. J. Numer. Methods Eng. 48 (11)

(2000) 1615–1636.
[57] A. Huerta, T. Belytschko, S. Fernandez-Mendez, T. Rabczuk, Encyclopedia of Comput. Mech., John Wiley and Sons, 2004 (Chapter Meshfree

Methods).
[58] A. Huerta, S. Fernández-Méndez, W.K. Liu, A comparison of two formulations to blend finite elements and mesh-free methods, Comput.

Methods Appl. Mech. Eng. 193 (2004) 1105–1117.
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[82] E. Oñate, S. Idelsohn, A mesh-free finite point method for advective-diffusive transport and fluid flow problems, Comput. Mech. 21 (4/5)

(1998) 283–292.



812 V.P. Nguyen et al. / Mathematics and Computers in Simulation 79 (2008) 763–813
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