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Abstract

In the present work, we combine concepts and tools from Irreversible Thermodynamics and Con-
trol Theory in a contribution to unravel the origin of complex nonlinear behaviour in biochemical
networks. Regarding cells as thermodynamic systems, we can consider dynamic evolution of intracel-
lular processes in terms of the combined action of an endogenous entropy production and the entropy
flux associated to chemicals passing through the control volume. Based on a generalized description
of biochemical systems, a physically motivated storage function is constructed and used for stability
analysis. In this way, the entropy flux of open systems can be meaningfully modified by efficient
nonlinear control schemes capable of network stabilization, and irreversible thermodynamics provide
us with the physical insight to further interpret the controlled response.

Keywords: Biochemical Reaction Networks, Multiplicities, Passivity based control, Thermodynam-
ics

1 Introduction

Biochemical networks consist of highly interconnected dynamic systems of chemical reactions interacting
with the environment through mass and energy flows. Examples include metabolic or cell signalling
pathways which are known to exhibit complex nonlinear behavior in the form of steady-state multiplicities,
sustained oscillations or deterministic chaos. Complex dynamics of biochemical networks is a recurring
theme in the literature due to its decisive role in physiology of living organisms [11]. As a relevant class of
complex networks which conform the building blocks and circuitry upon which cells and living organisms
operate [10] biochemical networks are receiving considerable attention from different scientific areas going
from nonlinear physics to systems engineering [7]. Despite considerable progress in their dynamic aspects,
the origin of biochemical complex nonlinear phenomena is still not always well understood and it can not
be systematically predicted beyond a case by case basis. This hampers some biological processes being
manipulated or monitored at the cell level. In this framework, efforts are needed to develop efficient and
robust methods of stabilization and control.

In this paper, we present a systematic approach to the biochemical network dynamic analysis and
control based on both thermodyamic and control theoretic tools. In the first instance (Section 1) the
equations of the model for a general class of biochemical networks is established, setting the assumptions
under which the results of the Chemical Reaction Network Theory [3] and Classical Kinetics [4] directly
apply. The biochemical network is also rigorously tackled as a thermodynamic system interconnected
with the environment by mass flows in order to further interprete the dynamics in terms of the entropy
balance. This fact, on one hand, will provide us with the physical insight in the target to unravel the
origin of complex behaviour (Section 3). On the other hand, the entropy balance will enable us to devise
in a constructive manner efficient control schemes capable of robust network stabilization (Section 4).
In this section we demonstrate also the underlying potential structure of a class of biochemical reaction
networks to further use this property combined with passivity theory in developing stabilizing control
laws. The results are illustrated through the paper using as an example a typical component of metabolic
pathways: an enzyme-catalysed mechanism with substrate inhibition.
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2 A general class of biochemical reaction networks

The systems under study are those metabolic, genetic and signaling networks in which pathway stoi-
chiometry is known, and the following assumptions are considered:

i) the reaction rates of the kinetic mechanisms obey the mass action law,

ii) the spatial distribution of products can be neglected,

iii) the process takes place in isothermal conditions.

Under these assumptions, a biochemical reaction network is defined as a set of n species or components
Xi (i = 1, ..., n) whose concentration or level of activity is a continuous variable xi ≥ 0, interacting
among themselves through a set of reactions taking place in r steps of the form:

n∑
i=1

αijXi

k+j−→←−
k−j

n∑
i=1

βijXi for j = 1, ...r (1)

In (1), the integers αij and βij are the stoichiometric coefficients for the component Xi in the reaction
step j, and the direct and inverse rates W+

j and W−
j respectively, are monomials of the concentrations

of the species involved in the step j according to the mass action law:

W+
j = k+j

n∏
i=1

x
αij

i W−
j = k+j

n∏
i=1

x
βij

i (2)

where k+j and k−j are the constants of the direct and of the inverse rates. The expression (1) may represent
different kind of kinetic mechanisms:

a) A reversible or equilibrium reaction if both constants of reaction are positive numbers.

b) An irreversible reaction if one of the constants is zero.

c) An input pseudo-reaction, an irreversible step for which all the stoichiometric coefficients αij = 0.

d) An output pseudo-reaction, an irreversible step for which all the stoichiometric coefficients βij = 0.

The dynamic evolution of the network, which state space is represented by the vector x of the component
concentrations is described by a set of ordinary differential equations of the form:

dx

dt
= f(x, k) (3)

where f is a nonlinear function in which only mass action kinetics kind of monomials are allowed, and
k refers to internal or external conditions held constant during the dynamic process [9], i.e. to the
monomial constants in (2). The reaction networks that, in addition to be isolated from the environment,
are endowed with the property of weakly reversibility are considered closed reaction systems in the
thermodynamic sense. By means of a suitable selection of the boundary of a virtual domain or control
volume, a biochemical reaction network may be partitioned in two subnetworks: a conservative and weakly
reversible inner subnetwork (closed reaction system) and a subnetwork representing the environment
connections, including as well the irreversible steps such as matter generation or extinction, that are in
fact input/output flows through the virtual domain.
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2.1 Review of the Chemical Reaction Network Theory formalism

The Chemical Reaction Network Theory [6] developed by Horn, Jackson and Feinberg provides a frame-
work for the study of the dynamics of chemical reactors. A reaction network defines a directed graph
on the so called complexes, that are the multisets of chemical species that appear on the left and right
hand sides of each reaction step in (1). Each complex ck has associated a vector yk representing the
stoichiometry of each specie in the complex as follows:

ck =
n∑

i=1

yikXi yk ∈ Pn (4)

where yik is related with the stoichiometric coefficients αij or βij in (1) depending on whether k is a
reactive or product complex. The n-dimensional vector yk is the k-th column of the so called stoichiometric
matrix Y that maps the n dimensional space of the species on the m dimensional space of the complexes.
Each of the m complexes of the network, that corresponds to a node in the graph, has associated the
nonlinear part of a monomial in (2), so it is posible to define the following m-dimensional vector of
monomials:

ψ(x) =
∑
y

xy ψk =
n∏

k=1

xyik

k (5)

The arrows in the graph stand for irreversible reactions. The arrow which connects the nodes i and j is
the reaction ci − cj in which complex i converts in complex j. The weights associated to the arrows are
the corresponding positive constants in (2), that constitute the entries of the adjacency matrix R of the
graph.
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Figure 1. Michaelis Menten kinetics mechanism. Graphical description of the closed (a) and open (b)
models

Attending to the connectivity properties, the so called linkage classes and weakly reversible linkage
classes in (3) have an equivalence in graph theoretic terms in the components and strongly connected
components, respectively. The dynamics (3) is derived from the graphical structure as follows:

ẋ = Y ·Ak · ψ(x) (6)

where Y is the stoichiometric matrix which columns are the vectors yk associated to the complexes, ψ(x)
is the vector of monomials (5) and Ak is the matrix settled starting from the adjacency matrix R of the
graph:

Ak = R− diag(RT · −→1 ) (7)
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Each of the reactions ci − cj has associated a vector yi − yj . The so called stoichiometric subspace S is
the span of the set of reaction vectors [3]. Some important results on the stability of reaction networks
provided by the Chemical Reaction Network Theory are stated in terms of the deficiency, that is defined
by the formula: δ = m − ℓ − s where m is the number of complexes of the network, ℓ is the number of
linkage classes and s is the dimension of the aforementioned stoichiometric subspace. The Deficiency Zero
Theorem [3] asserts that a weakly reversible network of deficiency zero has an unique and asymptotically
stable steady state in each reaction simplex (see subsection 2.3) for arbitrary values of the constants k in
(3). According to our formalism, thermodynamically closed reaction networks are deficiency zero. In order
to cope with the open systems description, a zero complex representing the environment is introduced,
and the outflow or inflow of a component from/to the control volume is modelled by a pseudo reaction
between the involved specie and the zero complex as it can be seen in Fig. 1b. Starting from a closed
system, the dynamics (6) varies as we open the system as a result of being the matrices Y , Ak and the
vector ψ modified by the introduction of the new complexes in the network [3]. In this contribution, we
propose an alternative representation which derived from the graphical description factorizes (6) into an
inner (closed reaction subnetwork) term and an environment connection as follows:

ẋ = Y ·Akc · ψc(x) + Φ · Y ·Ako · ψo(x) (8)

where the subindex c refers to the subgraph which represents a closed system of deficiency zero and
the subindex o denotes the input-output partition of the graph. For a closed system the parameter Φ
vanishes.

2.2 Review of the classical kinetic formalism

Assuming that all the steps (1) are reversible, we can adopt the classical kinetic formalism described in
[4] for the dynamics (3). The reaction rate for each step can be expressed in a polynomial form (2) as :
Wj = W+

j −W
−
j . Accordingly, the set of ordinary differential equations that describe the dynamics of

the network (3) can be written in the following compact matrix form:

ẋ = N ·W (x), ẋi =

r∑
j=1

νij(W
+
j −W

−
j ) (9)

where N = [νij ] is the n× r coefficient matrix whose columns are the linearly independent stoichiometric
vectors νj = βj − αj being νij = αij − βij positive or negative depending on whether the specie i is
a product or a reactant in the reaction j and W (x) ∈ Rr denotes the vector of reaction rates. The
state-space representation of an open reaction system is constructed by adding a set of input and output
terms to the closed reaction system (9). The set of ordinary differential equations governing the evolution
of states in an open system becomes:

ẋ = N ·W (x) + ϕ(x0 − x) (10)

where the parameter ϕ is related to the inverse of the residence time inside the control volume and x0

represents the inflow concentration vector. It should be noticed at this point the equivalence between
expressions (10) and (8). Typical phenomena in biochemical networks like degradation and generation of
components, for example, appear to be accommodated within these descriptions.

2.3 The reaction simplex and the equilibrium manifold

Mass conservation imposes the physical invariants of the dynamics (3) in a biochemical reaction network.
The n reacting species are composed by p building blocks Ck (k = 1, ..., p) that are not divided during
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the overall reaction, remaining their concentration constant. This fact gives rise in a closed system to
the following set of algebraic equations corresponding to the p mass conservation balances:

C0k = cTk · x for k = 1, . . . , p (11)

where the entries of the vector ck ∈ Nn represent the units of the building block Ck in each specie,
and C0k = cTk · x0 with x0 = x(0). The intersection of the positive orthant (i.e. Rn

+) with the set of p
conservation laws defines the so called reaction simplex for a given initial condition x0:

Ω(x0) =
{
x ∈ R+

n | cTk (x− x0) = 0, k = 1, ..., p
}

(12)

which is invariant for the system dynamics. In the Classical Kinetic approach, a basis of ker(N T )
determines the set of vectors [ck] in (12). In the Chemical Reaction Network Theory formalism, the
reaction simplex is obtained as the intersection between the parallel to the linear variety defined by the
stoichiometric subspace in which the initial concentration x0 is contained, and the positive orthant. The
reaction simplex is compact if and only if the system is conservative [3]. A thermodynamically closed
system is a system that is weakly reversible and conservative, where the relationships ẋ = 0⇔W (x∗) = 0
determine the set of equilibrium points x∗. We will show next by means of a Lyapunov argument that
there exists an equilibrium point and it is unique for every initial condition belonging to the same reaction
simplex. This is in agreement with the stability results derived from CRNT since thermodynamically
closed reaction systems are of deficiency zero.

Proposition 1. The trajectories of an open network (10) with inlet concentration vector x0 tend
exponentially to the reaction simplex Ω(x0).

Proof: Multiplying both sides in (10) by a basis of ker(N ) we arrive to cT ẋ = ϕ · (cTx0 − cTx), that
is, Ω̇(x) = ϕ · (Ω(x0)− Ω(x)). After integrating this last expression over time:

Ω(t) = Ω(x0)
(
1− e−ϕ·t)

)
+Ω(x0)e

−ϕt (13)

so that limt→∞ Ω(t)→ Ω(x0) and convergence to the simplex can be concluded.

2.4 Example: Michaelis Menten Kinetics with substrate inhibition

2.4.1. The mechanism: The Michaelis Menten kinetics for the reaction S → P catalyzed by enzyme
(where the substrate acts as an inhibitor) is described in biochemistry by means of a two dimensional
state space system of equations:

dP

dt
=

Vmax[S]

KM + [S] + [S]2

Ki

,
dS

dt
= − Vmax[S]

KM + [S] + [S]2

Ki

(14)

where [S] and [P ] represent the substrate and product concentrations, respectively. Vmax is a constant
term wich depends on kinetic factors and initial concentration of enzyme, and the constants KM and Ki

are the Michaelis and Inhibition constants respectively. As it is well known, the system described in (14)
corresponds to a reduced order representation of the following mass action law based mechanism:

E + S
k+1−→←−
k−1

ES ES
k+2−→←−
k−2

E + P ES + S
k+3−→←−
k−3

ESS (15)

where the enzyme E and the substrate S bound together in an intermediate complex ES that breaks down
to product P and free enzyme. In addition, the intermediate ES reacts also with the substrate forming
a dead-end complex ESS. Under the steady state assumption introduced by Haldane and Briggs [5], the
concentrations of the species ES, ESS are constant and in the product formation step the reverse rate
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of reaction is negligible with respect to the direct one (k+2 >> k−2 ). As a consequence of this assumption,
the dynamics of mechanism (15) reduces to the two dimensional system (14) in which:

Vmax = k+2 E0, KM =
k+2 + k−1
k+1

, Ki =
k−3
k+3

(16)

In Fig. 1a the mechanism (15) is depicted under both a classical and a graphical description. The
corresponding state-space equations will be described next, representing by means of the state vector
[x1, x2, x3, x4, x5] the concentrations of the species E, S, ES, ESS,P .

2.4.2. The graph description: Let us consider the open system consisting of the mechanism (15) in
which substrate and product are allowed to pass through the control volume as depicted in Fig. 1b, where
Gc and Go are the corresponding closed and open partitions of the graph. In agreement with (8):

ẋ =


1 0 1 0 0 0 0 0
1 0 0 1 0 1 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0

 ·


−k12 k21 0 0 0
k12 −k21 − k23 k32 0 0
0 k23 −k32 0 0 0
0 0 0 −k45 k54
0 0 0 k54 −k54

0 0

 ·


x1 · x2

x3

x1 · x5

x2 · x3

x4

0

+


1 0 1 0 0 0 0 0
1 0 0 1 0 1 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0


 0 0

−k68 0 k86
0 0 −k78 0

k68 k78 −k86 − k87

 ·
 0

x2

x5

1

 (17)

2.4.3. The classical kinetic description: The reaction rates for each step of the mechanism (15) are:

W1 = k+1 x1x2 − k
−
1 x3, W2 = k+2 x3 − k

−
2 x1x5, W3 = k+3 x3x2 − k

−
3 x4 (18)

and the dynamics, after adding the corresponding input and output terms (10) for the open system in
Fig. 1b is equivalent to (17) with k78 = ϕ, k68 = ϕ, k86 = ϕx20:

ẋ =


−1 1 0
−1 0 −1
1 −1 −1
0 0 1
0 1 0

 ·
 W1

W2

W3

+ ϕ ·


0

x20 − x2
0
0
−x5

 (19)

2.4.4. The reaction simplex The mass conservation balances (11) for this case, in its closed form, are:

C0X0
= cTXx = x1 + x3 + x4 , C0S0

= cTSx = x2 + x3 + 2x4 + x5 (20)

where C0X and C0S represent the concentrations of building blocks of the network, i.e., the X and S species.
Vectors cX and cS can be grouped into the following matrix:

CT =

(
1 0 1 1 0
0 1 1 2 1

)
(21)

which defines a basis for kerN T so that CTN = 0. Consequently, each vector C0 = (C0A, C0B) defines a
specific reaction simplex Ω(x0) for every initial condition x0 satisfying C0 = CTx0.
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3 The entropy balance and the dynamics of the network

3.1 The dissipative nature of reaction networks

According to the second law of thermodynamics isolated systems evolve to equilibrium through irreversible
processes that produce entropy, being the rate of entropy production a way to quantify dissipation. In
exploring the stability of the equilibrium manifold, we follow [4] and define an entropy-like expression as
the negative of the function:

S(x) =
n∑

i=1

xi · (lnxi − 1) (22)

that coincides with the Lyapunov function used in [3] for the demonstration of the so-called Deficiency
Zero Theorem. The right hand side term in (9) is Lipschitz continuous, as discussed in [1], this implies
that for any arbitrary reference x1 there exists a nonnegative function Lλ(x, x1) associated to a constant
λ ≥ 0, such that the following relation holds:

[µ(x)− µ(x1)]TN ·W (x) + Lλ(x, x1) = λ[µ(x)− µ(x1)]T (x− x1) (23)

where µ = ∇xS = [lnx1 . . . lnxn]
T . Systems which, in addition, satisfy that L0(x, x1) ≥ 0, are referred

as purely dissipative in [1]. Closed reaction networks are a class of purely dissipative systems for a state
x1 being the equilibrium reference. This can be easily shown by noting that for λ = 0 and x1 = x∗ in
(23) we have:

L0(x, x
∗) = −(µ− µ∗)T

r∑
j=1

νjWj =

r∑
j=1

ln
W+

j

W−
j

· (W+
j −W

−
j ) (24)

Since each term at the right hand side of (24) is non-negative we conclude that L0(x, x
∗) ≥ 0. In

order to derive the stability conditions for closed reaction networks we define a positive definite and
convex function B(x), constructed as the difference between S(x) and its supporting hyperplane at the
equilibrium reference x∗:

B(x, x∗) =
n∑

i=1

xi

(
ln
xi
x∗i
− 1

)
+ x∗i (25)

Taking the time-derivative B(x, x∗) along (25) and using (23) with λ = 0 we obtain:

Ḃ = (µ− µ∗)T
r∑

j=1

νjWj = −L0(x, x
∗) (26)

Since by (24) L0 ≥ 0 we have that Ḃ ≤ 0. It is easy to check that B is bounded from below, globally
convex and it has a global minimum in x = x∗. Consequently, B is a legitimate Lyapunov function which
ensures the structural stability of the reaction network at the equilibrium reference.

3.2 The non-dissipative contributions

The material throughput flow induce non-dissipative contributions to the system, by adding a new term
in the entropy balance: the entropy flux. In our formalism, the entropy balance is obtained by computing
the time derivative of B as defined in (26) along (10):

Ḃ = (µ− µ∗)T
r∑

j=1

νjWj + (µ− µ∗)Tϕ(x0 − x) (27)
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The first term in the right hand side of (27) corresponds to the entropy production (PB), while the second
term is the entropy flux (ΦB) that may compensate or even override the natural entropy dissipation, thus
undermining the inherent global stability of the system. To illustrate this in the Michaelis Menten
example, the time derivative of the function B (27) and the corresponding trajectories in the phase space
(19) are depicted in Fig. 2 for increasing values of the parameter ϕ. In Fig. 2b three steady states can
be observed, the unstable one corresponding to the region of the state space for which the value of Ḃ is
positive in Fig. 2f. It seems therefore crucial to act on the non dissipative contributions by appropriate
control configurations in order to stabilize reaction networks.
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Figure 2. From left to right Ḃ and the corresponding trajectories in the phase space for increasing
values of ϕ

4 Biochemical networks stabilization through nonlinear control

4.1 Passivity and its application in nonlinear control

In the framework of nonlinear control theory, reaction systems will be represented in the following general
input-affine state-space form with m inputs u ∈ U = Rm and p outputs y ∈ Y = Rp:

ẋ = f(x) +G(x)u
y = h(x)

(28)

Where the state vector x = [x1, . . . , xn]
T is assumed to belong to an open set X of Rn, f ∈ Rn 7→ Rn,

G(x) ∈ Rn×m for all x ∈ X, h ∈ Rn 7→ Rp, and f(0) = 0.
A system of the form (28) with p = m is said to be passive if there exists a C0 nonnegative function

V : X → R, called the storage function, such that for all u ∈ U , x(t0) ∈ X, t1 ≥ t0

V (x(t1)) ≤ V (x(t0)) +

∫ t1

t0

yT (t)u(t)dt, ∀t > 0 (29)

or equivalently:
V̇ (t) ≤ yT (t)u(t), ∀t > 0

Inequality (29) originally comes from the theory of electrical circuits and expresses the fact that the
stored energy V at any future time t1 is at most equal to the sum of the stored energy at the present
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time t0 plus the total externally supplied energy
∫ t1
t0
yT (t)u(t)dt. This principle can be generalized for

other nonlinear systems where V is not necessarily energy but a suitable abstract quantity. If V has
appropriate geometry (e.g. it is bounded from below and proper), then it can be used as a Lyapunov
function for stability analysis of the uncontrolled (open-loop) or controlled (closed-loop) system. Passive
systems have many interesting and advantageous properties from a control point of view, but we will
emphasize here only two of them. Firstly, if V can be used as a Lyapunov function, then passive systems
can be globally asymptotically stabilized with a feedback u = −ϕ(y) where ϕ(0) = 0 and yTϕ(y) > 0
∀y ̸= 0. Secondly, if a storage function candidate is previously known for the uncontrolled system, i.e.
∂V
∂x f(x) ≤ 0 and the input is given, then the system will be passive if we choose the output in the following

way: yT = ∂V
∂xG(x). (For the proofs and details see, e.g. [12]).

It is visible that (27) expresses a passivity relation with V = B, y = µ− µ∗ and u = ϕ(x0 − x).

4.2 Stabilization in the state space

In this section we propose a meaningful way to modify the entropy flux by means of a nonlinear controller
to stabilize reaction networks with u = x0, provided that observability and controllability conditions are
satisfied [9].

A simple way of stabilizing steady states is summarized in the following proposition:
Proposition 2. Any stationary solution x∗ of (10) can be rendered exponentially stable by a control

law of the form x0 = x0∗ − ω(x− x∗) with ω ≥ (λ− ϕ− α)/ϕ > 0 and α < 0
Proof: First, let us construct a B function as in (25) with respect to the stationary solution x∗

associated to the input concentration vector x0∗. Defining x = x− x∗, x0 = x0 − x0∗ and computing the
time derivative of B along (10) we get:

Ḃ = (µ− µ∗)TN (W (x)−W (x∗)) + ϕ(µ− µ∗)T (x0 − x) (30)

Since B(x, x∗) is convex, we also have the following inequality:

B(x, x∗) ≥ (µ− µ∗)Tx (31)

Substituting (23) and the control law in (30) we obtain:

Ḃ = −Lλ + (λ− ϕ− ϕω)(µ− µ∗)Tx (32)

Finally, since Lλ > 0, and B satisfies (31), equation (32) becomes Ḃ ≤ αB and the result follows.

4.3 Stabilization and passivity in the reaction space

4.2.1. The potential structure of the reaction space: By introducing a nonlinear coordinates-transformation,
we will demonstrate next that a complex reaction network possesses an underlying potential structure
on a state space homeomorphic to the concentration space, that will be referred to as the reaction space.
Let us define the following new coordinates:

zj = ln
pj
qj

for j = 1, ..., r (33)

with pj and qj being the direct and reverse rates associated to the reaction step j (W+
j and W−

j ). In the
new variables, equation (2) becomes:

Wj = pj − qj = qj(e
zj − 1) (34)

9



The right hand side of Eq. (24) can then be transformed through appropriate manipulations into the
form:

ℓ(z, q) = −
r∑

j=1

zj qj(e
zj − 1) = −zTW (35)

Function ℓ can be easily connected with the so called dissipation function [2] as it is the product of
thermodynamic fluxes (reaction rates) and thermodynamic forces (chemical affinities). In this way, it
seems natural to explore the properties of chemical reaction network dynamics in the reaction space
defined by z-variables. For that purpose, let us introduce the following notations:

S = N TΓN , Γ = diag

[
1

x1
, ...,

1

xi
, ...

1

xn

]
(36)

The particular structure of the elements of the reaction vector (34) suggests the definition of the following
potential:

H(z) =
r∑

j=1

(ezj − zj)− 1 (37)

and re-write the vector of reaction rates as:

W = F (q)Hz (38)

where F (q) = diag[q1, ... , qj , ... , qr] is a positive definite diagonal matrix and Hz represents the gradient
of (37). Note that by construction, the potential H is convex and positive definite everywhere except at
the equilibrium point z∗ = 0, where H(0) = 0. Defining J = SF (q) we obtain the following potential
dynamic description:

ż = −JHz (39)

where Hz is the gradient of H (written as a column vector). It is clear from (39) that if J is positive
definite, then H is decreasing in time and the global asymptotic stability of the reaction system in the
reaction space can be concluded (with H as a Lyapunov function). It is interesting to note that in this
case, the dynamics in the reaction space gives a so-called generalized Hamiltonian system [12]. However,
it can be shown that there are such reaction networks, where J is not globally positive definite.

4.2.1. Stabilization in the reaction space: The dynamic evolution of an open reaction network (10) in
the reaction space is described as:

ż = −JHz −N TΓϕ(x0 − x) (40)

where J ∈ Rr×r is a positive definite matrix. The potential structure discussed above allows us to
establish a straightforward connection with passivity, summarized next:

Proposition 3. If JT +J is globally positive definite, then the system (40) endowed with the function
H (37) is passive with y = Hz and u = N TΓϕ(x− x0).

Proof: We compute the time derivative of the potential (37) along the trajectories defined by (40)
using the definitions of y and u to obtain:

Ḣ = −Hz
TJHz −Hz

TN TΓϕ(x0 − x) = −Hz
TJHz + yTu (41)

It clearly follows from (41) that the passivity inequality (29) is valid in the reaction space in this case.
Remark 1. If JT + J is not globally positive definite, then open reaction networks can be globally

stabilized in the reaction space with control Lyapunov function H by nonlinear control laws of the form:

u = N TΓ(NF +KΓN )y (42)
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where K ∈ Rn×n is an appropriate (and possibly state dependent) matrix. Applying the feedback (42)
the time-derivative of H can be calculated as

Ḣ = yTN TΓKΓN y

which is negative if K is negative definite (or zero if K is skew-symmetric).
To illustrate this in the Michaelis Menten example, starting from the definition of the p and q variables

and according with (18), the new coordinates are:

z1 = ln
k+1 x1x2

k−1 x3
, z2 = ln

k+2 x3

k−2 x1x5
, z3 = ln

k+3 x3x2

k−3 x4
(43)

Taking the expression of y in Proposition 3 and the proposed control law u, the convergence of the
kinetic system to the steady state can be significantly improved by using e.g. the following feedback gain
matrix in (42): K = −0.1 · I5×5, where I denotes the unit matrix.

5 Conclusions

In this work, we have first shown how under some assumptions and the proper control volume selection,
a general class of biochemical reaction networks fits into two equivalent descriptions: one coming from
the graph of a reaction network and the other derived from the classical kinetic formalism. As a first con-
clusion, CNRT stability results directly apply to such general class of biochemical systems. In addition,
both representations allow us to rigorously apply concepts and tools from irreversible thermodynamics in
the dynamic analysis and stabilization of biochemical reaction networks, by stating an entropy balance
over compact regions of the state space, the so called reaction simplices. We have shown by means of
thermodynamic arguments that closed reaction networks are purely dissipative systems, then concluding
that dynamical complexity is associated to the entropy flux through the boundary. Based on this physical
insight, the entropy flux is meaningfully manipulated via the nonlinear control laws proposed, achiev-
ing the efficient stabilization of arbitrary steady states in biochemical networks. We have demonstrated
as well the inner underlying potential structure of this general class of biochemical networks, and then
passivity theory has been applied to develop suitable nonlinear control laws in order to ensure stability
in the reaction space. The explored potential structure and the passivity framework may facilitate the
subsequent extension of our results to higher level structures of interconnected systems and signals, such
as populations of coupled oscillators [8]. As another direction of future work, the graphical description
that we have proposed might be employed to derive observability and controllability results exploiting
its special structure.
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