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Abstract

In this paper we propose a numerical method for approximating the product of a
matrix function with multiple vectors by Krylov subspace methods combined with
a QR decomposition of these vectors. This problem arises in the implementation
of exponential integrators for semilinear parabolic problems. We will derive reliable
stopping criteria and we suggest variants using up- and downdating techniques.
Moreover, we show how Ritz vectors can be included in order to speed up the
computation even further. By a number of numerical examples, we will illustrate
that the proposed method will reduce the total number of Krylov steps significantly
compared to a standard implementation if the vectors correspond to the evaluation
of a smooth function at certain quadrature points.
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1 Introduction

Recently, exponential integrators for semilinear parabolic problems have at-
tracted a lot of interest [5–9,20,21,25,28,33]. The main computational effort
for the implementation of these methods is the computation or approximation
of the product of a matrix function with a vector. In parabolic problems, the
matrix stems from the spatial discretization of an elliptic operator. If this dis-
cretization is based on finite differences or finite elements, the resulting matrix

⋆ This work is supported by the Deutsche Forschungsgemeinschaft.
Email addresses: marlis@am.uni-duesseldorf.de (Marlis Hochbruck),

niehoff@am.uni-duesseldorf.de (Jörg Niehoff).

Preprint submitted to Elsevier Science version of 23 March 2007



is large and sparse. The most popular method for approximating such matrix
operators is by Krylov subspace methods [2–4,11–13,15,16,19,23,24,32,34,36].
A more recent development for symmetric (or sectorial) matrices is to use ra-
tional approximations [26,29,30,37,38]. A major difficulty with general matrix
functions is the lack of a residual. Therefore, it is challenging to reuse infor-
mation from previous time steps and most of the methods proposed for linear
systems cannot be generalized to this application.

In this paper we consider the approximation of

zi := f(τA)gi, gi = g(t + ciτ), i = 1, . . . , n (1)

where g is a smooth function, A is a square (symmetric or nonsymmetric) real
matrix, τ > 0 denotes the time step of some numerical integration scheme,
and c1, . . . , cn are given quadrature nodes. For simplicity, we restrict ourselves
to real problems, but everything can be generalized to complex problems with
only obvious modifications.

Such problems arise in the implementation of exponential Runge-Kutta or
multistep methods. Note that within these integrators the vector gi depends
on previous vectors g1, . . . , gi−1, so block methods which use all vectors in the
very beginning are not applicable. A standard implementation would be to run
the Lanczos process or the Arnoldi process for each of the n vectors g1, . . . , gn

separately, hence ignoring previously computed information.

The idea to reuse information from previous computations is to compute an
orthonormal basis q1, . . . , qn of the vectors g1, . . . , gn and to compute bases of
the Krylov subspaces with respect to qi instead of gi. We will prove that the
entries of the upper triangular factor of the QR decomposition of the matrix
build from g1, . . . , gn have entries of magnitude O(τ i−1) in the ith row. This
can be exploited by the fact that the tolerance for stopping the ith iteration
can be enlarged by a factor of order O(τ 1−i) compared to the tolerance of
the first iteration, so that fewer and fewer iterations are required. For the
solution of linear systems with multiple right-hand sides, a similar approach
was proposed by Fischer [14] and Lötstedt and Nilsson [27]. However, since we
cannot access residual vectors for general matrix functions, we have to modify
their algorithms, in particular we need a much more detailed analysis than in
[14,27] to construct reliable and efficient stopping criteria.

We would like to stress that the methods we consider in this paper can be
used with standard Krylov subspace methods (Lanczos, Arnoldi, Chebyshev
methods, etc.) as well as with rational variants, e.g. the shift and invert meth-
ods (for symmetric or sectorial matrices) from [29,38]. However, one could also
use other methods than Krylov subspace methods to approximate the matrix
operator.
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The paper is organized as follows: in Section 2 we present the basic idea and
some theoretical results which are required to motivate the procedure and
to construct stopping criteria. Section 3 deals with practical aspects of the
implementation such as restarting and up- and downdating of the QR decom-
position. We also show how to incorporate approximate Ritz vectors into the
QR decomposition. In Section 4 we present a number of numerical experiments
which show that the new method can speed up a standard implementation of
exponential integrators such that up to 80–90% of the overall computational
time can be saved. Moreover, we give comparisons to standard (non exponen-
tial) integrators for stiff problems.

2 Orthogonalization procedure

In the following we assume that g : R → R
N is a sufficiently smooth function

so that the constants

Mi := max
ξ∈[t+c1τ,t+cnτ ]

‖g(i)(ξ)‖, i = 0, . . . , n

are reasonably bounded. τ > 0 denotes the step size (e.g. of some time inte-
gration scheme) and

0 ≤ c1 < . . . < cn

are given quadrature nodes.

The motivation for the proposed algorithm is based on the following theorem.

Theorem 1 The QR decomposition

[g1, . . . , gn] = QR, Q = [q1, . . . , qn], R = {rik}
n
i,k=1

satisfies
|rik| ≤ CiMi−1τ

i−1 i ≤ k, (2)

(and rik = 0, for i > k), for i, k = 1, . . . , n. The constants Ci only depend on
the nodes ci but are independent of g and τ .

Remark The theorem states that the entries of the ith row of the upper
triangular factor R of the QR decomposition are of magnitude O(τ i−1).

Proof Without loss of generality we assume c1 = 0. Obviously, rik = qT
i gk

for i ≤ k, so that we can bound

|r1k| = |qT
1 gk| ≤ ‖g(t + ckτ)‖ ≤ M0, k = 1, . . . , n. (3)

In the following we consider i ≥ 2. The polynomial pi−2 of degree i− 2 which
interpolates g in the nodes t+ cjτ , j = 1, . . . , i− 1 can be written in Lagrange
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form as

pi−2(σ) =
i−1∑

j=1

ℓj(σ)gj. (4)

Obviously, we have

qT
i p

(k)
i−2(σ) = 0, i = 2, . . . , n, k ≥ 0.

Let Ei−2(σ) := g(σ) − pi−2(σ) be the interpolation error.

For k > i, Taylor expansion yields for some θ ∈ (ci, ck)

|rik| = |qT
i g(t + ckτ)|

≤ ‖Ei−2(t + ckτ)‖

= ‖
i−2∑

j=0

(ck − ci)
j

j!
τ jE

(j)
i−2(t + ciτ) +

(ck − ci)
i−1

(i − 1)!
τ i−1E

(i−1)
i−2 (t + θτ)‖

≤ CiMi−1τ
i−1

by Lemma 1 below and

‖E
(i−1)
i−2 (t + θτ)‖ = ‖g(i−1)(t + θτ)‖.

For k = i the same bound is derived directly from Lemma 1. 2

The following Lemma is probably not new but to the best of our knowledge
the result is not given in the literature in the form required for our purposes.
We therefore present it here with a complete proof.

Lemma 1 Let pn be the polynomial interpolating g in the nodes a = x1 <
. . . < xn+1 < b. Then the interpolation error En = pn − g satisfies for xn+1 <
x ≤ b

‖E(k)
n (x)‖ ≤ Cn,kMn+1(x)(x − x1)

n+1−k, k = 0, . . . , n,

where Mj(x) = max
ξ∈[x1,x]

‖g(j)(ξ)‖ and

Cn,k ≤
1

(n + 1 − k)!
+ kn

(
∆

δ

)n−1

,

with δ :=
n

min
j=1

|xj+1 − xj| and ∆ := |xn+1 − x1|.

Proof Due to xn < x < b, the interpolation error can be written as

En(x) =
1

n!

∫ b

a
g(n+1)(σ)κn(x, σ)dσ
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where

κn(x, σ) = (x − σ)n
+ −

n+1∑

j=1

(xj − σ)n
+ℓj(x),

denotes the Peano kernel

(x − σ)+ =





x − σ, x ≥ σ,

0, x < σ.

For k = 0, . . . , n, the kth derivative of the error is

‖E(k)
n (x)‖ = ‖

1

n!

∫ x

a
g(n+1)(σ)

∂k

∂xk
κn(x, σ)dσ‖

≤
Mn+1(x)

n!

∫ x

a

∣∣∣∣∣∣
∂k

∂xk


(x − σ)n −

n+1∑

j=1

(xj − σ)n
+ℓj(x)




∣∣∣∣∣∣
dσ

=
Mn+1(x)

n!

∫ x

a

∣∣∣∣∣∣
n!

(n − k)!
(x − σ)n−k −

n+1∑

j=1

(xj − σ)n
+ℓ

(k)
j (x)

∣∣∣∣∣∣
dσ

≤ Mn+1(x)


(x − a)n+1−k

(n + 1 − k)!
+

n+1∑

j=2

|ℓ
(k)
j (x)|

(xj − a)n+1

(n + 1)!


 .

Because of

|ℓ
(k)
j (x)| =

∣∣∣∣∣∣∣∣

n+1∏

m=1
l 6=j

1

xj − xm

∂k

∂xk

n+1∏

l=1
l 6=j

(x − xl)

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

n+1∏

m=1
l 6=j

1

xj − xm

n+1∑

j1=1

. . .
n+1∑

jk=jk−1+1

k!
n+1∏

l=1
l 6=j,l 6=j1,...,l 6=jk

(x − xl)

∣∣∣∣∣∣∣∣

≤
n+1∏

m=1
l 6=j

1

|xj − xm|
k!

(n + 1)!

(k − 1)!
(x − x1)

n−k,

we get with a = x1

‖E(k)
n (x)‖ ≤ Mn+1(x)(x − x1)

n+1−k

(
1

(n + 1 − k)!
+

n+1∑

j=2

k
n+1∏

l=1
l 6=j

(xj − x1)
n

|xj − xl|

)

≤ Mn+1(x)(x − x1)
n+1−k

(
1

(n + 1 − k)!
+

n+1∑

j=2

k
n+1∏

l=2
l 6=j

(xj − x1)
n−1

|xj − xl|

)

≤

(
1

(n + 1 − k)!
+ kn

(
∆

δ

)n−1
)

Mn+1(x)(x − x1)
n+1−k.

This proves the lemma. 2
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The idea how to exploit the QR decomposition for the approximation of
zi = f(τA)gi is summarized in Algorithm 1. Here and in the following we
use Matlab notation to refer to submatrices. In (5) one can use any stop-
ping criterion which is suitable for the particular application, for instance the
criterion proposed by Saad [34] or by van den Eshof and Hochbruck [38].

Algorithm 1 Orthogonal projection method

for i = 1, . . . , n do

Compute the QR decomposition [g1, . . . , gi] = QR.
Compute (Krylov) approximations w̃i to wi = f(τA)qi such that

‖wi − w̃i‖ ≤ toli. (5)

Compute z̃i = [w̃1, . . . , w̃i]R1:i,i as approximation to zi = f(τA)gi.
end for

3 Practical aspects

In this section we discuss some details of the implementation which are nec-
essary to provide an efficient and reliable algorithm. For the computation of
the QR decomposition we propose to use reorthogonalization as described by
Daniel, Gragg, Kaufman, and Stewart [10], if loss of orthogonality is detected.

3.1 Stopping criterion

An important issue is to determine the tolerances toli in (5) such that

‖zi − z̃i‖ ≤ tol, i = 1, . . . , n (6)

is satisfied. Since we do not construct Krylov bases with respect to A and
gi, we cannot use standard stopping criteria here. By definition of the QR
decomposition we have

‖zi − z̃i‖ ≤
i∑

k=1

‖wk − w̃k‖ · |rk,i|, i = 1, . . . , n.

Therefore,

‖wk − w̃k‖ ≤
tol

i|rk,i|
, k = 1, . . . , n, i = k, . . . , n

is sufficient to guarantee (6) for i = 1, . . . , n. However, since the vectors gi,
i ≥ 2 are not available in the beginning but can only be computed after
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the previous iterations are completed, rk,n is unknown at the time where we
need to decide upon stopping the iteration. Fortunately, the analysis in the
Section 2 shows that all entries of the kth row of the factor R are of the same
magnitude so that – up to constants depending on the function g and the
quadrature nodes only – we have

|rk,i| ≈ |rk,n|, k = 1, . . . , n, i = k, . . . , n.

This motivates to define

toli :=
tol

n|ri,i|
(7)

Due to ri,i = O(τ i−1), this means that the tolerance is enlarged by a factor
of 1/τ in each QR step, so that we need fewer and fewer Krylov steps while
adding more vectors to the decomposition.

3.2 Updating, downdating, restarts

Algorithm 1 becomes inefficient if the number of vectors used in the QR de-
composition becomes too large. The computational cost for the construction
of the QR decomposition as well as for the linear combinations to compute the
approximations zi will become prohibitively expensive. Moreover, even though
we use reorthogonalization, loss of orthogonality due to roundoff will occur.

The first idea to overcome these difficulties is to restart the algorithm after k
vectors. This will limit the storage requirements and the computational cost at
the price of throwing away all previously computed information. Alternatively,
we suggest to up- and downdate the QR decomposition, so that after the
starting phase we always keep k orthogonal vectors, cf. Golub and van Loan
[17].

We will now describe the procedure in more detail. Assume we have finished
k steps of Algorithm 1, so we have computed Q, R, and approximations
w̃1, . . . , w̃k from which we can obtain z̃1, . . . , z̃k. We start to downdate the
QR decomposition by eliminating q1. This can be done by computing a QR
decomposition of the last k − 1 columns of R,

R




0

I


 = HR̂k−1, H ∈ R

k,k−1, R̂k−1 ∈ R
k−1,k−1.

where H is an orthogonal upper Hessenberg matrix and R̂k−1 is upper trian-
gular. This yields

[g2, . . . , gk] = Q̂k−1R̂k−1, Q̂k−1 = QH ∈ R
N,k−1.
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Next we orthogonalize gk+1 against Q̂k−1:

[g2, . . . , gk+1] = Q̂kR̂k, Q̂k ∈ R
N,k, R̂k ∈ R

k,k.

If we define

vi = f(τA)q̂i, i = 1, . . . k,

then we have by construction

[v1, . . . , vk−1] = [w1, . . . , wk]H.

Approximations to these vectors are taken from already available approxima-
tions via

[ṽ1, . . . , ṽk−1] = [w̃1, . . . , w̃k]H

and an approximation to vk is computed by starting a new Krylov process
with respect to A and q̂k.

As in the previous section, it is essential to stop the iteration correctly. Due
to H being orthogonal upper Hessenberg and hj+1,j r̂j,j = rj+1,j+1, we have for
j = 1, . . . , k − 1

‖vj − ṽj‖ = ‖
j+1∑

i=1

(wi − w̃i)hij‖

≤
j∑

i=1

toli + tolj+1|hj+1,j|

=
j∑

i=1

toli +
tol

k|r̂j,j|

From Theorem 1 we have |r̂j,j| = O(τ 1−j), so that

‖vj − ṽj‖ ≤
tol

k
O(τ 1−j), j = 1, . . . , k − 1.

For vk we can proceed as in the previous section and use

‖vk − ṽk‖ ≤ t̂olk :=
tol

k|r̂k,k|

as stopping criterion. These criteria ensure (6) for all i = 1, . . . , k+1. Moreover,
we are in the same situation as before the up- and downdating step, which
means that we can use the same criteria for the next step.

In numerical experiments we found it necessary to restart this up- and down-
dating procedure after a certain number of steps. We illustrate the effect by
the following example.
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Fig. 1. Effect of restarting the up- and downdating procedure, cf. Example 3.1.

Example 3.1. Let A be a diagonal matrix of dimension N = 105 with diagonal
entries uniformly distributed in the interval [−400, 0] and let be b1 = Au with
a normalized random vector u ∈ R

N . We choose

bi = A(bi−1 + hzi−1), i = 2, . . . , n

with zi = eAbi, h = 1/n and n = 20. This recursion resembles 20 time steps
of the exponential Euler method. We approximate eAbi, i = 1, . . . , n to the
accuracy tol = 10−8 with the Lanczos method by using the up- and downdating
variant of the QR decomposition with k = 3. The left picture of Figure 1
shows the error versus the number of Lanczos iterations without restarts. For
the right picture we restarted after s = 9 approximations. The dotted line
corresponds to the required accuracy tol. The example clearly shows that
restarting is necessary. ⋄

3.3 Including Ritz vectors

It might be interesting to exploit the knowledge of an almost A invariant
subspace into the computation. For instance, in exponential integrators for
parabolic problems, f is related to an exponential function. Then the solution
f(τA)gi is dominated by eigenvectors corresponding to eigenvalues with largest
real part. This motivates to approximate the eigenvectors of these eigenvalues
by Ritz vectors extracted from the Krylov subspace with respect to A and
g1. The additional work required for the computation of the Ritz vectors is
negligible. However, since the subspace spanned by these Ritz vectors is not
exactly A invariant, these results have to be included in the computation in a
clever way.

We propose to extract normalized Ritz vectors u1, . . . , ul corresponding to
the l Ritz values with largest real part and add these vectors to the QR
decomposition,

[u1, . . . , ul, g1, . . . , gk] = QR,
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where the g vectors can be added one after the other. Note that the entries
of the upper part of R, R1:l,:, are O(1), since in general, the Ritz vectors
cannot be interpreted as evaluations of a smooth function. The entries of the
submatrix of the bottom right block of R, i.e. Rl+1:l+k,l+1:l+k, are O(τ i−1) in
the ith row due to Theorem 1.

The idea is now to compute the approximations

z̃1 ≈ z1 = f(τA)g1, ‖z1 − z̃1‖ ≤
tol

l + k
, (8a)

ṽi ≈ vi = f(τA)ui, ‖vi − ṽi‖ ≤
tol

(l + 1)(l + k)
, i = 1, . . . , l (8b)

w̃i ≈ wi = f(τA)ql+i, ‖wi − w̃i‖ ≤
tol

(l + k)|rl+i,l+i|
, i = 2, . . . , k (8c)

by constructing Krylov bases with respect to A and g1, u1, . . . , ul and
ql+2, . . . , ql+i. Note that we do not compute a Krylov subspace with respect to
A and ql+1 since we can recover

w1 = f(τA)ql+1 = [v1, . . . , vl, z1]R
−1
1:l+1,l+1

from already computed vectors. The approximation

w̃1 = [ṽ1, . . . , ṽl, z̃1]R
−1
1:l+1,l+1

then satisfies

‖w1 − w̃1‖ . l
tol

(l + 1)(l + k)
+

tol

(l + k)|rl+1,l+1|
≈

tol

l + k
,

where . means that the inequality holds up to constants. For S =
R−1

1:l,1:lR1:l,l+1:l+k we have

zi = f(τA)gi = [v1, . . . , vl]S:,i + [w1, . . . , wi]Rl+1:l+i,l+i.

The approximations

z̃i = [ṽ1, . . . , ṽl]S:,i + [w̃1, . . . , w̃i]Rl+1:l+i,l+i

then satisfy

‖zi − z̃i‖ . l
tol

l + k
+

i∑

j=1

tol

(l + k)|rl+j,l+j|
|rl+j,l+i|.

From Theorem 1 we have |rl+j,l+i| ≈ |rl+j,l+j| so that (6) is satisfied (up to
constants).

In our practical algorithm we compute Ritz vectors only in the very first time
step. We stop the Krylov process when the stopping criterion (8a) is satisfied.
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The number of actually used Ritz vectors is determined automatically by the
following strategy: we compute lmax eigenpairs of the Hessenberg matrix (e.g.
lmax ≤ 10) and consider the residual norms of the corresponding Ritz pairs.
These residual norms can be computed efficiently from the eigenpairs of the
Hessenberg matrix without computing the Ritz vectors itself, cf. [1, Section 4.4
and 7.5]. Then we use all Ritz pairs, which have a residual norm less than a
moderate tolerance. In our experiments, we found 0.1 sufficient. Note that we
do not extend the Krylov space to improve the accuracy of the Ritz pairs.

Up- and downdating is only performed with the vectors g1, . . . , gn. We will
restart this up- and downdating procedure after s vectors gj have been included
in the QR decomposition.

After running a large number of experiments we suggest to use k between 3
and 5, if the application does not lead to a natural choice. For instance, if
the application is an multistep or multistage exponential integrator, than the
number of stages is a possible candidate for k. Moreover, we suggest to choose
s as a multiple of k, for instance s = 2k, 3k, 4k.

4 Numerical experiments

We consider the semilinear parabolic problem

∂U

∂t
(x, t) − ∆U =

1

1 + U(x, t)2
+ Φ(x, t) (9)

for x ∈ [0, 1]d and t ∈ [0, 1], subject to homogeneous Dirichlet boundary
conditions. The source function Φ is chosen in such a way that the exact
solution of the problem is

U(x, t) = et
d∏

i=1

xi(1 − xi).

The spatial discretization is done by finite differences with N interior grid
points in each space dimension. This results in the following system of ordinary
differential equations

∂u

∂t
(t) = Au + ρ(t, u), A ∈ R

Nd,Nd

.

Note that due to ‖A‖ ≈ (N + 1)2, the problem is stiff. The matrix A is
symmetric, negative definite, so that we can apply the symmetric Lanczos
process or its shift and invert variant [29,38] as underlying Krylov method.
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Fig. 2. Cpu time in seconds (left) and savings in percent (right) versus N for different
numbers l of included Ritz vectors, and time steps τ = 0.1 (solid), τ = 0.05 (dashed),
τ = 0.01 (dotted). Details are given in Example 4.1.

To illustrate the performance of our method, we have chosen the simplest
possible exponential integrator, namely the exponential Euler method

un+1 = un + τϕ(hA)
(
Aun + ρ(tn, un)

)
, n = 0, 1, 2, . . . , (10)

where ϕ(z) = (ez − 1)/z. In each time step, a product of the matrix function
with a vector has to be approximated. This approximation was computed up
to a tolerance of tol = 10−6.

Example 4.1. In order to demonstrate the benefit of using Ritz vectors, we
study the effect of incorporating a fixed number l of Ritz vectors into the
decomposition. This is done on the test problem in dimension d = 2 with the
exponential Euler scheme for different values of N and τ . The results for the
standard Lanczos algorithm as underlying Krylov method are presented in
Figure 2. The diagram on the left shows the cpu time versus N , the diagram
on the right the saving compared to the case that no Ritz vectors are used
(l = 0). The solid lines correspond to τ = 0.1, the dashed lines to τ = 0.05,
and the dotted lines to τ = 0.01. In this example, using two or three Ritz
vectors was most efficient, saving about 40%–50% of the computational time.
⋄

In our experiments we found that one cannot benefit from incorporating Ritz
vectors into the decomposition if the shift and invert Lanczos process is used
as the underlying Krylov process. This is not surprising, since the motivation
behind the shift and invert Lanczos process was to approximate the dominant
eigenspaces fast and thus an additional gain cannot be expected.

From now on, all experiments involving the standard Krylov process use the
automatic selection strategy to determine the optimal number l of used Ritz
vectors.

Example 4.2. We consider the test problem in dimension d = 2 with dif-
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τ = 0.01 (dotted).
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Fig. 4. Number of Lanczos iterations versus time steps (left), maximum number of
vectors which have to be kept in memory (right) for N = 200 and τ = 0.05 for
Example 4.2.

ferent numbers of spatial grid points N . The time integration is done with
the exponential Euler method with three different time steps. The standard
implementation starts a new Krylov process for approximating the product of
ϕ(τA) with a vector in each time step. In Figure 3 we compare the standard
implementation with our new method where we set k = 4 and we restart af-
ter s = 12 vectors gj have been included in the QR decomposition using up-
and downdating. The picture on the left-hand side shows time steps versus
cpu time. On the right-hand side we illustrate how much cpu time we save
compared to the standard implementation. Here, the solid line corresponds to
τ = 0.1, the dashed line to τ = 0.05, and the dotted line to τ = 0.01. In this
example, we save between 80% and 90% of the computational time compared
to a standard implementation.

For N = 200 and τ = 0.05 the left diagram in Figure 4 shows the number of
Lanczos iterations required in each time step. The moderately larger number
of Lanczos iterations in the first time step is due to the Krylov processes
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for approximating vi = ϕ(τA)ui, for the Ritz vectors ui, i = 1, . . . , l. The
peak at time step 13 is due to the restart. It is not as high as the one in the
first step, because we keep the Ritz vectors in the QR decomposition. In the
right diagram, we consider the amount of vectors which have to be stored in
each time step. It turns out that the orthogonal projection technique does not
require more storage than the standard implementation. ⋄

Example 4.3. This example is identical to Example 4.2, except that the shift
and invert Lanczos iteration [29,38] was chosen as underlying Krylov method
(and hence no Ritz vectors were included). The shifted linear systems are
solved directly by LU decomposition with reordering. The results are shown
in Figures 5 and 6. Comparing the timings with those of Example 4.2, one
observes that shift and invert Lanczos is significantly faster. This is due to the
fact that only very few Krylov iterations are necessary to achieve the desired
accuracy, see Figure 6 (left diagram). As a consequence, the savings are not
as pronounced as in the previous example, but still we save between 20% and
60%. Note that this example was done also with larger values of N . ⋄

We have done similar comparisons for the Krogstad method [25], which is a 4-
stage exponential Runge-Kutta method. It has been shown to be of stiff order
four for this particular example. We refer to [20] for a detailed error analysis
of this and more general exponential Runge-Kutta methods for semilinear
parabolic problems. However, since these comparisons led to almost identical
pictures as for the exponential Euler method, we decided not to present them
here. More experiments can be found in [31].

Next we will show that implementations of exponential integrators using the
new algorithm are indeed competitive to standard integrators for parabolic
problems in this example. As competitors, we have used the following time
integration schemes:

– ode15s, the standard stiff Matlab solver modified such that reordering of A
is applied to speed up the solution of the linear systems.

– radau5, a Matlab implementation of the Fortran code Radau5 by Hairer
and Wanner [18] with the same reordering as for ode15s.

– rkc, a Matlab implementation of the Fortran code of the Runge-Kutta-
Chebyshev method by Sommeijer, Shampine, and Verwer [35].

The exponential integrators used are the Krogstad method [25] and a three-
stage Rosenbrock exponential integrator proposed by Hochbruck, Ostermann
and Schweitzer [22]. All methods except the Krogstad method are equipped
with adaptive time stepping. For Krogstad’s method, no reliable error estima-
tion is known, so we used it with constant time steps such that the achieved
accuracy at the final time t = 1 was of the same order than for the other
schemes.
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Fig. 5. Cpu time in seconds (left) and saving in percent (right) versus the number
of grid points N in each direction of the new algorithm compared to a standard
implementation for Example 4.3 for time steps τ = 0.1 (solid), τ = 0.05 (dashed),
τ = 0.01 (dotted). The underlying Krylov method is a shift and invert Lanczos
process.
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Fig. 6. Number of shift and invert Lanczos iterations versus time steps (left), max-
imum number of vectors which have to be kept in memory (right) for N = 500 and
τ = 0.05 for Example 4.3.

For Krogstad’s method, two of the inner stages yield approximations to the
solution at the same node. We might still apply Theorem 1 but the upper
bound (2) turns out to be quite pessimistic in this case. However, the heuristic
criteria still give reasonable results.

Example 4.4. We solved the test example in dimension d = 2. The underlying
Krylov method for the exponential integrators was the shift and invert Lanczos
method with orthogonal projection with k = 4 including restarts after s =
12 vectors. We did not include Ritz vectors into the decomposition. For the
solution of the linear systems, we used the same reordering as for the standard
ode solvers. This enabled us to present fair comparisons. The error at t = 1
was about 10−5 for all ode solvers. For Krogstad’s method we used τ = 0.1.
In Figure 7 we observe that the results for Krogstad’s method and for the
Rosenbrock exponential integrator are similar to those of ode15s for N = 400.
For N = 700, the Krogstad method took only 555 seconds, the Rosenbrock

15



100 200 300 400 500 600 700

10
1

10
2

10
3

N

co
m

pu
ta

tio
na

l t
im

e

ode15s

krogstad O−Prj

radau5

rkc

rosenbr O−Prj

Fig. 7. Cpu times for the solution of the 2d test problem (Example 4.4) for differ-
ent N with different integrators and with shift and invert Lanczos process for the
exponential integrators.

integrator 685 seconds, and ode15s more than 900 seconds. Radau5 and RKC
were less efficient in this example. ⋄

This example illustrates that exponential integrators have the potential to
outperform standard stiff solvers even if fast diagonalization of A (e.g. by fft)
is not applicable.

In the next example, we show that for 3d problems, which are generally too
large to apply the shift and invert Lanczos process, standard Krylov methods
still give good results.

Example 4.5. In this example we set d = 3 and we chose a standard Lanczos
process as underlying Krylov method using the same parameters as in Ex-
ample 4.4 but this time we also included Ritz vectors. The codes radau5 and
ode15s turned out to be inefficient for N > 30. The implementation of the
exponential integrators are nearly as good as the RKC code. ⋄
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