
Multi-scale, multi-resolution brain cancer modeling

Le Zhang, L. Leon Chen, and Thomas S. Deisboeck*
Complex Biosystems Modeling Laboratory, Harvard-MIT (HST) Athinoula A. Martinos Center for
Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA

Abstract
In advancing discrete-based computational cancer models towards clinical applications, one faces
the dilemma of how to deal with an ever growing amount of biomedical data that ought to be
incorporated eventually in one form or another. Model scalability becomes of paramount interest. In
an effort to start addressing this critical issue, here, we present a novel multi-scale and multi-
resolution agent-based in silico glioma model. While ‘multi-scale’ refers to employing an epidermal
growth factor receptor (EGFR)-driven molecular network to process cellular phenotypic decisions
within the micro-macroscopic environment, ‘multi-resolution’ is achieved through algorithms that
classify cells to either active or inactive spatial clusters, which determine the resolution they are
simulated at. The aim is to assign computational resources where and when they matter most for
maintaining or improving the predictive power of the algorithm, onto specific tumor areas and at
particular times. Using a previously described 2D brain tumor model, we have developed four
different computational methods for achieving the multi-resolution scheme, three of which are
designed to dynamically train on the high-resolution simulation that serves as control. To quantify
the algorithms’ performance, we rank them by weighing the distinct computational time savings of
the simulation runs versus the methods’ ability to accurately reproduce the high-resolution results of
the control. Finally, to demonstrate the flexibility of the underlying concept, we show the added value
of combining the two highest-ranked methods. The main finding of this work is that by pursuing a
multi-resolution approach, one can reduce the computation time of a discrete-based model
substantially while still maintaining a comparably high predictive power. This hints at even more
computational savings in the more realistic 3D setting over time, and thus appears to outline a possible
path to achieve scalability for the all-important clinical translation.
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1. Introduction
In recent years, cancer modeling has become a rather popular interdisciplinary research topic
in computational biology. Various approaches have been employed to move towards predictive
oncology. Currently, such computational approaches include continuum [10,11,25,31,34,36],
discrete [16,17,27–29] and hybrid model [3,4,18,19,21,24,37,39]. Although ‘continuum’
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techniques can describe for example the change of cancer cell density [31,33,36], the diffusion
of chemoattractants [39], heat transfer in hyperthermia treatment for skin cancer [40,41], cell
adhesion, and the molecular network of a cancer cell [1,12] as an entire entity using differential
equations, their ability to investigate single-cell behavior and cell-cell interaction is limited.
Conversely, ‘discrete’ modeling can simulate (for example, via cellular automata [38]) the
behavior of individual cancer cells as well as cell-cell and cell-extracelluar matrix (ECM)
interactions [16,29], but it fails when the inclusion and investigation of most fluid-physical
aspects relevant to cancer becomes necessary [17]. To overcome the shortcomings of both
modeling techniques, we employ a particular type of ‘hybrid’ approach, an agent-based model.
The agent-based approach simulates multi-scale glioma growth and expansion [3,4,19–21,
39], thereby describing cancer as a complex dynamic, adaptive, and self-organizing system
[7]. The advantage of such a model is that each cell is simulated as an agent equipped with an
intracellular molecular signaling network that determines its phenotype on the microscopic
scale [3,4,39]. This allows the investigation of the interactions among these cells, the
interactions between the cells and ECM, as well as the impact of each cell’s intracellular
signaling dynamics on its spatio-temporal behavior within the micro-macroscopic
environment. However, multi-scale agent-based modeling requires significant computational
resources [43], especially when simulating millions of cancer cells within a realistic
microenvironment. Our previous works [3,4,19,21,37,39,42] therefore had to reduce the
number of cancer cells used in the simulation as well as the ECM volume, thereby slowing the
translation of this simulation platform into clinical applications. To temporarily resolve this
scalability problem, one may choose to employ parallel computation [14] in an effort to reduce
the computational workload for the continuum module. Nonetheless, it will be a critical
prerequisite for this hybrid platform’s clinical applicability to become computationally
efficient, while still maintaining sufficient predictive power. As a first step, here we develop
four computational methods to classify in silico cancer cells into either active or inactive
clusters. In an active cluster, each cell’s molecular profile is monitored (‘high-resolution’) to
determine whether any phenotype switching is being triggered. In an inactive cluster, all cells
are considered as an entity without tracking each individual cell’s molecular profile (‘low-
resolution’). Next, we analyze and compare the computation time and predictive power of each
method, determine their performance vis-à-vis the high-resolution control, and rank them
accordingly. Finally, we introduce a combination method (consisting of the two computing
methods with the highest separate ranking values) to demonstrate the flexibility of this multi-
resolution approach for future extensions.

2. Methods
To start addressing the issue of scalability in agent-based cancer modeling algorithms [43], we
present here several distinctively different computational methods designed to reduce the
workload by utilizing selective spatial resolution, while simultaneously aiming to maintain
sufficient overall predictive power. In the following sections, we will describe the modeling
platform first from the ‘multi-resolution’ perspective, and then subsequently from the ‘multi-
scale’ perspective.

2.1. Multi-resolution perspective
2.1.1. Lattice setup—Compared to our previous research [3,4,39], this multi-resolution
concept is an innovative design which is based on two different resolution lattices within the
microscopic environment. One is a 100×100 low-resolution lattice with a grid size length of
approximately 62.5 μm, reflecting the smallest unit of a hemocytometer used in comparable
in vitro experimental setups for counting the number of cells via light microscopy (Figure 1
(a)). The other is a 6×6 high-resolution lattice (superimposed on each of the grid points of the
aforementioned low-resolution lattice) with a grid size of approximately 10 μm, thus reflecting
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the idealized diameter of a cancer cell. We also define that one grid point of the low-resolution
lattice can contain only one single cell cluster, and that one cancer cell occupies one grid point
of the high-resolution lattice only. This implies that a cell cluster can consist of 36 cancer cells
at most, denoted as a dense cluster. With the multi-resolution lattice configuration depicted in
Figure 1(b), the model can simultaneously simulate the cancer’s progression and invasion at
two different spatial resolutions: (a) Low resolution: This model visualizes, at any point in
time, the entire (2D) tumor growth by displaying the behavior of both active and inactive
clusters in the microscopic environment. (b) High resolution: In this model, an active cluster
is considered as a heterogeneous cell cluster in which the cells can possess a migratory,
proliferative, or quiescent phenotype, while an inactive cluster is considered as a homogeneous
cell cluster in which all the cells are in a quiescent phenotype. For this reason, we only evaluate
the molecular network profile in cells that belong to active clusters in an effort to reduce the
computational workload and to model the cells’ phenotypic fate on the high-resolution lattice.
The flowchart of the resulting cellular automaton is pictured in Figure 2. Note that Figure 2(b)
is used to illustrate step 3 of Figure 2(a) in more detail.

2.1.2 Computational methods—We have developed four different computational
methods to classify the cells into inactive or active clusters, and a control to serve as the baseline
for comparison.

1. Control: All clusters are set to active so that each cell is tracked by the program; that
is, each of these cell’s molecular signaling pathway is being simulated at every point
in time so that the fluctuating concentrations of its (environmentally influenced) sub-
cellular signal processing components trigger dynamic phenotypic changes
throughout the cells.

2. Space method: If all the topographic neighborhoods of a dense cluster are themselves
dense, then this cluster is deemed inactive; otherwise, it is active.

3. Radius method: At each time step, first the average distance to the center of mass of
all active clusters is set as the basic radius threshold Rb. We then also calculate the
tumor progression radius difference between the control tumor and the one generated

by this method ( ) to dynamically adjust the
radius threshold with RA = Rb · (1 + DIFFRC ). Thus, at each time step, if a cluster’s
distance to the center-of-mass is less than RA, that cluster is set to be inactive.
Otherwise, it is deemed active. This follows the concept that surface asymmetries
must be monitored more closely in a growing tumor as they reflect an intrinsic and/
or extrinsic heterogeneity with potential implications for the overall dynamics.

4. Number method: Here, at each time step, all clusters are ranked in a descending
ordered list according to the distance between each of the clusters and the center of
mass of all the clusters. First, half of the clusters are set to the basic number threshold
Nb. Secondly, we again employ the tumor progression radius difference between the

control and number method ( ) to
dynamically adjust the threshold with N A = Nb · (1 − DIFFNC ). At each time step, if
its number is greater than N A, the cluster is set as an inactive cluster. Otherwise, it is
considered to be active.

5. Phenotype method: At each time step for every cluster, first Pb is set as the basic
threshold ratio of the sum of migratory and proliferative cells to the total cells in the
cluster. We then employ the tumor progression radius difference between the control

and the phenotype method ( ) to
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dynamically adjust the ratio threshold according to PA = Pb · (1 + DIFFNC ). At every
time step, if the ratio of the sum of the number of migratory and proliferative cells to
the total number of cells in the cluster is less than PA, then that cluster is deemed
inactive. Otherwise, it is considered to be active.

2.2. Multi-scale perspective
Here, we introduce briefly how the model simulates both tumor progression and invasion on
and across multiple scales (for more details, please see [37,39,42]). Based on a solid body of
work implicating its role in tumor progression at the molecular level, each cell is equipped with
a simplified epidermal growth factor receptor or EGFR pathway (Figure 3). Specifically,
equations 1–19 in Table 1(a) are employed to describe the chemical reactions among the
molecular species in this pathway with Table 1(b)–(d) listing the corresponding parameter
values [2].

Based on the proposed dichotomy between the migratory and proliferative phenotypes in
glioma by Giese et al. [13], and the observation of a transient increase in PLCγ resulting in
(breast) cancer cell migration by Dittmar et al. [8], we have previously [3,4,39] hypothesized
the following simplified biological switching behavior: if the percent change of the glioma
cell’s phosphorylated PLCγ concentration exceeds a set change rate threshold of the
concentration of phosphorylated PLCγ, the cell becomes migratory; otherwise, it adopts a
proliferative phenotype. Here, we use the average phosphorylated PLCγ concentration changes
of all the cells as the change rate threshold at each time step. (We note that PLCγ is merely
meant as a representative example of a presumably much more complicated set of molecular
switching profiles).

On the micro-macroscopic level, we employ a continuum module to simulate the diffusion of
the chemical cues glucose (X0) and TGFα (X1) with equations 20 and 21:

(20)

(21)

where DG is the diffusion coefficient of glucose [23], and DT is the TGFα diffusion coefficient
[35]. Furthermore, we employ a discrete module to simulate the cell’s glucose uptake and
TGFα secretion on the high-resolution lattice with equations 22 and 23:

(22)

(23)

where t represents the time step, UG is the cell’s glucose uptake coefficient [26], and ST is the
TGFα secretion rate [9]. The diffusions of glucose and TGFα are simulated on the low-
resolution lattice; however, the concentration of TGFα and glucose at each grid point in the
low-resolution lattice will be randomly distributed on the corresponding high-resolution lattice.
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3. Results
Our code is written in Microsoft Visual Studio C++. We ran the simulation 10 times with
varying migration durations (1–5 time steps, one time step being equivalent to one hour) for
each computational method. The algorithm requires approximately 1 hour of CPU time on a
Dell Precision 690 workstation with 64-bit Quad-Core Intel® Xeon® 5300 series processors.

Microscopic patterns
Figure 4 displays the snapshots of the virtual tumor cells at time steps 1 and 100 for the control
(a) and the four computational methods (b–e), respectively. Here it should be noted that since
the different computational methods employ varying classification schemes to separate the
cancer cells into either active or inactive clusters, Figure 4 shows qualitative differences among
these methods at the first time step. At the start, for example, the control and phenotype method
will classify all the cells into active clusters, whereas the number, radius, and space methods
will separate the cells into active and inactive clusters.

Performance
Figure 5(a) displays the computation time required for each multi-resolution method, with the
control serving as benchmark for comparison. While the number method (as already
qualitatively suggested by Figure 4) indeed required the minimum computation time, its
resulting tumor radius progression showed the largest deviation from the control (Figure 5(b)),
fluctuating considerably and exhibiting a substantial average error (Figure 5(c)). Conversely,
while the space, radius, and phenotype methods also resulted in reduced computation time
(Figure 5(b)), their tumor radii however remained very close to the control’s (and rather stable
throughout), thus yielding a relatively small average error (Figure 5(c)).

Functionality
Figure 6(a) and (b) describe the number of active and inactive clusters for each computational
method. As intended, the control only operates with active clusters and thus represents the
upper limit. Also, Figure 4’s qualitative impression is now quantitatively supported, in that the
number method indeed utilizes the lowest number of active clusters, and the highest number
of inactive clusters. The space and radius methods operate with moderate numbers of active
and inactive clusters. With regards to the phenotype method, we found its profile of active and
inactive clusters to evolve in a similar fashion to the control during the early stages up until
time step 50 after which its number of active clusters drops abruptly, and the number of inactive
clusters increases markedly, subsequently followed by a period of stability. Likewise, Figure
6 (c) and (d) show the number of checked and unchecked cells, which parallel the findings on
the cluster level.

Ranking
To integrate the findings presented in Figures 4–6 in a quantitative manner, we have developed
a formula that ranks the overall performance of each computational method according to

(24)

where i is the time step from 1 to 100, and j represents the specific computational method with
(1) being the space method, (2) the radius method, (3) the number method, and (4) the
phenotype method. Inactivei and activei are the numbers of inactive and active clusters,
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respectively. DIFFi is the simulation difference in tumor radius between each computational

method and the control, represented by . Here, the best
performing method should use less computation time by operating with a greater number of
inactive clusters and a lower number of active clusters, while simultaneously only having to
accept a small difference in the resulting tumor progression radius as compared to the control.
As listed in Table 2, using this method, the radius method ranks as number one, followed by
the space and phenotype methods; the number method ranks last.

4. Discussion and conclusions
Mathematical modeling and computational simulations have become increasingly important
for data integration as well as hypothesis generation in cancer research. Methods used include
a variety of techniques. For example, Cristini et al. [5] employed a continuum mathematical
approach to describe microenvironmental substrate gradients that may drive morphologic
instability in gliomas, while Jain et al. [15] used the same modeling technique to simulate
angiogenesis under the control of the VEGF–Bcl-2–CXCL8 pathway. Conversely, Peirce et al.
[22] employed a discrete method (cellular automaton [38]) to predict micro-vascular network
patterning by integrating epigenetic stimuli, molecular signals, and cellular behaviors, and
Stamatakos et al. [27], also following a discrete approach, simulated the glioma cell cycle
explicitly to predict the response of radiotherapy. In contrast to both approaches, Mansury et
al. [19,21], Athale et al. [3,4] and Zhang et al. [39,42] all employed a discrete-continuum (i.e.
hybrid) model to simulate brain cancer progression. From these examples, in addition to other
works, it still holds that while continuum modeling can appropriately represent tissue level
properties [5,6] and cell densities [30–33], it is impractical to describe single entities such as
cells, genes, or proteins and their various interactions on the cellular and sub-cellular level.
However, to achieve such resolution with a discrete model requires significant computational
resources particularly when simulating millions of cells simultaneously. And, while hybrid
modeling emerges as the most promising avenue in that it is capable of simulating both tumor
tissue and single cell behavior at the same time, it mandates a reduced description of
microenvironmental complexity and is bound by the number of simulated cells and signaling
pathways to remain computationally tractable.

To begin to address the currently limited scalability of such hybrid computational models, we
have developed a multi-scale, multi-resolution agent-based glioma model that classifies the
simulated cancer cells into either ‘active’ or ‘inactive’ clusters with several novel
computational methods, such that it is possible to utilize currently limited computational
capabilities to simultaneously model millions of cells. As mentioned before in the result
section, these computational methods are designed with respect to micro-macroscopic
properties such as peritumoral space, tumor radius, and tumor cluster number, as well as cellular
properties such as the phenotypes’ sub-cellular signaling networks trigger. The major aim of
this research has been to demonstrate that these computational methods can reduce the
computational workload to a certain extent while preserving a relatively high predictive power.
Specifically, the simulation results of these computational methods show several interesting
findings: First, the space and radius methods result in tumor expansion patterns that are
qualitatively similar to the control, more so than the phenotype and number methods (Figure
4, Figure 5(b) and (c)). Second, comparing the space, radius, number and phenotype methods
versus control, we found a 9.34%, 1.95%, 36.74% and 7.74% reduction of the necessary
computation time, respectively. Thus, the number method commands the least computation
time (Figure 5(a)), generates fewest active clusters, and checks the fewest cells as compared
to the other methods, including the control (Figure 6). Third, the training algorithms are
superimposed on these computational methods except the space method to enhance the
predictive power, but the tumor radii from every method are still not able to exactly match that
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of the control (Figure 5b, Figure 7c). While the resulting “average error vs. control” (Figure
5c, Figure 7d) for most of the computational methods remain relatively small throughout the
length of the simulation, it is especially apparent with the number method, exhibiting the
weakest predictive power as measured by the substantial “average error vs. control” value.
Lastly, since there is no optimal computational method here that simultaneously yields the least
radial deviation from the control while also uses the least amount of computation time, we
have developed a novel formula (equation 24) to integrate considerations from the vantage
points of both predictive power and computational workload. This equation was then used to
rank the efficiencies of all the computational methods, with Table 2 showing the following
result: the radius method tops the performance scale, followed by the space and phenotype
methods, and lastly the number method.

This ranking result can be explained as follows: For the cellular automaton component of our
model [21,39] (Figure 2), a cancer cell will choose an unoccupied lattice site with the highest
glucose concentration to divide into or move to. Once there are no unoccupied locations in its
neighborhood, the cell will turn quiescent. Therefore, both the space and radius method save
computation time by deactivating the tightly packed cells in the center of the tumor. In doing
so, the radius method is superior to the space method, because deactivating the clusters in the
boundary of the tumor (space method) will negatively impact the tumor progression radius
more so than deactivating the clusters in the center of the tumor (radius method). However,
the classification mechanism of the space and radius methods is different from that of the
number method. That is, because the shape of the tumor is irregular and the density of the
clusters is inhomogeneous, the number method will deactivate many cells within the vicinity
of the tumor boundary, weakening the result by way of a large “average error vs.
control” (Figure 5(c), Figure 7(d)). With regards to the phenotype method, especially at the
beginning of the simulation, the algorithm must check each cell’s molecular pathway to decide
if it is an active or an inactive cluster (similar to the process in the control). The cell cycle
requires several time steps to switch a cell’s phenotype, which (in Figure 6) leads to the marked
changes around time step 50 and hampers the phenotype method’s capacity to reduce the
computational workload in the early stages of the simulation. Because there is no ideal
algorithm, amongst the ones studied, that combines predictive power with low computation
time, we generated a new approach by integrating the #1 and #2 ranked methods (Table 2) (i.e.
adding the radius requirement into the space method; the other way around would not improve
upon the radius method’s singular performance, due to the underlying criteria) in an effort to
determine if such a combinatorial method would further improve the results, and to demonstrate
the flexibility and extensibility of this study.

For this ‘combination’ method, we use the radius method to first classify the cells in the center
of the tumor into inactive clusters, after which only the clusters in the boundary of the tumor
are left to be classified by the space method. We hypothesize that this approach reduces
computation time markedly. And indeed, Figure 7(a) confirms that the computation time of
this combination method exhibits a 14.1% reduction versus the control, substantially shorter
than both the space and radius methods alone due to the generation of a lower number of active
(and a greater number of inactive) clusters (Figure 7(b) and Figure 6). However, Figure (c)
shows also that the error (vs. control) generated by the combination method exceeds that
resulting from the radius method, but remaining lower than that of the space method. This is
due to the fact that although employing both radius and space requirements can save
computation time, the clusters on the boundary of the tumor that are deactivated by the space
method will still influence the tumor progression curve. Taken together, however, our ranking
system establishes this combination method as the new optimal performing method, even if its
rank value of 4.06774 is only a relatively small improvement over the radius method alone.
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Despite its technical merits, the current approach still has several pitfalls. At this point, although
the training algorithms of these computational methods can adjust the active/inactive cluster
number threshold at each time step by the “average error vs. control” (Figure 5(c)) in the
previous time step (Section 2.1.2 illustrates this in detail), the cell cycle duration delays cell
proliferation in the active clusters such that these active clusters cannot have sufficient
migratory or proliferatory cells in the following step. The result is that the tumor radius never
completely resembles that of the control (Figure 5(b)), with the error never really becoming
smaller (Figure 5(c)). To address these shortcomings in the future, we anticipate that the
algorithms will have to be trained on other attributes such as topographic surface patterns, the
tumor cell number, and perhaps signaling pathway profiles that are implicitly related to the
cell cycle, alongside the tumor progression radius. This way, the impact of the time delay may
be reduced.

In summary, our previously developed 2D brain tumor model has been given a novel multi-
resolution design. This allows the incorporation of several computational methods, and thus
their performance testing, in an effort to reduce the computational workload while still
maintaining sufficiently high predictive power. The multi-resolution design provides this 2D
model, which only incorporate roughly 3000 cells over relatively small ECM volumes and
short simulation durations, with a seemingly rather minor advantage. However, a future goal
is the prediction of actual tumor progression, with a model consisting of millions of cells over
much larger ECM volumes and longer simulation durations. It is thus reasonable to expect that
applying these type of novel methods to a more clinically-relevant 3D model will save
considerably more computational resources, which would help in bringing these promising
computational approaches ever closer to the clinical arena.
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Figure 1.
(a) Hemocytometer used in a typical in vitro cell counting experiment, with the minimum
length of the grid size being 62.5 μm. (b) A schematic of the coupled high- and low-resolution
lattices.
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Figure 2.
Algorithm flow charts (a) for classifying the cells into either active or inactive clusters on the
low-resolution lattice, and (b) for checking each cell’s molecular pathway in an active cluster
on the high-resolution lattice.
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Figure 3.
The EGFR gene-protein interaction network [2,37].
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Figure 4.
Snapshots of the simulation for each computational method at time step 1 (left) and 100 (right
column): (a) control, (b) space method, (c) radius method, (d) number method, and (e)
phenotype method. Note that black represents active clusters (comprised of proliferative,
migratory and quiescent cells), and green represents inactive clusters.
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Figure 5.
Shown are (a) the average computation time of 10 runs with bars representing standard
deviation, and (b) the simulated tumor radius for the four multi-resolution methods and the
high-resolution control. The x-axis denotes the time step, and the y-axis represents the tumor
radius (in pixels; 1 pixel = 1.47μm) (c) Average error of the space method, radius method,
number method, and the phenotype method versus control. The x-axis denotes the time step,
and the y-axis represents the percent deviation for a particular method from the control.
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Figure 6.
Depicts (a) the number of active multi-cellular clusters, (b) the number of inactive multicellular
clusters, (c) the number of checked cells and (d) the number of unchecked cells. (Note: If the
program investigates a cell’s molecular pathway, this cell is deemed ‘checked’, otherwise it is
regarded as ‘unchecked’).
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Figure 7.
Shown are (a) the average computation times of 10 runs with bars representing the standard
deviation for the “combination” method, (b) the number of active and inactive multi-cellular
clusters for this method versus control, (c) the simulated tumor radius for the five multi-
resolution methods including the combination method versus high-resolution control. Here
again, the x-axis denotes the time step, and the y-axis represents the tumor radius (in pixels; 1
pixel = 1.47μm), and (d) the average error between the space, radius, number, phenotype, or
combination methods and the control. The x-axis denotes the time step, and the y-axis represents
the percent deviation for a particular method from the control.
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Table 1

(a)Kinetic equations employed to describe the reactions between the EGFR species; (b) components of the
EGFR gene-protein interaction network; (c) coefficients of the EGFR gene-protein interaction network taken
from the literature [2,37]; (d) coefficients of the micro-macroscopic environment of the model [26,37,39,43].

(a)

dX 1/dt = − v1 (1)v1 = k1X1X2 − k−1X3 (11)

dX 2/dt = − v1 (2)v2 = k2X3X3 − k−2X4 (12)

dX 3/dt = v1 − 2v2 (3)v3 = k3X4 − k−3X5 (13)

dX 4/dt = v2 + v4 − v3 (4)v4 = V4X5/ (K4 + X5) (14)

dX 5/dt = v3 + v7 − v4 − v5 (5)v5 = k5X5X6 − k−5X7 (15)

dX 6/dt = v8 − v5 (6)v6 = k6X7 − k−6X8 (16)

dX 7/dt = v5 − v6 (7)v7 = k7X8 − k−7X5X9 (17)

dX 8/dt = v6 − v7 (8)v8 = V8X9/ (K8 + X9) (18)

dX 9/dt = v7 − v8 − v9 (9)v9 = k9X9 − k−9X10 (19)

dX 10/dt = v9 (10)

(b)

Symbol Molecular variables Initial values

X0 Glucose 25 mM

X1 TGFα 9010.55 nM

X2 EGFR 100 nM

X3 TGFα –EGFR 0 nM
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(b)

Symbol Molecular variables Initial values

X4 (TGFα –EGFR) 2 0 nM

X5 TGFα –EGFR-P 0 nM

X6 PLCγ 10 nM

X7 TGFα –EGFR-PLCγ 0 nM

X8 TGFα –EGFR-PLCγ-P 0 nM

X9 PLCγ-P 0 nM

X10 PLCγ-P-I 0 nM

(c)

Forward rate (s−1) Reverse rate (s−1) Michaelis constants (nM) Maximal enzyme rates (nM s−1)

k1 = 0.003 k−1 = 0.06 K4 = 50 V4 = 450

k2 = 0.01 k−2 = 0.1 K8 = 100 V8 = 1

k3 = 1 k−3 = 0.01

k5 = 0.06 k−5 = 0.2

k6 = 1 k−6 = 0.05

k7 = 0.3 k−7 = 0.006

k9 = 1 k−9 = 0.03

(d)

Coefficient Value Units Description

DG 6.7 × 10−7 cm2 s−1 Glucose diffusion coefficient

DT 5.18 × 10−7 cm2 s−1 TGFα diffusion coefficient

ST 0.2 nMh−1 TGFα secretion rate

UG 7.7 × 10−12 mol/h.cell Glucose uptake rate
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Table 2

The rankings for (1) the radius method, (2) the space method, (3) the phenotype method, and (4) the number
method, using equation 24.

Method Rank Ranking value

Radius 1 4.068785

Space 2 5.139941

Phenotype 3 5.223518

Number 4 7.710731
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