
Coupling from the Past with

Randomized Quasi-Monte Carlo

Pierre L’Ecuyer and Charles Sanvido

Département d’Informatique et de Recherche Opérationnelle
Université de Montréal, C.P. 6128, Succ. Centre-Ville

Montréal (Québec), H3C 3J7, CANADA

May 17, 2007

Abstract

The coupling-from-the-past (CFTP) algorithm of Propp and Wilson, also called
perfect sampling, permits one to sample exactly from the stationary distribution of
an ergodic Markov chain. By using it n times independently, we obtain an indepen-
dent sample from that distribution. A more representative sample can be obtained by
creating negative dependence between these n replicates; other authors have already
proposed to do this via antithetic variates, Latin hypercube sampling, and randomized
quasi-Monte Carlo (RQMC). We study a new, often more effective, way of combining
CFTP with RQMC, based on the array-RQMC algorithm. We provide numerical illus-
trations for Markov chains with both finite and continuous state spaces, and compare
with the RQMC combinations proposed earlier.

KEY WORDS: Variance reduction, randomized quasi-Monte Carlo, Markov chain,

exact sampling, perfect sampling, coupling from the past.

1



1 Introduction

The Monte Carlo (MC) method is a key tool for estimating mathematical expectations of

the form

µ =

∫

S

c(x)dπ(x), (1)

where π is a probability measure defined over some multidimensional measurable space

(S,F), and c : S → R is a measurable cost function. This setting often occurs natu-

rally because we want to estimate the steady-state average cost for a system whose evolution

is modeled by an ergodic Markov chain {Xj, j ≥ 0} with huge state space S and with com-

plicated dynamics (Law and Kelton, 2000). Typically, in this case, we have little a priori clue

of how π might look like but we can easily simulate the Markov chain. In other cases, we

have the reverse situation: the form of π is given, sometimes up to a normalizing constant,

but we have no direct way of generating samples from π. However, we can construct an

artificial Markov chain with steady-state distribution π, e.g., via the Metropolis-Hastings

algorithm. This is known as Markov chain Monte Carlo (MCMC).

Regardless of where the Markov chain originates from, a classical way of estimating µ in

(1) by MC is to select two large integers t > t0 > 0, start the chain from some fixed initial

state X0 = x0, simulate it for t steps, and take the average cost over the steps t0 + 1 to t

as an estimator of µ. The first t0 steps are discarded in order to reduce the bias due to the

arbitrary choice of the initial state. But some bias usually remains regardless of the choice

of t0, and it is often difficult to select t0 in a way that the bias is guaranteed to be negligible

while the estimator remains efficient (Heidelberger and Welch, 1983; Law and Kelton, 2000;

Glynn, 2006; Awad and Glynn, 2007). This initial bias problem would disappear if we knew

how to generate the initial state X0 exactly from π.

Propp and Wilson (1996) proposed an algorithm that does precisely this. Their method,

sometimes named perfect sampling, or exact sampling, uses a concept called coupling from

the past (CFTP) to generate a state from π. Conceptually, one simulates the chain from all

possible states, in parallel, from some time −T1 < 0 to time 0. If all copies of the chain are

in the same state at time 0, then this state has distribution π. Otherwise, one can try again

from time −T2 < −T1, making sure that the same random numbers are used to simulate the

chain at all steps from −T1 to 0. This process is repeated by going further in the past until

all the chains have coalesced (are in the same state) at time 0.

Constructing an unbiased estimator of µ is one thing, but controlling the variance of

this estimator is also an important issue. The variance can of course be reduced by simu-

lating a larger number of independent copies of the estimator and taking the average; with

n independent copies, the variance is divided by n. A further improvement is to induce

2



negative dependence between the copies, in some sense, to reduce the variance of the aver-

age. Some ways of doing this are based on the idea of antithetic variates (AV) and their

generalizations, which include Latin hypercube sampling (LHS), iterative LHS (ILHS), and

randomized quasi-Monte Carlo (RQMC) (Owen, 1998; L’Ecuyer and Lemieux, 2002; Craiu

and Meng, 2005). The combination of CFTP with dependence-induction methods such as

AV, ILHS, and RQMC has been studied and experimented by Craiu and Meng (2000, 2005);

Lemieux and Sidorsky (2006). In empirical experiments with small examples, these meth-

ods did reduce the variance significantly and RQMC was the best performer (Lemieux and

Sidorsky, 2006).

In general, RQMC can be quite effective to estimate integrals of smooth functions in small

or moderate dimension. But simulating a Markov chain over a large number of steps can be

viewed as applying MC to estimate a large-dimensional integral, and RQMC usually loses

its punch when faced with such integrals. However, a new RQMC method specially designed

for Markov chains, called array-RQMC (L’Ecuyer et al., 2007), is often very effective in this

situation. The idea of this method is to simulate n copies of the chain in parallel, advancing

all copies by one step at each iteration, and to induce negative dependence between these

copies, in a way that the empirical distribution of the n states at any given step provides a

better estimate of the theoretical distribution of the state at that step, and a lower-variance

for the average cost, than if the n copies were simulated independently. Given that both

CFTP and array-RQMC work by simulating several copies of the Markov chain in parallel,

the idea of using them together appears natural at first sight.

The aim of this article is to examine how CFTP and array-RQMC can be effectively

combined to produce a lower-variance and more efficient estimator than CFTP alone. In

Section 2, we define the Markov chain model considered here. We also recall the CFTP

technique and some of its variants. The RQMC and array-RQMC methods are discussed in

Section 3. We then examine how CFTP can be combined with RQMC sampling in Section 4,

and with array-RQMC in Section 5. This second combination turns out to be less obvious

than expected but we propose a practical way of making it work. In Section 6, we report some

empirical results. In Section 7, we conclude by discussing directions for further research.

2 Markov Chain Model and Coupling from the Past

2.1 Markov Chain Setting

Our basic model is a Markov chain {Xj, j ≥ 0} with state space S, defined via the stochastic

recurrence:

Xj = ϕ(Xj−1,Uj), j ≥ 1, (2)

3



where U1,U2, . . . are independent random vectors uniformly distributed over the d-dimensional

unit cube [0, 1)d (i.i.d. U(0, 1)d, for short). In our numerical examples, we will have d = 1.

For each j ≥ 1, there is a state-dependent cost c(Xj), where c : S → R is the cost function.

We implicitly make all the required measurability assumptions on S, ϕ, c, and so on. We

also suppose that the chain has an equilibrium and limiting distribution π, so that

µ =

∫

S

c(x)dπ(x) = lim
t→∞

1

t

t
∑

j=1

E[c(Xj)]

is the steady-state average cost per step, which we want to estimate. This implies that if

we can generate X0 ∼ π, then Xj ∼ π for all j ≥ 0 and (1/t)
∑t

j=1 c(Xj) is an unbiased

estimator of µ for any t.

2.2 The CFTP Algorithm

Backward algorithm. The conceptual idea of the CFTP algorithm is to generate U0,U−1,

U−2, . . . (backward) to find a random time −T in the past such that

X0 = ϕ(ϕ(· · ·ϕ(X−T ,U−T+1), · · · ,U−1), U0) (3)

takes the same value for all statesX−T ∈ S. When this happens, we say that total coalescence

has occurred at time 0 for this particular sample path and this particular T . This means

that if we start one copy of the chain in each state x ∈ S at step −T , then all the copies

would have collapsed into a single state X0 at step 0. Any T that satisfies this condition is a

backward coupling time and the corresponding X0 is the coalescence state. The smallest such

T , say T∗, is the minimal backward coupling time. Propp and Wilson (1996) have proved

that whenever we have total coalescence at time 0, the coalescence state X0 has distribution

π, exactly. This is easy to explain: when we have coalescence, X0 is independent of the state

at time T∗ and its realization would remain the same if that state XT∗ was generated from

the stationary distribution.

Note that for any fixed T ≥ 0, (3) defines a random mapping ΨT : S → S via ΨT (X−T ) =

X0. In other words, Ψ0 is the identity and ΨT (·) = ΨT−1(ϕ(·,U−T+1)). Each mapping ΨT

is random because it is a function of U−T+1, . . . ,U0. In terms of those mappings, T∗ can be

defined as the smallest T such that ΨT (S) contains a single state. A conceptually simple way

of finding T∗ is to compute the mappings ΨT for T = 1, 2, . . . , until ΨT maps the state space

to a singleton. The evolution of this backward CFTP algorithm can be described by the

Markov chain Y = {Yj = Ψj, j ≥ 0}, whose state at step j is the mapping Ψj. If S is finite,

say S = {0, . . . ,M − 1}, the state of Y at step j can be represented by an M -dimensional

vector Yj = Ψj = (Ψj(0), . . . ,Ψj(M − 1)).

4



For large state spaces, this backward simulation approach, where the mappings are en-

tirely computed in succession, is generally inefficient. Forward simulation is usually more

convenient.

Forward algorithm. In the case where S is finite, a direct way of finding a backward cou-

pling time T and coalescence stateX0 is by simulating in the forward direction as many copies

of the chain as the number of states, as follows. Select some integer T1 > 0, start one chain

in each state at time −T1, simulate all these chains from time −T1 to time 0 using the same

sequence of random numbers U−T1+1,U−T1+2, . . . ,U−1,U0, and check if total coalescence

has occurred at time 0. If not, then select a larger integer T2 > T1, and try again, making

sure that exactly the same sequence of random numbers U−T1+1,U−T1+2, . . . ,U−1,U0 is used

for all the chains over the last T1 steps. If coalescence has not yet been achieved, repeat

with T3 > T2, making sure again that the same random numbers are reused over the last T2

steps, and so on. We may choose Tj = 2Tj−1, for example. The requirement of reusing the

same random numbers at the same steps is crucial; without it, (3) does not hold and the

theorem of Propp and Wilson does not apply. This is the reason why simulating the chains

forward from time 0 until the first time T when they are all in the same state, and returning

this common state XT , is not equivalent to CFTP; it does not provide a state XT generated

from π. With the latter method, when T is increased by 1, the additional random number

is used for the last step of the chains, whereas with CFTP, it is used for the first step.

Large, possibly infinite, state spaces can often be handled as follows. Suppose that S

has a partial order ≤ and contains two finite subsets S0 and S1 such that for each x ∈ S,

there are two states x0 ∈ S0 and x1 ∈ S1 such that x0 ≤ x ≤ x1. Suppose also that ϕ(·,u)

is nondecreasing with respect to that partial order, for each u ∈ (0, 1)d. Then, it suffice to

simulate copies of the chains from all states of S0∪S1. Whenever these chains have coalesced,

we know that if we had started chains from all states x ∈ S rather than only from the states

x ∈ S0 ∪ S1, all the chain would also have coalesced at that point, even if S is infinite and

nondenumerable. A special case of this is when the state space has a largest state and a

smallest state.

In the following, we assume that S0∪S1 = {0, . . . ,M − 1}, for notational simplicity. If S

is finite and unordered, we just take S0 = S1 = S = {0, . . . ,M − 1}. Under this assumption,

the forward version of the CFTP algorithm simulates the chain X = {Xj, j ≥ 0} from the

M initial states 0, . . . ,M − 1, and the CFTP process can be represented by a single Markov

chain Y = {Yj, j ≥ 0}, where the vector Yj = (X0,j, . . . , XM−1,j) represents the states of the

M instances of the original chain X at step j. The chain Y is simulated from time −T1 to

time 0, and we then verify if all coordinates of Y0 are the same.

5



3 MC, RQMC, and Array-RQMC

We now consider an arbitrary DTMC Y = {Yj, j ≥ 0} and recall how the Monte Carlo

(MC), randomized quasi Monte carlo (RQMC), and array-RQMC methods would simulate

n copies of this chain from time 0 up to some stopping time τ . This chain may represent the

backward or forward CFTP process. We assume that it can be realized via the recurrence

Yj = ψj(Yj−1,Uj), (4)

where the vectors Uj = (U(j−1)d+1, . . . , Ujd) are i.i.d. U(0, 1)d, and ψj is an appropriate

function that defines the recurrence at step j. Suppose we want to estimate the expectation

µ = E[γ(Yτ )] for some cost function γ : S → R.

We can estimate µ by simulating n copies of the chain via (4) and taking the average of

the n copies of γ(Yτ ). If Yi,j is the state of the ith chain at step j, we have

Yi,j = ψj(Yi,j−1,Ui,j), (5)

where each Ui,j = (Ui,(j−1)d+1, . . . , Ui,jd) is a vector (or point) in the unit hypercube (0, 1)d.

Let τi be the realization of τ for the ith copy. Our estimate of µ is then

Ȳn =
1

n

n−1
∑

i=0

γ(Yi,τi
). (6)

In the MC method, the Ui,j are taken as “good” imitations of independent random vari-

ables uniformly distributed over (0, 1), obtained from a (pseudo)random number generator

(Law and Kelton, 2000; L’Ecuyer, 2006). The n copies of the chain are considered as inde-

pendent.

Let s be the smallest integer so that P[τd ≤ s] = 1; if no such integer exists, we take

s = ∞. Note that the random variable γ(Yτ ) can be written as a γ(Yτ ) = f(U1, U2, . . . )

for some function f : (0, 1)s → R, and µ is simply the integral of this function f over

the s-dimensional unit hypercube (0, 1)s. The (classical) RQMC method is designed to

approximate such integrals. For this method, we use a set of s-dimensional points Vi =

(Ui,1, . . . , Ui,s), for i = 0, . . . , n− 1, with the following two properties:

(a) for each i, the coordinates Ui,1, Ui,2, . . . of Vi are i.i.d. U(0, 1), i.e., Vi has the uniform

distribution over [0, 1)s;

(b) the point set Pn = {V0, . . . ,Vn−1} is more evenly distributed over the unit cube (0, 1)s

than a typical set of independent random points.

6



Precise definitions of “more evenly distributed,” in terms of measures of discrepancy with re-

spect to the uniform distribution, are detailed in Niederreiter (1992); Owen (1998); L’Ecuyer

and Lemieux (2002), and other references given there. A point set Pn that satisfies these two

conditions is called an RQMC point set. Examples of RQMC point sets include randomly-

shifted lattice rules, digitally shifted digital nets, and scrambled nets (L’Ecuyer and Lemieux,

2002). Intuitively, the aim is that the empirical distribution of {γ(Yi,τi
), i = 0, . . . , n − 1}

provides a better approximation of the theoretical distribution of the random variable γ(Yτ )

than with MC, in order to reduce the variance of the average (6). This is equivalent to induc-

ing negative correlation between γ(Yi,τi
) and γ(Yj,τj

), on average over all pairs i 6= j. This

approach is typically more efficient than MC if s is small or if f has low effective dimension

in some sense (Owen, 1998; L’Ecuyer and Lemieux, 2002). The smoothness of f also plays

an important role; under sufficient smoothness conditions, one can prove that the variance

converges to zero (as a function of n) at a faster rate for RQMC than for MC.

In the Array-RQMC method, detailed in L’Ecuyer et al. (2007), we simulate n copies of

the chain Y in parallel. At step j, for j ≥ 1, we advance the n copies by one transition,

using a (d+ 1)-dimensional modified RQMC point set, defined as a set

P ′

n,j = {U′

i,j = ((i+ 0.5)/n,Ui,j), 0 ≤ i < n}

with the following properties:

(c) Ui,j is a random vector uniformly distributed over [0, 1)d for each i;

(d) P ′

n,j is “highly uniform” in [0, 1)d+1, in a sense that we leave open (as in our definition

of RQMC point set).

(d) Pn,j = {U0,j, . . . ,Un−1,j} is an RQMC point set in [0, 1)d;

Such point sets P ′

n,j are easy to construct: just take a (d + 1)-dimensional RQMC point

set, sort the points by order of their first coordinate, and replace the first coordinate of

point i by (i + 0.5)/n. For the most common types of highly-uniform point sets, including

digital nets and lattice rules of rank 1, the points can be enumerated in a way that the first

coordinate of point i before the randomization is i/n; then it suffices to randomize only the

other coordinates. This is what we have used in all our experiments.

Array-RQMC also uses a sorting function v : Y → R to sort the n states by increasing

order of v(y) at each step. Ideally, v should be chosen so that any two states x and y with

v(x) = v(y) should be approximately equivalent. The intuition is that if this is true, and if

the empirical distribution of v(Y0,j), . . . , v(Yn−1,j) at step j provides a better approximation

of the theoretical distribution Fj of v(Yj) than for MC, for each j, then Ȳn would have

7



smaller variance than for MC. To maintain the good approximation from step j − 1 to step

j, the idea is to sort the chains according to their values of v(Yi,j−1) at step j − 1, and use

the modified RQMC point set P ′

n,j to determine the next states in a way that the empirical

conditional distribution of v(Yi,j), given that v(Yi,j−1) belongs to a specific interval, matches

very well the theoretical conditional distribution. More detailed explanations can be found

in L’Ecuyer et al. (2007). With a good choice of v, this method often outperforms classical

RQMC when s is large. A description of this algorithm will be given later, in the context of

CFTP.

For both the RQMC and array-RQMC method, the variance can be estimated by repli-

cating the whole scheme, say, r times, independently, and using the empirical variance of

the r independent copies of (6) as an unbiased variance estimator.

4 Combining CFTP with RQMC

Lemieux and Sidorsky (2006) propose a direct application of RQMC to the Markov chain

Y that describes the backward CFTP algorithm. This goes as follows. Select an infinite-

dimensional RQMC point set of cardinality n and use it to run n replicates of (3), one for

each point Vi = (Ui,1, Ui,2, . . . ), by putting U0 = (Ui,1, . . . , Ui,d), U−1 = (Ui,d+1, . . . , Ui,2d),

U−2 = (Ui,2d+1, . . . , Ui,3d), and so on. In other words, the algorithm uses each new block

of d coordinates of the point Vi to go one more step backward with the chain. Their

implementation does the backward simulation explicitly. This is practical only if the state

space S is finite and not too large. The dimension s must be infinite because there is no

deterministic upper bound on the number of steps required for coalescence.

An equivalent forward implementation would proceed as follows. In the first stage, we

start the n copies of the CFTP process at time −T1. For the ith copy, we simulate the

T1 steps using the first T1d coordinates of Vi, where blocks of d coordinates are taken in

reverse order. That is, we put X−j+1 = ϕ(X−j, Ui,(j−1)d+1, . . . , Ui,jd) for j = T1, . . . , 1. If

coalescence does not occur at step 0 for this ith copy, we start again from −T2 < −T1, using

the coordinates T1d+ 1, . . . , T2d of Vi by blocks of size d taken in reverse order to simulate

the first T2 − T1 steps of the chain. For the copies that did not coalesce after starting from

−T2, we start from −T3 < −T2, and so on.

This could be awkward to implement, especially if d > 1, because software implemen-

tations of infinite-dimensional RQMC point sets are normally not designed to enumerate

the coordinates in a different order than the natural order. A simple solution is to just

use the coordinates of Vi in the most convenient order: the first d coordinates to go

from time −T1 to −T1 + 1, . . . , the coordinates (T1 − 1)d + 1 to T1d to go from time

8



−1 to time 0, then the coordinates T1d + 1 to (T1 + 1)d to go from time −T2 to −T2 + 1,

and so on. This gives X−T1+j = ϕ(X−T1+j−1, Ui,(j−1)d+1, . . . , Ui,jd) for j = 1, . . . , T1, then

X−T2+j = ϕ(X−T2+j−1, Ui,(T1+j−1)d+1, . . . , Ui,(T1+j)d) for j = 1, . . . , T2− T1, and so on. This is

how we define our implementation of RQMC with forward CFTP. Thus, it differs from that

of Lemieux and Sidorsky (2006).

5 Combination with Array-RQMC

We now examine the combination with array-RQMC, first for the backward CFTP algorithm,

then for the forward approach.

For the backward algorithm, we suppose again that S = {0, . . . ,M − 1} and apply the

array-RQMC method to simulate the Markov chain Y defined earlier, with Yj = (Ψj(0), . . . ,

Ψj(M−1)). For this, we need to define a sorting function v : SM → R. Finding a good v is the

least obvious part of the approach. The algorithm simulates n dependent copies of the chain

Y , in parallel. The state of the ith copy at step j is Yi,j = Ψ
(i)
j = (Ψ

(i)
j (0), . . . ,Ψ

(i)
j (M − 1),

where Ψ
(i)
j (m) is the realization of Ψj(m) for the ith copy of the chain. These realizations

evolve according to the recurrence Ψj(m) = Ψj−1(ϕ(m,U−j+1)), as explained earlier, at any

step and for any copy. At each step j, we use a modified RQMC point set P ′

n,j and take

the randomized point Ui,j in place of U−j+1 in the recurrence, for the ith copy of the chain.

Note that the chains are reordered at each step, using the sorting function v, so the ith chain

at step j is generally not the same chain as the ith chain at step j − 1. For this reason,

we cannot write Ψ
(i)
j (m) = Ψ

(i)
j−1(ϕ(m,Ui,j)). Sorting the chains is done only to achieve a

specific assignment of the points to the chains; it is in fact equivalent to using the points of

P ′

n,j in a different order at the successive steps.

Algorithm 1 summarizes the backward algorithm with array-RQMC. The variable N de-

notes the number of chains Y that have not yet coalesced. We start with N = n and the

algorithm stops when N = 0. The variable S accumulates the sum of values of c(Ψ
(i)
j (0)) at

coalescence, whose average is Ȳn.

A naive way of combining the forward algorithm with array-RQMC could proceed as

follows. Suppose that S0 ∪S1 = {0, . . . ,M − 1}. We simulate n CFTP processes in parallel,

from time −T1 < 0 to time 0. At step j, for j = −T1 + 1 to 0, let Y
(i)
j = (X

(i)
0,j, . . . , X

(i)
M−1,j)

be the state of the CFTP process i; we sort the n processes by order of v(Y
(i)
j ), we randomize

afresh the RQMC point set Pn and use these points to advance all the CFTP processes by

one step. For those processes that did not reach coalescence at step 0, we start again from

time −T2 < −T1, using new randomizations of the RQMC point set from step −T2 + 1 to

−T1, but the same randomizations as in the first pass from step −T1 + 1 onward. A major

9



Algorithm 1 Array-RQMC with the Backward CFTP Algorithm
N ← n; S := 0.0;
for (i = 0; i < n; i++) do

for (m = 0; m < M ; m++) do

Ψ
(i)
0 (m)← m;

end for

end for

for (j = 1; N > 0; j++) do

Randomize Pn afresh into Pn,j = {U0,j, . . . ,Un−1,j};
for (i = 0; i < N ; i++) do

for (m = 0; m < M ; m++) do

Ψ
(i)
j (m)← ϕ(Ψ

(i)
j−1(m),Ui,j);

end for

if process i has just collapsed then

N ← N − 1; S ← S + c(Ψ
(i)
j (0));

end if

end for

Sort (and renumber) the N processes that did not yet collapse by order of their values

of v(Ψ
(i)
j (0), . . . ,Ψ

(i)
j (M − 1));

end for

Return Ȳn ← S/n.

problem with this approach, however, is that even if we use the same randomizations of the

point sets from step −T1 + 1, the randomized points will generally not be assigned to the

same CFTP processes in those steps, because these processes do not visit the same sequence

of states and are therefore sorted in a different order at each step. Thus, a given chain is

not necessarily using the same sequence of vectors Ui,j, so the CFTP implementation is no

longer valid.

We can handle this difficulty in the following way. The first pass, from −T1 to 0, is

done as just described, with a value of T1 large enough so that only a small fraction of the

processes (e.g., something between 10−3 and 10−5) are expected not to have coalesced by

time 0. On the second and further passes, for the CFTP processes that did not coalesce, we

restart further back in the past, but using Monte Carlo instead of array-RQMC before time

T1, and reusing the same random numbers for the same processes thereafter, without sorting

the processes. There will be practically no variance reduction for those processes, but they

are only a small fraction of all the processes, so a good overall variance reduction can still

be achieved. This procedure is described in Algorithm 2

A second option would be to apply array-RQMC also on the second and further passes,

but when we start in the past from time −Tk, we apply array-RQMC only until we reach

time −Tk−1, and then we stop sorting the processes and we make sure that we reuse the

10



same random numbers for the same processes until time 0. When T1 is large enough, this

alternative involves only a very small fraction of the chains, so it does not make much of a

difference in practice. On the other hand, it may permit one to take a smaller T1. For

Tk = k, it becomes equivalent to the backward algorithm (but the computational cost is

different).

In the implementation, it is important that the points Ui,j are memorized together with

the chains Y for which they are used, to make sure that each point is associated with the

same chain, at each step. In an object-oriented implementation, each process Y would be

represented as an object, and the sequence of points used by that process would be memorized

in that object, e.g., in a list. A new point is added to the list each time that process moves

ahead by one step. These lists are in fact used only for the processes that did not coalesce

by time 0, but since we do not know in advance which are those processes, the lists must be

filled for all the processes. This may require a significant amount of memory in some cases.

It is important to underline that with this approach, all the processes must be be sim-

ulated for at least T1 time steps. If we choose T1 so that most processes have collapsed by

time 0, then T1 must be much larger than the average value of T∗ in the backward algorithm,

which means that this forward approach requires much more simulation work (counted in

terms of the total number of steps of the Markov chain that are simulated) than the back-

ward method. This must be taken into account when comparing efficiencies. This also means

that the choice of T1 is a question of compromise: When T1 is very large, increasing it fur-

ther increases the cost linearly and has almost no impact on the variance, whereas when T1

is small, increasing it can improve the efficiency by reducing the variance, due to a better

exploitation of the array-RQMC effect by reducing the number of processes that have to

be started back from −T2. The efficiency usually increases as a function of T1 up to some

optimal value, then it decreases roughly as O(1/T1). Our numerical examples will illustrate

this.

6 Numerical Experiments

We compare the CFTP algorithms with MC, classical RQMC, and array-RQMC on small

examples. We first specify the selected RQMC point sets and the experimental setting, which

are the same as in L’Ecuyer et al. (2007) (the interested readers can consult this reference

for further details), then we describe the examples and give the results. In all the examples,

we have d = 1, so the modified RQMC point sets P ′

n,j are always two-dimensional: the first

coordinate is used to sort the chains Y and the second one to determine the next transition.

We will denote the one-dimensional vectors Uj and Ui,j by Uj and Ui,j.

11



Algorithm 2 Array-RQMC with the Forward CFTP Algorithm
T ← T1;
for (i = 0; i < n; i++) do

for (m = 0; m < M ; m++) do

X
(i)
−T (m)← m;

end for

end for

for (j = −T + 1; j <= 0; j++) do

Randomize Pn afresh into Pn,j = {U0,j, . . . ,Un−1,j};
for (i = 0; i < n; i++) do

for (m = 0; m < M ; m++) do

X
(i)
j (m)← ϕ(X

(i)
j−1(m),Ui,j);

end for

Memorize Ui,j in the “history” of process i;
end for

Sort (and renumber) the n processes by order of values of v(X
(i)
j (0), . . . , X

(i)
j (Mi − 1));

end for

Let N be the number of processes that have not yet collapsed;
while N > 0 do

T = 2 ∗ T ;
Simulate the N processes that remain, from time −T to time 0, using MC until time
−T/2 and reusing thereafter the same random numbers as before, for each process;
Let N be the number of processes that have not yet collapsed at time 0;

end while

Return Ȳn ← [c(X(0)(0)) + · · ·+ c(X(n−1)(0))]/n.

12



6.1 Point sets and experimental setting

For the RQMC methods, we use Korobov lattice rules and Sobol’ nets. A Korobov rule uses

the infinite-dimensional point set

Pn = {vi = (i/n, (ia mod n)/n, (ia2 mod n)/n, . . . ), i = 0, . . . , n− 1}

defined by two parameters 0 < a < n (Niederreiter, 1992; Sloan and Joe, 1994; L’Ecuyer

and Lemieux, 2000). We take n equal to the largest prime number smaller than 2k for

k = 10, 12, . . . , 20. For array-RQMC, where P ′

n,j is two-dimensional, we take a equal to

the odd integer nearest to n/1.61803399, so a/n is close to the golden ratio (this always

gives a good two-dimensional lattice). For classical RQMC, the point set must be infinite-

dimensional and we use several of its coordinates; for that case, a is taken from Table 1

of L’Ecuyer and Lemieux (2000). We randomize this point set by a (single) random shift

modulo 1 applied simultaneously to all the points, followed by a baker’s transformation,

which transforms each coordinate u to 2u if u < 1/2 and to 2(1−u) if u ≥ 1/2. The random

shift consists in generating a single random point Ṽ uniformly in [0, 1)s and then replacing

each point vi of Pn by Vi = (vi + Ṽ) mod 1.

For array-RQMC, we also use Sobol’ nets with n = 2k points, for k = 10, 12, . . . , 20,

randomized by a left (upper triangular) matrix scrambling followed by a random digital

shift (L’Ecuyer and Lemieux, 2002; Owen, 2003). The matrix scrambling left-multiplies the

generator matrix for each coordinate of the net by a random nonsingular lower-triangular

matrix, and the digital shift is similar to the random shift, except that addition is applied

bitwise modulo 2. Since we do not have an infinite-dimensional implementation of these

point sets, we use them only for array-RQMC.

All these point sets and randomizations are available in the SSJ software (L’Ecuyer,

2004), which we have used for all our experiments. For array-RQMC, the randomization is

only applied to the second coordinate and the points are enumerated by order of the first

coordinate for the lattices and by order of their Gray code for the Sobol’ nets, as explained

in L’Ecuyer et al. (2007).

For each RQMC method and each value of n considered, we estimate the variance reduc-

tion factor (VRF) compared with standard MC, defined as Var[Y ]/(n Var[Ȳn]), where Ȳn is

the estimator with the RQMC method considered. These variances were estimated from 220

independent replicates of the CFTP process for the MC method and 100 independent copies

of Ȳn for the RQMC methods. This gives a more accurate variance estimate for MC than

for RQMC; for the latter we have roughly about 10 to 20% relative accuracy (as a crude

estimate).

We also compare the work-normalized variance of estimators, defined as the variance

13



multiplied by the computational work, where the work is measured as the total number of

Markov chains steps that are simulated. The efficiency improvement of any given estimator

compared with the MC estimator is defined as the work-normalized variance of the MC

estimator divided by that of the given estimator.

6.2 Some Markov chains with small state spaces

Our first set of examples is taken directly from Lemieux and Sidorsky (2006). It is comprised

of three finite-state Markov chains, with state spaces of size 3, 4, and 16, respectively,

combined with the following three choices of the cost function c:

c1(x) = x, c2(x) = (x− 2)(x− 5), and c3(x) = sin(3x).

For each chain, we want to estimate µk = Eπ[ck(X)] for k = 1, 2, 3. The probability transition

matrices of the first two chains are

P1 =





0.5 0.4 0.1
0.3 0.4 0.3
0.2 0.3 0.5



 ,

P2 =









0.7 0.0 0.3 0.0
0.5 0.0 0.5 0.0
0.0 0.4 0.0 0.6
0.0 0.2 0.0 0.8









,

while the third chain is a random walk whose transition matrix P3 has elements

Pi,j =







0.2 If i+ 1 = j ≤ 15 or i = j = 15
0.8 If i− 1 = j ≤ 15 or i = j = 1
0 otherwise.

Each transition is generated by inversion from the relevant uniform; i.e., ϕ(i, U) =

min{j|Pi,0 + · · · + Pi,j ≥ U). For the sorting function v, we take the average of the states

of the M chains in the CFTP process, and sort the processes by increasing order of that

average. That is, for the process i at step j, we have v(Y
(i)
j ) = 1

M

∑M−1
m=0 X

(i)
m,j. We tried

other sorting functions, such as the average value of the cost function, and the result were

not better.

Table 1 reports the estimated VRFs compared with MC, per copy of the CFTP process.

Since the computing times in the backward algorithm are very similar for all the MC and

RQMC methods, the efficiency improvement is essentially the same as the VRF. In all our

tables, Classical-Korobov means classical RQMC with a Korobov point set, a random shift,

and a baker’s transformation; Array-Korobov means array-RQMC with a Korobov point set,

14



Table 1: VRFs for the first set of examples, with the backward algorithm
n 210 212 214 216 218 220

n for Korobov 1021 4093 16381 65521 262139 1048573
a for Classical-Korobov 306 1397 5693 944 118068 802275
a for Array-Korobov 633 2531 10125 40503 162013 648055

Matrix P1

Classical-Korobov 23 50 34 68 106 339
c1 Array-Korobov 240 826 1951 4886 2638 21560

Array-Sobol 155 378 1281 4882 16150 51470
Classical-Korobov 33 51 25 43 102 342

c2 Array-Korobov 199 720 1820 5467 2962 25260
Array-Sobol 123 540 1483 3982 16910 41410
Classical-Korobov 17 30 36 26 25 40

c3 Array-Korobov 97 317 1067 2380 1464 5763
Array-Sobol 63 156 503 1015 6496 19150

Matrix P2

Classical-Korobov 5 12 3 17 44 24
c1 Array-Korobov 32 59 186 607 774 3555

Array-Sobol 22 46 104 285 812 2031
Classical-Korobov 5 10 2 12 31 20

c2 Array-Korobov 33 62 211 491 585 3165
Array-Sobol 23 48 100 282 742 2228
Classical-Korobov 5 8 3 14 33 18

c3 Array-Korobov 31 78 230 596 673 3690
Array-Sobol 15 68 101 273 673 1912

Matrix P3

Classical-Korobov 7 13 26 47 54 72
c1 Array-Korobov 39 84 155 345 598 1484

Array-Sobol 26 49 102 220 559 1108
Classical-Korobov 12 16 16 38 37 68

c2 Array-Korobov 51 114 265 587 858 2140
Array-Sobol 34 64 172 369 917 1718
Classical-Korobov 1 2 3 6 6 7

c3 Array-Korobov 4 8 15 22 53 101
Array-Sobol 3 4 9 14 34 69

15



0 10 20 30 40 50 60
0

50

100

150

200

250

0 10 20 30 40 50 60
0

50

100

150

0 10 20 30 40 50 60
0

50

100

150

200

250

Figure 1: Efficiency improvement of array-RQMC over MC, as a function of T1, for P3. The
graphs are for c1, c2, and c3 (right to left), for the Korobov lattices (solid lines) and the
Sobol’ nets (dotted lines).

a random shift, and a baker’s transformation; and Array-Sobol means array-RQMC with a

Sobol’ point set, a left matrix scramble and a random digital shift.

For Classical-Korobov, we observe larger VRFs than Lemieux and Sidorsky (2006) for

the same examples. This can be explained by the fact that we have tried larger values

of n (the VRF tends to increase with n) and that applying the baker’s transform brings

some additional improvement. However, the array-RQMC method provides much larger

improvements, for both point sets and for all examples. The improvement factor exceeds

several thousands in many cases. The worst case is the random walk (matrix P3) with

function c3, for which we still get an improvement factor of about 100 with n = 220.

Table 2 gives the efficiency improvement factors obtained with the forward algorithm, for

the same examples. For the small matrix P1, we are not doing better than with the backward

algorithm, but for the other matrices, we do. With array-RQMC, it is for P3, for which the

state space is the largest, that the forward method provides the best improvement over the

backward method. This last observation tends to be true in general; with array-RQMC, the

forward method is usually more advantageous than the backward method when the state

space is large, which is the case of most practical interest.

The values of T1 used in Table 2 were selected based on n = 220 preliminary runs to

estimate the optimal values (that maximize the efficiency) for the array-RQMC method.

With the selected values, the proportion of processes that do not reach coalescence by time

0 is approximately 10−4 in the three cases.

As an illustration, in Figure 1 we plot the efficiency improvement factor of array-RQMC

compared with MC, as a function of T1, where T1 varies from 0 to 50, for the matrix P2 with

n = 210. The maximal efficiency is reached for T1 near 20.

16



Table 2: Efficiency improvement factors for the forward algorithm with fixed T1

n 210 212 214 216 218 220

n for Korobov 1021 4093 16381 65521 262139 1048573
a for Classical-Korobov 306 1397 5693 944 118068 802275
a for Array-Korobov 633 2531 10125 40503 162013 648055

Matrix P1, with T1 = 9
Classical-Korobov 23 50 34 68 106 339

c1 Array-Korobov 71 149 737 124 6506 8347
Array-Sobol 42 139 522 1660 4176 13689
Classical-Korobov 33 51 25 43 102 342

c2 Array-Korobov 84 104 416 114 5844 10044
Array-Sobol 50 156 598 1496 6236 15771
Classical-Korobov 17 30 36 26 25 40

c3 Array-Korobov 40 23 240 303 1728 2090
Array-Sobol 22 72 178 879 3307 9358

Matrix P2, with T1 = 20
Classical-Korobov 5 12 3 17 44 24

c1 Array-Korobov 31 62 248 71 1321 1431
Array-Sobol 16 59 185 618 1925 5005
Classical-Korobov 5 10 2 12 31 20

c2 Array-Korobov 43 55 205 73 102 1642
Array-Sobol 26 65 249 558 1702 3986
Classical-Korobov 5 8 3 14 33 18

c3 Array-Korobov 37 44 177 130 1070 3103
Array-Sobol 14 52 162 512 1215 4368

Matrix P3, with T1 = 62
Classical-Korobov 7 13 26 47 54 72

c1 Array-Korobov 33 58 239 1418 921 2107
Array-Sobol 65 179 772 2548 5226 14330
Classical-Korobov 12 16 16 38 37 68

c2 Array-Korobov 46 81 219 991 941 1240
Array-Sobol 41 1287 428 1504 3285 9027
Classical-Korobov 1 2 3 6 6 7

c3 Array-Korobov 7 13 42 111 123 297
Array-Sobol 5 15 59 144 417 1217

17



Table 3: Efficiency improvement factors for the forward CFTP method with fixed T1, for the
random walk over [0, 5]

Parameters n = 210 n = 212 n = 214

T1 T1 T1

σ=5 Classical-Korobov 17 42 14
Array-Korobov 10 227 10 1428 12 2485
Array-Sobol 9 2554 11 12911 12 36449

σ=1 Classical-Korobov 11 13 18
Array-Korobov 81 11 80 727 98 1411
Array-Sobol 86 588 86 2406 92 6846

σ=0.5 Classical-Korobov 5 2 9
Array-Korobov 303 11 319 637 298 1753
Array-Sobol 302 2969 326 1255 326 3195

6.3 A random walk over a finite segment of the real line

We now consider a random walk on a continuous state space, namely S = [0, w] where w > 0.

The Markov chain evolves according to the stochastic recurrence

X0 = x0, Xj = max(0,min(Xj−1 + Zj, w)), j ≥ 1

where the Zj are independent and normally distributed with mean 0 and variance σ2. We

can write Zj = σΦ−1(Uj), where Φ is the standard normal distribution function; then the

recurrence (2) becomes

Xj = ϕ(Xj−1, Uj) = max(0,min(Xj−1 + σΦ−1(Uj), w)).

We want to estimate µ = Eπ[c(X)] for c(x) = x. Here, ϕ is monotone in Uj, and we have

S0 = {0} and S1 = {w}, so the forward CFTP algorithm requires the simulation of only two

copies of the chain X , one from state 0 and the other from state w. The sorting function v

is taken as the average between the states of these two copies of X .

Table 3 gives the estimated efficiency improvement factors of the RQMC methods com-

pared with MC, for the forward algorithm with fixed T1. We take w = 5 and three different

values of σ. For array-RQMC, the optimal value of T1 was estimated for each case by pilot

runs. Figure 2 illustrates one case; it shows the (empirical) efficiency improvement factor as

a function of T1 for the random walk over [0, 5] with σ = 1, for array-RQMC with n = 212.

The maximum is reached for T1 around 90. The other cases are similar.

18



0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Figure 2: Efficiency improvement factor as a function of T1 for the random walk with w = 5
and σ = 1. Again, the solid line is for Array-Korobov and the dotted line is for Array-Sobol.

7 Conclusion

We have shown how the array-RQMC method can be combined with both the forward and

backward CFTP algorithms. In our numerical examples, these combinations have outper-

formed the combination of CFTP with a classical RQMC approach. The latter was already

shown in Lemieux and Sidorsky (2006) to be superior to the more traditional antithetic

and Latin hypercube sampling approaches. Admittedly, our numerical illustrations are with

small academic examples. The aim was to show the potential of the method on simple cases

for which we know the exact answer. The next step will be to experiment it on larger, more

complex, Markov chains. For that, the forward method with fixed T1 appears to be the most

promising.

Acknowledgments

This research has been supported by Grant OGP-0110050 and a Canada Research Chair to

the first author. This article was written while the first author was a visiting researcher at

IRISA, in Rennes, France.

References

Awad, H. P., and P. W. Glynn. 2007. On the theoretical comparison of low-bias steady-state

simulation estimators. ACM Transactions on Modeling and Computer Simulation 17 (1):

4.

Craiu, R. V., and X.-L. Meng. 2000. Antithetic coupling for perfect sampling. In Bayesian

19



Methods with Applications to Science, Policy, and Official Statistics (Selected Papers from

ISBA 2000), ed. E. I. George, 99–108.

Craiu, R. V., and X.-L. Meng. 2005. Multiprocess parallel antithetic coupling for backward

and forward Markov chain Monte Carlo. Annals of Statistics 33 (2): 661–697.

Glynn, P. W. 2006. Simulation algorithms for regenerative processes. In Simulation, ed.

S. G. Henderson and B. L. Nelson, Handbooks in Operations Research and Management

Science, 477–500. Amsterdam, The Netherlands: Elsevier. Chapter 16.

Heidelberger, P., and P. D. Welch. 1983. Simulation run length control in the presence of an

initial transient. Operations Research 31:1109–1144.

Law, A. M., and W. D. Kelton. 2000. Simulation modeling and analysis . Third ed. New

York: McGraw-Hill.

L’Ecuyer, P. 2004. SSJ: A Java library for stochastic simulation. Software user’s guide,

Available at http://www.iro.umontreal.ca/∼lecuyer.

L’Ecuyer, P. 2006. Uniform random number generation. In Simulation, ed. S. G. Henderson

and B. L. Nelson, Handbooks in Operations Research and Management Science, 55–81.

Amsterdam, The Netherlands: Elsevier. Chapter 3.

L’Ecuyer, P., C. Lécot, and B. Tuffin. 2007. A randomized quasi-Monte Carlo simulation

method for Markov chains. Operations Research. To appear.

L’Ecuyer, P., and C. Lemieux. 2000. Variance reduction via lattice rules. Management

Science 46 (9): 1214–1235.

L’Ecuyer, P., and C. Lemieux. 2002. Recent advances in randomized quasi-Monte Carlo

methods. In Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and

Applications, ed. M. Dror, P. L’Ecuyer, and F. Szidarovszky, 419–474. Boston: Kluwer

Academic.

Lemieux, C., and P. Sidorsky. 2006. Exact sampling with highly-uniform point sets. Math-

ematical and Computer Modelling 43:339–349.

Niederreiter, H. 1992. Random number generation and quasi-Monte Carlo methods, Vol-

ume 63 of SIAM CBMS-NSF Regional Conference Series in Applied Mathematics.

Philadelphia: SIAM.

20



Owen, A. B. 1998. Latin supercube sampling for very high-dimensional simulations. ACM

Transactions on Modeling and Computer Simulation 8 (1): 71–102.

Owen, A. B. 2003. Variance with alternative scramblings of digital nets. ACM Transactions

on Modeling and Computer Simulation 13 (4): 363–378.

Propp, J. G., and D. B. Wilson. 1996. Exact sampling with coupled Markov chains and

applications to statistical mechanics. Random Structures and Algorithms 9 (1&2): 223–

252.

Sloan, I. H., and S. Joe. 1994. Lattice methods for multiple integration. Oxford: Clarendon

Press.

21


