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Abstract

The Kadomtsev-Petviashvili (KP) equation describes weakly dispersive and small amplitude waves propagating in
a quasi-two dimensional situation. Recently a large variety of exact soliton solutions of the KP equation has been
found and classified. Those soliton solutions are localized along certain lines in a two-dimensional plane and decay
exponentially everywhere else, and they are called line-soliton solutions in this paper. The classification is based on
the far-field patterns of the solutions which consist of a finite number of line-solitons. In this paper, we study the
initial value problem of the KP equation with V- and X-shape initial waves consisting of two distinct line-solitons by
means of the direct numerical simulation. We then show that the solution converges asymptotically to some of those
exact soliton solutions. The convergence is in a locally defined L?-sense. The initial wave patterns considered in this
paper are related to the rogue waves generated by nonlinear wave interactions in shallow water wave problem.

Keywords: Kadomtsev-Petviashvili equation, soliton solutions, chord diagrams, pseudo-spectral method, window
technique

1. Introduction

The KdV equation may be obtained in the leading order approximation of an asymptotic perturbation theory for
one-dimensional nonlinear waves under the assumptions of weak nonlinearity (small amplitude) and weak dispersion
(long waves). The initial value problem of the KdV equation has been extensively studied by means of the method of
inverse scattering transform (IST). It is then well-known that a general initial data decaying rapidly for large spatial
variable evolves into a sum of individual solitons and some weak dispersive wave trains separated away from solitons
(see for examples, [, 13} 15} 20]).

In 1970, Kadomtsev and Petviashvili [7] proposed a two-dimensional dispersive wave equation to study the stabil-
ity of one soliton solution of the KdV equation under the influence of weak transversal perturbations. This equation
is now referred to as the KP equation, and considered to be a prototype of the integrable nonlinear dispersive wave
equations in two dimensions. The KP equation can be also represented in the Lax form, that is, there exists a pair of
linear equations associated with the eigenvalue problem and the evolution of the eigenfunctions. However, unlike the
case of the KdV equation, the method of IST based on the pair of linear equations does not seem to provide a practical
method for the initial value problem with non-periodic waves considered in this paper. At the present time, there is no
feasible analytic method to solve the initial value problem of the KP equation with initial waves having line-solitons
in the far field.

In this paper, we study this type of the initial value problem of the KP equation by means of the direct numerical
simulation. In particular, we consider the following two cases of the initial waves: In the first case, the initial wave
consists of two semi-infinite line-solitons forming a V-shape pattern, and in the second case, the initial wave is given
by a linear combination of two infinite line-solitons forming X-shape. Those initial waves have been considered in
the study of the generation of large amplitude waves in shallow water [16} |18, [10]. The main result of this paper is
to show that the solutions of the initial value problem with those initial waves asymptotically converge to some of the
exact soliton solutions found in [2 3]]. This implies a separation of the (exact) soliton solution from the dispersive
radiations in the similar manner as in the KdV case.
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The paper is organized as follows: In Section 2} we provide a brief summary of the soliton solutions of the KP
equation and the classification theorem obtained in [2| 3] for those soliton solutions as a background necessary for
the present study. In particular, we introduce the parametrization of each soliton solution with a chord diagram which
represents a derangement of the permutation group, i.e. permutation without fixed point. In Section [3] we present
several exact soliton solutions, and describe some properties of those solutions. Each of those soliton solutions has N,
numbers of line-solitons in a far field on the two-dimensional plane, say in y > 0, and N_ numbers of line-solitons in
the far field of the opposite side, i.e. y < 0. This type of soliton solution is referred to as an (N_, N, )-soliton solution.
Here we consider those solitons with N_+ N, < 4 and N_ < 3. In Section[d] we describe the numerical scheme used in
this paper, which is based on the pseudo-spectral method combined with the window technique [17,[19]]. The window
technique is especially used to compute our non-periodic problem which is essentially an infinite domain problem.
Finally, in Section[5] we present the numerical results of the initial value problems with V- and X-shape initial waves,
and show that the solutions asymptotically converge to some of those exact solutions discussed in Section [3] The

1
convergence is in the sense of locally defined L,-sense with the usual norm, i.e. ||fll;2p) := ( f fD If(x, y)Izdxaly)2 s

where D ¢ R? is a compact set which covers the main structure describing the (resonant) interactions in the solution.
We also propose a method to identify an exact solution for a given initial wave with V- or X-shape pattern based on
the chord diagrams introduced in the classification theory.

2. Background

Here we give a brief summary of the recent result of the classification theorem for soliton solutions of the KP
equation (see [9] 2| [3] for the details). In particular, each soliton solution is then parametrized by a chord diagram
which represents a unique element of the permutation group. We use this parametrization throughout the paper.

2.1. The KP equation
The KP equation is a two-dimensional nonlinear dispersive wave equation given by

0y (46,u + 6udu + 6)3(14) + 36314 =0, 2.1

711

0"u Lo
where 0y := p etc. Let us express the solution in the form,
X

u(x,y,1) =207 Int(x,y,1). 2.2)

where the function 7 is called the rau function, which plays a central role in the KP theory. In this paper, we consider
a class of the solutions, where each solution can be expressed by 7(x,y,?) in the Wronskian determinant form 7 =

Wr(fi,..., fy), i.e.

fo i B
hoB o B
y,=. . (2.3)
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with ﬁj) = 04 fuforn =1,...,N. Here the functions {f, ..., fy} form a set of linearly independent solutions of the

linear equations,
Oyfo=02fus  Oifo = ~0ifn-

(The fact that (2.2)) with (2.3) gives a solution of the KP equation is well-known and the proof can be found in several
places, e.g. see [6}13].) The solution of those equations can be expressed in the Fourier transform,

Fulx,y, 1) = f KRR, (ydk, n=1,2,...,N, (2.4)
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with an appropriate contour C in C and the measure p, (k) dk. In particular, we consider a finite dimensional solution
with p,(k)dk = Y™ | a,,6(k — k,,) dk with a,,,, € R, i.e.

M
fu(x,y,8) = Z AnmEm(x,y,1) with E, = exp(k,x + kiy - kfnt).

m=1

Thus this type of solution is characterized by the parameters {k, ka, ..., ky} and the N X M matrix A := (a,,) of
rank(A) = N, that is, we have
(fis far- s fw) = (E1, Ea, ..., Eq)AT . (2.5)

Note that {E}, E», ..., Ey} gives a basis of R and {fi, o, ..., fn} spans an N-dimensional subspace of RM . This
means that the A-matrix can be identified as a point on the real Grassmann manifold Gr(N, M) (see [9} 3]]). More
precisely, let Myxy(R) be the set of all N X M matrices of rank N. Then Gr(N, M) can be expressed as

Gr(N, M) = GLy(RO\Myxpu(R),

where GLy(IR) is the general linear group of rank N. This is saying that other basis (g1,...,gn) = (fi,..., fv)H for
any H € GLy(R) spans the same subspace. Notice here that the freedom in the A-matrix with GLy(RR) can be fixed by
expressing A in the reduced row echelon form (RREF). We then assume throughout this paper that the A-matrix is in
the RREF, and show that the A-matrix plays a crucial role in our discussion on the asymptotic behavior of the initial
value problem.

Now using the Binet-Cauchy Lemma for the determinant, the 7-function of can be expressed in the form,

ap dz;p -+ 4Nl
E, E, Ey ap  an - aw
ki E; kyE, kyEy
T= . . . . .
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aim dom ccc ANM
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I<ji<jp<<jn<M

where £(ji, ..., jn) is the N X N minor of the A-matrix with N columns marked by (ji, ..., jy), and E(ji,..., jn) is
given by
EG. . ) = WiEj,, .. Ej) = [ [k, = kiDE), - By
I<m

From the formula (2.6), one can see that for a given A-matrix,

e if a column of A has only zero elements, then the exponential term E,, with m being the column index never
appear in the 7-function, and

e if a row of A has only the pivot as non-zero element, then E, with n being the row index can be factored out
from the 7-function, i.e. E, has no contribution to the solution.

We then say that an A-matrix with no such cases is irreducible, because the T-function with reducible matrix can be
obtained by a matrix with smaller size.

We are also interested in non-singular solutions. Since the solution is given by u = 20*(In 1), the non-singular
solutions are obtained by imposing the non-negativity condition on the minors,

EGryjare o jn) 20, forall 1<jj<jp<--<jy<M. 2.7)

This condition is not only sufficient but also necessary for the non-singularity of the solution. We call a matrix having
the condition (2.7) totally non-negative matrix.



2.2. Line-soliton solution and the notations

Let us here present the simplest solution, called one line-soliton solution, and introduce several notations to de-
scribe the solution. A line-soliton solution is obtained by a 7-function with two exponential terms, i.e. the case N = 1
and M = 2 in (2.3): With the A-matrix of the form A = (1 a), we have

1
7= E; + aEy = 2 Vae? % cosh 501 =61 ~Ina),

The parameter a in the A-matrix must be a > 0 for a non-singular solution (i.e. totally non-negative A-matrix), and
it determines the location of the soliton solution. Since a = 0 leads to a trivial solution, we consider only a > 0 (i.e.
irreducible A-matrix) . Then the solution u = 20*(In 1) gives

1 1
u= z(kl - kz)z sech? 5(91 — 6, —Ina).

Thus the solution is located along the line 6; — 6, = Ina. We here emphasize that the line-soliton appears at the
boundary of two regions, in each of which either E; or E, becomes the dominant exponential term, and because of
this we also call this soliton [1, 2]-soliton solution (or soliton of [1,2]-type). In general, the line-soliton solution of
[7, jl-type with i < j has the following structure (sometimes we consider only locally),

1
u= A[i,j] S(?Ch2 5 (K[i,j] X — Q[l"j]l + ®[i,j]) (28)

with some constant O; j;. The amplitude Ay; ;;, the wave-vector K; ;; and the frequency €y; ; are defined by

1
Aiig = 5 kj = ki)

K = (kj = ki G = K7) = (k; = ko) (1, ki + k;).
Quij =k; =k = (kj = k(K] + kik; + k).

The direction of the wave-vector K|; j; = (K[Xi L Kf, j]) is measured in the counterclockwise from the x-axis, and it is
given by

v
[i,/]
- = tan‘I’[,»,j] =k + kj.

[i,]]
Notice that P}; ;) gives the angle between the line Ky; j; - x = const and the y-axis (See Figure[2.T). Then a line-soliton

1) can be written in the form with three parameters Ay, ;;, ¥ j and x?l.’j],

(A
u= A[i,j] sech2 % ()C + ytan lP[l',j] - C[[,j]l - x?i,j]) , 2.9)

with Cpi ;) = k7 + kik; + k5 = 3Api ) + 3 tan> Wy jp. For the parameter x{, , giving the location of the line-soliton, we

also use the notation,
1

0

i = T — g O (2.10)
with @; j; in (2.8) which is determined by the A-matrix and the k-parameters. For multi-soliton solutions, one can
only define the location of each [i, j]-soliton using the asymptotic position in the xy-plane either x > O or x < 0
(we mainly consider the cases where the solitons are not parallel to the y-axis), and we use the notation xErl.’j] (or x[’i’j])
which describes the x-infercept of the line determined by the wave crest of [i, j]-soliton in the region x > 0 (or x < 0)
at 1 = 0. In Figure [2.1] we illustrate an example of one line-soliton solution. In the right panel of this figure, we
show a chord diagram which represents this soliton solution. Here the chord diagram indicates the permutation of the
dominant exponential terms E; and E; in the 7-function, that is, with the ordering k; < k;, E; dominates in x < 0,
while E; dominates in x > 0. This representation of the line-solitons in terms of the chord diagrams is the key concept
throughout the present paper. (See section[2.3|below for the precise definition of the chord diagrams.)
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Figure 2.1: One line-soliton solution of [i, j]-type and the corresponding chord diagram. The amplitude Af; ;) and the angle \P|; ; are given by
Al = 2(k —k; ) and tan¥[; j) = k; + k;. The upper oriented chord represents the part of [i, j]-soliton for y > 0 and the lower one for y < 0.
Here i, j represent not just k;, k;, but also the value of those parameters, i.e. the horizontal line is the coordinate for the k-parameters, and in this
example, k; = —0.5 and k, = 1.

For each soliton solution of (2.9), the wave vector Ky; ; and the frequency €; j satisfy the soliton-dispersion
relation, i.e.,

4'Q[i,j]K[xi,j] = (K[Xi]]) +3( [11]) . 2.11)
The soliton velocity V; j; defined by Kj; j; - Vi jj = € 7 is given by

o k7 + kikj + &

Vi = — LKy = ———t
E T K P T T (kg + k)2

L (1, ki + k).

Note in particular that Cj; j; = k + kik; + k2 > 0, and this implies that the x-component of the velocity is always
positive, that is, any soliton propagates in the positive x-direction. On the other hand, one should note that any small
perturbation propagates in the negative x-direction, that is, the x-component of the group velocity is always negative.
This can be seen from the dispersion relation of the KP equation for a linear wave ¢ = exp(ik - x — iwr) with the
wave-vector k = (ky, k;) and the frequency w,

IR
ol [Eawt

1
=)
w 1 T+

from which the group velocity of the wave is given by

dw Ow 3(,, k}% 2 ky
v=ves (6kx’ 8ky) - ( 4 (kx * k;]’ 3 k)
This is similar to the case of the KdV equation, and we expect that asymptotically soliton separates from small
radiations. Physically this implies that soliton is a supersonic wave due to its nonlinearity (recall that the velocity
of shallow water wave is proportional to the square root of the water depth, and the KP equation in the form (2.1)
describes the waves in the moving frame with the phase velocity in the x-direction).
Stability of one-soliton solution was shown in the original paper by Kadomtsev and Petviashvii [[7], and this may
be stated as follows: For any € > 0 and any r > 0, there exists 6 > 0 so that if the initial wave u(x,y,0) := uO(x, y)
satisfies
0

0
llu” - ”exaot”U(Dﬁ?) <9,

for some exact soliton solution, u’ = A sech? /2 (x + ytan Yy — Cot — xo) with appropriate constants Ay, ¥y and
5 y pprop

exact

Xg (recall Cy = 5140 + %tan Yy), then the stability implies that the solution u'(x, y) := u(x, y, t) satisfies
' — uhoellizpyy <€, for t— oo,
where D). is a circular disc with radius r moving with the soliton, i.e.

Dy = {(x.y) € R 1 (x = xo(1))* + (v = yo(0))* < 7},
5



with (xp(?), yo()) at any point on the soliton, xo(?) + yo(t) tan¥g = Cot + xo. Here ||fll;2(p) is the usual L*-norm of
f(x,y) over a compact domain D c R?, i.e.

1Al = ( f fD IfCx, I dxdy)z -

This stability implies a separation of the soliton from the dispersive radiations (non-soliton parts) as in the case of the
KdV soliton. We would like to prove the similar statement for more general initial waves. However there are several
difficulties for two-dimensional stability problem in general. In this paper, we will give a numerical study for some
special cases where the initial waves consist of two semi-infinite line solitons with V- or X-shape.

Finally we remark that a line-soliton having the angle ¥ ~ 7 has an infinite speed, and of course it is beyond the
assumption of the quasi-two dimensionality. We also emphasize that the structure of the solution for y > 0 can be
different from that in y < 0, that is, the set of asymptotic solitons in y > 0 can be different from that in y < 0. This
difference is a consequence of the resonant interactions among solitons as we can see throughout the paper.

2.3. Classification Theorems
Now we present the main theorems obtained in [2, 3] for the classification of soliton solutions generated by the
7-functions with irreducible and totally non-negative A-matrices:

Theorem 2.1. Let {ey,...,eyN} be the pivot indices, and let {gy, ..., gu-n} be non-pivot indices for an N X M irre-
ducible and totally non-negative A-matrix. Then the soliton solution generated by the T-function with the A-matrix
has the following asymptotic structure:

(a) Fory > 0, there are N line-solitons of [e,, j,)-type forn =1,...,N.
(b) Fory < 0, there are M — N line-solitons of [i,,, gml-type form=1,...,M — N.
Here j,(> e,) and i,,(< g, are determined uniquely from the A-matrix.
The unique index pairings [e,, j,] and [iy, gx»] in Theorem@] have a combinatorial interpretation. Let us define

the pairing map 7 : {1,2,...,M} — {1,2,..., M} such that

n(e,) = jn, n=1,...,N,
{ ( / 2.12)

(8m) = im, m=1,...,M —N,
where e, and g, are respectively the pivot and non-pivot indices of the A-matrix. Then we have:
Theorem 2.2. The pairing map n is a bijection. That is, © € S y;, where Sy is the group of permutation for the index
set {1,2,..., M}, i.e.

= er ey 81 " 8M-N
i gy i imen

Note in particular that the corresponding r is the derangement, i.e. m has no fixed point.

Theorem [2.2] shows that the pairing map x for an (M — N, N)-soliton solution has N excedances, i.e. n(i) > i for
i=1,...,N, and the excedance set is the set of pivot indices of the A-matrix. We represent each soliton solution with
the chord diagram defined as follows:

(i) There are M marked points on a line, each of the point corresponds to the k-parameter.

(i) On the upper side of the line, there are N chords (pairings), each of them connects two points on the line
representing n(e,) = j, forn =1,..., N, i.e. the excedance j, > e,.

(iii) On the lower side of the line, there are M — N chords representing n(g,,) = i,, form = 1,...,M — N, i.e. the
deficiency i,, < g-



In Figure[2.2] we illustrate an example of the chord diagram which represents the derangement,

or simply m = (46523817).

(1 23 456 7
™4 652381 7

The diagram then shows that the set of excedances is {1, 2, 3, 6}, and the corresponding soliton solution consists of
the asymptotic line-solutions of [1,4]-, [2,6]-, [3,5]- and [6, 8]-types in y > 0 and of [1,7]-, [2,4]-, [3,5]- and
[7,8]-typesiny <« 0.

Figure 2.2: Example of the chord diagram. This shows 7 = (46523817). Each chord joining i-th and j-th marked points represents the line-soliton
of [i, j]-type.

3. Exact solutions

Here we present several exact solutions generated by smaller size matrices with N < 3 and M < 4. Those solutions
give a fundamental structure of general solutions, and we will show that some of those solutions appear naturally as
asymptotic solutions of the KP equation for certain classes of initial waves related to the rogue wave generation
[16L 18, [19L15]. The detailed discussions and the formulae given in this section can be found in [3].

3.1. Y-shape solitons: Resonant solutions

We first discuss the resonant interaction among line-solitons, which is the most important feature of the KP equa-
tion (see e.g. [11l 14} 8]]). To describe resonant solutions, let us consider the 7-function with M = 3, that is, the
7-function has three exponential terms {E|, E,, E3}. In terms of the 7-function in the form (2.3)), those are given by the
cases((N=1,M =3)and (N =2, M = 3).

Let us first study the case with N = 1 and M = 3, where the A-matrix is given by

A=(1 a b).

The parameters a, b in the matrix are positive constants, and the positivity implies the irreducibility and the regularity
of the solution. The 7-function is simply given by

T=FE|+aFE, + bE;.

(Note that if one of the parameters is zero, then the 7-function consists only two exponential terms and it gives one
line-soliton solution, i.e. reducible case.) With the ordering k; < k < k3, the solution u = 26%(Int) consists of
[1,3]-soliton for y > 0 and [1, 2]- and [2, 3]-solitons for y < 0. Taking the balance between two exponential terms
in the 7-function, one can see that those line-solitons of [1, 3]- and [2, 3]-types are localized along the lines given in
, ie. x +ytan¥ ;) — Cpjpt = x&ﬂ for [i, j] = [1,3] and [2, 3] where the locations X0 are determined by the

[i.j]
A-matrix (see (2.10)), !
1 1 b
0 _ 0o _
X131 = NERT Inb, Xp3) = B In - 3.1

where [i, j| := k; — k;. The shape of solution generated by 7 = E| + aE, + bE3 witha = b = 1 (i.e. att = O three
line-solitons meet at the origin) is illustrated via the contour plot in the first row of Figure[3.1] This solution represents
a resonant solution of three line-solitons, and the resonant condition is given by

K13 = K2 + Kp 3, Q3 = Qo + Qp3ps
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Figure 3.1: Examples of (2, 1)- and (1, 2)-soliton solutions and the chord diagrams. The k-parameters are given by (ki, k2, k3) = (—%, —%, %). The
right panels are the corresponding chord diagrams. For both cases, the parameters in the A-matrices are chosen so that at r = 0 three line-solitons
meet at the origin as shown in the left panels.

which are trivially satisfied with Ky; j = (k; — k;, k? —k?)and Q; ;) = k; - kl.3. The chord diagram corresponding to
this soliton is shown in the right panel of the first raw in Figure[3.1] and it represents the permutation 7 = (312).
Let us now consider the case with N = 2 and M = 3: We take the A-matrix in the form,

1 0 -b
A= (0 1 a )
where a and b are positive constants. Then the 7-function is given by

7=E(1,2) +aE(1,3) + bE(2,3),

with E(i, j) = (kj — k))E;E; for i < j. In this case we have [1, 2]- and [2, 3]-solitons for y > 0 and [1, 3]-soliton for
y < 0, and this solution can be labeled by & = (231). Those line-solitons of [1, 2]- and [1, 3]-types are localized along

. _ 0 .
the lines, x + ytan ¥y jj — Cji jt = x; ;; with

1 13,2 b 1 3,2
0 0
= 1 ;o xy= 1 b, 3.2
[1.2] 12, 1] n(|3,1|a) [1.3] 13, 1] n(I2,1| ) (3.2)

where [i, j| := k; — k;. In the lower figures of Figure@ we illustrate the solution in this case. Notice that this figure
can be obtained from (2, 1)-soliton in the upper figure by changing (x,y) — (—x, —y). Here the parameters a and b in

the A-matrix are chosen, so that x([)l = x?l 3= 0, that is, all of those soliton solutions meet at the origin at ¢ = 0.

3.2. N=1,3and M = 4 cases
Let us first discuss the case with N = 1 and M = 4, that is, the A-matrix is given by

A={abo),
where a, b and c are positive constants. The 7-function is simply written in the form

T=E1 +aE2+bE3+CE4.
8
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Figure 3.2: Examples of (3,1)- and (1, 3)-soliton solutions. The solution in the upper figures are generated by the 1 X 4 A-matrix with
(ki ka, k3, ka) = (=V3,-1,1, V3). The symmetry in the k-parameters implies that [1,4]- and [2, 3]-solitons are parallel to the y-axis. The lower
figures are generated by the 3 X 4 A-matrix with (ky, k2, k3,k4) = (-1, _2+ﬁ’ ﬁ 1).

In this case, we have (3, 1)-soliton solution consisting of one line-soliton of [1,4]-type for y > 0 and three line-
solitons of [1,2]-, [2,3]- and [3, 4]-types for y < 0. This solution is labeled by 7 = (4 123). The upper figures in
Figure [3.2]shows the time-evolution of the solution of this type. We seta = b = ¢ = 1 of the A-matrix, so that all four
line-solitons meet at the origin at ¢ = 0.

For N = 3, any irreducible and totally non-negative A-matrix has the form,

1 0 0 ¢
A=10 1 0 -b|,
00 1 a

where a, b and c are positive constants. The 7-function is then given by
T=E1,2,3)+aE(1,2,4)+ bE(1,3,4) + cE(2,3,4),

with E(l,m,n) = (k, — ky)(k, — ki)(k,, — k)EE,,E,,. This gives (1, 3)-soliton solution which is dual to the case of
N =1, that is, [1,4]-soliton for y <« 0 and [1, 2]-, [2, 3]- and [3, 4]-solitons for y > 0. The corresponding label for
this solution is given by 7 = (234 1). The lower figures in Figure [3.2]shows the time-evolution of this type. Here we
set a, b, ¢ of the A-matrix as
_11L,2,3) 11,2, 3 11,2, 3
Cha CTinnAar TR

where |, m, n| := |(k, — kn,)(k, — k))(k,, — k7), so that all four solitons meet at the origin at t = 0.

3.3. N=2and M = 4 cases

By a direct construction of the derangements of S 4 with two exedances (i.e. N = 2), one can easily see that there
are seven cases with 2 X 4 irreducible and totally non-negative A-matrices. Then the classification theorems imply
that we have a (2, 2)-soliton solution associated to each of those A-matrices. We here discuss all of those (2, 2)-soliton
solutions with the same k-parameters given by (ky, ky, k3, kq) = (—z, —}t, %, %), and show how each A-matrix chooses a
particular set of line-solitons. In Figure[3.3] we illustrate the corresponding chord diagrams for all those seven cases,
from which one can find the asymptotic line-solitons in each case.

3.3.1. The case m = (3412)
From the chord diagram in Figure[3.3] one can see that the asymptotic line-solitons are given by [1,3]- and [2,4]-
types for both y — +oco. The solution in this case corresponds to the top cell of Gr(2,4), and the A-matrix is given

9



(2413) (3142) (2143)

Figure 3.3: The chord diagrams for seven different types of (2,2)-soliton solutions. Each diagram parametrizes a unique cell in the totally non-
negative Grassmannian Gr(2, 4).

by
1 0 —¢ —d
A= (O 1 a b ) ’
where a,b,c,d > 0 are free parameters with D := ad — bc > 0. This is the generic solution on the maximal

dimensional cell, and it is called T-type (after [9]). The most important feature of this solution is the generation of
four intermediate solitons forming a box at the intersection point. Those intermediate solitons are identified as [1, 2]-,
[2,3]-, [1,4]- and [3, 4]-solitons, and they may be obtained by cutting the chord diagram of (3412)-type at the crossing
points. For example, if we cut the chords of [1, 3] and [2, 4] at the crossing point, we obtain either pair of {[1, 2], [3, 4]}
or {[1,4],[2,3]}. The first pair appears in the lower and upper edge of the box, and the second pair in the right and left
edges. Figure 3.4]shows the time-evolution of the solution of this type. The parameters a, b, ¢ and d in the A-matrix
determine the locations of solitons, their phase shifts and the on-set of the box-shaped interaction pattern: Those are
given by

_ 12,1 5O, o= Hse%ﬂ, a_ 14,2 2| _ 12,1 1|

VT 3,2 d 3.1 1| T 4.3 3|
where s is for the phase shift, ®[i,j] for the location of [i, j]-soliton for x > 0 (recall the definition below , i.e.

(3.3)

xE;.’j] = —ﬁ@f;’j] gives the x-intercept of the line of the [/, j]-soliton for x > 0 at ¢t = 0), and r for the on-set of the
box. The phase shifts for [1, 3]- and [2, 4]-solitons are given by Axy; ;; := Xij~ xf’i’jl = —ﬁ®T with
[1,412,3] be
Or=In|—— —|. 34
T “(|1,2||3,4| D G4

In Figure we have chosen those parameters as s = 1, ®[*1 3 = @frz 4= 0 and r = 1, so that at + = O the solution
forms an X-shape without phase shifts and opening of a box at the origin. In Figure the amplitudes are Aj1 3 = 3
and Apg = %. Among the soliton solutions for N = 2 and M = 4, this solution is the most complicated and

T=—6 T=0 T=6
4
20 20 20
2
0 0 0
0
20 -20 -20

-2

-40 -20 o] 20 40 -40 -20 0 20 40 -40 -20 0 20 40

Figure 3.4: Example of (3412)-type soliton solution (T-type). The asymptotic solitons are [1,3]- and [2,4]-types for both y — =+oco. The
intermediate solitons forming a box-shape pattern are given by [1,2]-,[1,4]-, [2, 3]- and [3, 4]-solitons.

interesting one. As you can see below, this solution contains all other solutions as some parts of this solution, that is,
as explained above, all six possible solitons (i.e. (;) = 6) appear in this solution.
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3.3.2. The case m = (4312)
From the chord diagram in Figure@ one can see that the asymptotic line-solitons are given by [1, 4]- and [2, 3]-
solitons for y > 0 and [1, 3]- and [2, 4]-solitons in y < 0. The A-matrix in this case is given by

1 0 -b —-c
A_(Ol a O)’

where a, b, ¢ > 0 are free parameters. Figure[3.5]illustrates an example of this solution. The parameters in the A-matrix

TE-6 T=0 T=6
4
20 20 20
2
0 0 0
0
20 -20 -20

Figure 3.5: Example of (4312)-type soliton solution. The asymptotic solitons are [1,4]- and [2, 3]-types for y > 0 and [, 3]- and [2, 4]-types for
y < 0. The intermediate solitons are [3, 4]-type for t = —6 and [1, 2]-type for t = 6.

determine the locations of the line-solitons in the following form,

3,1
| |e@)l+14J

2, 2,
| Ie() | |e()lk3] and ¢ = |zl 3|

TR TR
The ®i  represent the locations of the [7, j]-soliton for x > 0 and x < 0, and the three line-solitons determine the
locatlon of the other one. We here take the parameters ®[1 3= G)[*1 4= ®[’2 3 = 0, so that all those four solitons meet
at the origin at + = 0. Notice here that the pattern in the lower part (y < 0) of the solution is the same as that of the
previous one, T-type. This can be also seen by comparing the chord diagrams of those two cases.

3.3.3. The case m = (3421)
The asymptotic line-solitons in this case are given by [1, 3]- and [2, 4]-solitons for y > 0 and [1,4]- and [2, 3]-
solitons in y << 0. The A-matrix has the form,
1 0 0 —c
A= (O 1 a b) ’

where a, b, ¢ > 0 are free parameters. Figure [3.6]illustrates the evolution of the solution of this type. The parameters

-2

20

20

T=-6

20

=20

T=0

T=6

-40

-20

0

20

40

-40

-20

0

20

40

-40

-20

0

20

40

Figure 3.6: Example of (3421)-type soliton solution. The asymptotic solitons are given by [1,3]-and [2, 4]-types for y > 0 and [1,4]- and
[2,3]-types for y < 0. This solution is dual to the previous one of (4312)-type, i.e. the duality is given by (x,y, ) = (=x, =y, —1).

in the A-matrix are related to the locations of the line-solitons,

2,1] o+
a||®’

13,1

_12,1] e
——e 24 and ¢c= ——
41 14,2
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This solution can be considered as a dual of the previous case (b), that is, two sets of line-solitons for y > Oand y < 0
are exchanged. Here we take G)f.’j] = 0 for those pairs (i, j) = (1,4), (2, 3) and (2, 4), hence all those four solitons meet
at the origin at # = 0. Note here that now the upper pattern of the solution is the same as that of the T-type. So if one
cuts Figures [3.5]and [3.6| along the x-axis and glues the lower half of Figure [3.5]together with the upper half of Figure
[3.6] we can obtain Figure [3.4](T-type). This can be observed from the corresponding chord diagrams.

One should also note that this solution is “dual” to the previous one in the sense that the patterns of those solutions
are symmetric with respect to the change (x,y, ) & (—x, —y, —1).

3.3.4. The case m = (2413)
The asymptotic line-solitons are given by [1,2]- and [2,4]-solitons for y > 0 and [1, 3]- and [3, 4]-solitons for
¥y < 0. The A-matrix is given by
A= (1 0 —c —d)

01 a b
where a, b, c,d > 0 with ad — bc = 0. Those parameters are related to the locations of the line-solitons,

b= @eefm 12 1|g®ﬁ.3] and g = Mee)ﬁ.z]

“wut T TR b 14,2 '
with a = be/d. Figure[3.7]illustrates the evolution of the solution of this type. For the case that all the solitons meet at

T=—6 T=0 T=6

0 0 0
0
20 -20 -20

-40 -20 o] 20 40 -40 -20 0 20 40 -40 -20 0 20 40

Figure 3.7: Example of (2413)-type soliton solution. The asymptotic solitons are [1,2]- and [2, 4]-types for y > 0 and [1, 3]- and [3, 4]-types for
y < 0. The intermediate solitons are [1,4]-type in t = —6 and [2, 3]-type in t = 6.

the origin at ¢ = 0, we set all @, ;) to be zero. Notice that the nonlinear interaction generates the intermediate soliton
of [1,4]-type in ¢t < 0. This has the maximum amplitude among the (local) solitons appearing in the solution. It is
interesting to note that the maximum amplitude soliton might be expected from the chord diagram, that is, this soliton
is generated by the resonant interactions of [1,2] + [2,4] = [1,4] for y > 0 and [1, 3] + [3,4] = [1,4] for y < 0. One
should also note that the left patterns in Figure |3;7| including [1, 4]-soliton for # < 0 and [2, 3]-soliton for ¢ > O are the
same as those in Figure [3.4] (T-type).

3.3.5. The case m = (3142)
The asymptotic line-solitons are given by [1,3]- and [3,4]-solitons in y > 0 and [1,2]- and [2,4]-solitons in
y < 0. The A-matrix has the form,
1 a 0 —c
A= (O 0 1 b) ’

where a, b,c > 0. We represent those parameters in the following form which is particularly useful for our stability
problem discussed in the next section,
_B e, Bl o

3,1
——se 113 and = u

= , = = . 3.5
“T B2 1] T’ G-2)

Here G)E’l.’j] represent the location of the [/, j]-soliton in x > 0, and s represents the location of the other line-solitons
in x < 0, that is the generation of the intermediate line-solitons either [1, 4]- or [2, 3]-type (c.f. the case (c) in Section
[). This solution is dual to the previous one of 7 = (2413). In fact, Figure [3.8]illustrates the dual behavior of the
evolution in the sense of the reverse of time. Here we take s = 1 and ®[+133] = @E&A] = 0, so that all solitons meet
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at the origin at = 0. As in the previous case, the large amplitude soliton of [1,4]-type is generated by the resonant
interaction. In particular, this solution can be used to explain the Mach reflection observed in shallow water [[L11 |5, [3]].

T=—6 T=0 T=6

a4
20 20 20

2
0 0 0

0
20 -20 -20

-2

-40 -20 0 20 40 -40 -20 0 20 40 -40 -20 0 20 40

Figure 3.8: Example of (3142)-type soliton solution. The asymptotic solutions are [1, 3]- and [3, 4]-types for y > 0 and [1, 2]- and [2, 4]-types for
y < 0. Notice the duality of this with (2413)-type in the previous example.

3.3.6. The case m = (4321)

The asymptotic line-solitons are [1, 4]- and [2, 3]-types for both y — +oo. Since those solitons can be placed both
in nearly parallel to the y-axis, this type of solutions fits better in the physical assumption for the derivation of the KP
equation, i.e. a quasi-two dimensionality. This is then referred to as P-type (after [9]). The situation is similar to the
KdV case, for example, two solitons must have different amplitudes, A[j 47 > A[23). The A-matrix is given by

100 -b
A_(Ola o)'

The parameters are expressed by
14,2] o 13, 1] o
=——¢ 23 and b=-——¢e 4, 3.6
T3 431 30
where @"l represents the location of the [i, j]-soliton in x > 0 (the wave front) (notice the phase shifts for the
solitons). Figure illustrates the evolution of the solution of this type. We here set 95‘,]‘] = 0, and hence the solitons

T=—6 T=0 T=6

a4
20 20 20

2
0 0 0

0
20 -20 -20

-2

-40 -20 0 20 40 -40 -20 0 20 40 -40 -20 0 20 40

Figure 3.9: Example of (4321)-type soliton solution (P-type). The asymptotic solitons are [1,4]- and [2, 3]-types for both y — +co. The pattern of
the solution is stationary, and the interaction generates a negative phase shift of the solitons.

in x > 0 (the wave front) meet at the origin at r = 0. Note here that there is a phase shift due to the interaction, and the
shift is in the negative direction due to the repulsive force in the interaction similar to the case of KdV solitons. The
phase shifts are given by Axj; j = —ﬁ®P with

4,213, 1
Op=In[————|>0. 3.7
P n(|2,1||4,3|) ©-7)

This negative phase shift is due to the repulsive force in the interaction as in the case of the KdV solitons. One
should also note that the interaction point moves in the negative y-direction, because the larger soliton of [1,4]-type
propagates faster than the other one. Those [1,4]- and [2, 3]-solitons only appear as the intermediate solitons in the
solution of T-type, that is, they form a part of the box in Figure[3.4]
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3.3.7. The case m = (2143)

The asymptotic line-solitons are [1,2]- and [3,4]-types for both y — =*oco. This solution was used originally
to describe two soliton solution, and it is called O-type (after [9]). Interaction properties for solitons with equal
amplitude has been discussed using this solution. However this solution becomes singular, when those solitons are
almost parallel to each other and close to the y-axis, contrary to the assumption of the quasi-two dimensionality for
the KP equation [[11]]. The A-matrix is given by

1 a 00
A= (0 0 1 b) ’
Notice that this A-matrix is the limit of that for (3142)-type with ¢ — 0 and k, — k3. We will further discuss this

issue in the next section when we study the initial value problem with V-shape initial wave. The parameters a and b

are expressed by
14,1 o
= ——e¢ 02 d b=
Tt " 4.2]
where O [i, j] represents the location of the wave front consisting of [1, 2]- and [3, 4]-solitons. Figure illustrates

the evolution of this type solution. Here we take all ®|+i n= 0, the solitons in x > 0 (the wave front) meet at the origin

3,2 o
_ B2l e, (3.8)

T=—6 T=0 T=6

4
20 20 20

2
0 0 0

0
20 -20 -20
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Figure 3.10: Example of (2143)-type soliton solution (O-type). The asymptotic solitons are [1, 2]- and [3, 4]-types for both y — +oco. The pattern
of the solution is stationary, and has a positive phase shift in the solitons.

at t = 0. The phase shifts of those solitons are positive due to an attractive force in the interaction, and they are given

by AX[,"J‘] = —ﬁ@o with
4, 113,2]
Op =In| ———— 0. 3.9
o “(|3,1||4,2|)< 39)

When k, approaches to k3, the phase shift gets larger, and the interaction part of the solution is getting to be close to
[1,4]-soliton as a result of the resonant interaction with [1, 2]- and [3, 4]-solitons at k, = k3. This is the main argument
of the paper [[L1] about the discussion on the Mach reflection of shallow water waves. Note also that those [1, 2]- and
[3, 4]-solitons appear as the intermediate solitons forming a box of T-type as shown in Figure[3.4]

4. Numerical simulations

The main purpose of the numerical simulation is to study the interaction properties of line-solitons, and we will
show that the solution of the initial value problem with certain types of initial waves asymptotically approaches to
some of the exact solutions discussed in the previous section. This implies a stability of those exact solutions under
the influence of certain deformations (notice that the deformations in our initial waves are not so small).

The initial value problem considered here is essentially an infinite energy problem in the sense that each line-
soliton in the initial wave is supported asymptotically in either y > 0 or y <« 0, and the interactions occur only in
a finite domain in the xy-plane. In the numerical scheme, we consider the rectangular domain D = {(x,y) : |x| <
Ly, |yl £ L,}, and each line-soliton is matched with a KdV soliton at the boundaries y = +L,. In this section, we
explain the details of our numerical scheme and give an error estimate of the scheme.
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4.1. Numerical scheme

Using the so-called window technique [17, [19], we first transform our non-periodic solution # having non-
vanishing boundary values into a function v rapidly decaying near the boundaries y = +L,, so that we consider the
function v to be periodic in both x and y. With the window function W(y), this can be expressed by the decomposition
of the solution u, i.e.

u=v+(1-Wu with v=Wu.

We take the window function W(y) in the form of a super-Gaussian,

y n
I ), “.1)

y

W(y) = exp (—an

where a, and n are positive constants (we choose a, = (1.111)" In 10 with n = 27 [19]).

We assume that near the boundaries y = +L,, the solution can be described by exact line-solitons (i.e. we take L,
large enough so that the interaction will not influence those parts near boundaries up to certain finite time). We then
consider the transformation in the form,

u=v+(1-Wuy, “4.2)

where ug consists of exact line-solitons satisfying
(1 =Wy =1 =W

This assumption prevents any disturbance from the boundary, and keeps the stability of the far fields consisting of
well separated line-solitons. We are interested in studying an asymptotic behavior near the interaction point, and we
do not expect to see any strong effect from the boundary region in a short time (recall that the system has a finite group
velocity for waves with non-zero k,-component).

With the transformation (.2), we have the equation for v,

0y (40,v + 6vO.v + Bv) + 302y
= 6(1 = W)0, (Wugdxup — dx(vig)) + 32W'dyup + W up). 4.3)
Assuming the solution v to be periodic in both x and y with zero boundary condition at [y| = L,, we solve @ by

using fast Fourier transform (FFT). For a convenience, let us rescale the domain D = {(x,y) : |x| < L,,[y| < L,} with
D:={XY):|X|<m |Y| <7} ie.

Vs T
X=—x, Y=—y
L L’
Then @.3) becomes
Ox (6,\/ + Pvoxv + Q(’i;v) + Raév =F, 4.4
where F is the right hand side of (4.3)) with the scalings, and
3n e 3rL,
P = —, = —, d R =
o 9T ™ 412

Under the periodic assumption of v, we have

VX, Y, 1) = Z Z (1, m, £)eXmy),
[

=—00 M=—00

Here the Fourier transformation ¥ := ¥ (v) is given by

1 T T .
d(l,m, 1) = o f f v(X, Y, e XD ax gy,
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Figure 4.1: Numerical accuracy test on T-type solution shown in Fig. The graph shows the estimate of max|# (V') — F (V.. as a function of
the number of Fourie modes N X N/2 for t = 0,3 and 6. The error is decreasing exponentially with respect to N until it saturates at round of error
~ 10710 for N ~ 1280, 1472 and 1536 for ¢ = 0,3 and 6, respectively. The numerical domain is D = [-64, 64] x [-32, 32].

and the equation becomes
. (Rm? s\ P 1
o, + l(z—l - QI )v + zlEN(v) = l,—lT(F),
with
N©®) = FOA).

Letc = Rz—";z — QP and V = €’p. Then we have
oV + izge"“/v(ﬁ) = ille"“?(F). 4.5)
We write this equation in the form of time evolution,
8,V =G V).

and use the 4-th order Runge-Kutta (RK4) method to solve the equation: Namely denoting #, = nAr and

A

1 . K
K, = G(tn, v,,), K, = G(tn + ALV, + TlAt),

1 N K N K
K; = G(z,, + ALV, TZAt), Ky = G(tn +AL T, + 73At),

we have |
Vo1 =V, + c [K; + 2(K; + K3) + K4] At.

We use a pseudo-spectral method to evaluate nonlinear term N/(9) in (@.3) and the 2nd order central difference to
approximate three derivative terms in the F on the right hand side of (@4) for simplicity. This is because u in (@.2))
is a non-periodic function and the estimation of derivatives from a Fourier spectral method still introduces errors
at the computational boundary. A better choice is to provide the exact closed forms for the x-and y-derivatives of
up. Since some of the exact solutions have rather complicated formulae, we simply use 2nd order central difference
approximation. Thus the numerical solutions are expected to be of 2nd order accuracy when there are enough Fourier
modes in space and the solutions are vanished in large x.

In order to verify the accuracy of the method, we provide two tests. The first test intends to answer the question on
how many Fourier modes are needed to ensure machine accuracy in space for the solution v of (.3). The second test
shows the overall algorithm is 2nd order accurate. In Figure . 1] we show the maximum error in the Fourier modes of
the T-type solution in the sense that we estimate max|F (v) — F (Vexact)| With respect to the number of Fourier modes N
in both x- and y-directions for the case shown in Figure@ On the computational domain D = [-64, 64] x [-32, 32],
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] \ Ar=1072 [ Ar=5x%x1073 \ order \
t=11]1046x1072 ] 2.645%x 1073 | 1.98
r=211.893x1072 | 4353x 1073 | 2.12
r=32507x102 | 5986 x 1073 | 2.07
t=412992x102 ] 7.732x 1073 | 1.95
r=53523x102 | 9.675x 1073 | 1.86
r=6 | 4211 x 1072 | 1.194x 1072 | 1.82

Table 1: The convergence test on the domain D = [—128, 128] x [—16, 16] with 2048 X 256 Fourier modes. The graph shows the error ||u’ —
Ueaetllz2(py /Wexacerllz2(py for the time steps Az = 0.01 and 5 x 1073. This indicates that our scheme is of 2nd order accurate in time.

machine accuracy = 10716 is reached for N ~ 1280, 1472 and 1536 for r = 0,3 and 6, respectively. Since the T-type
solution develops a box at later time, it requires more Fourier modes to well represent the solution. From this test
with N = 1536, we find that we need roughly % = 12 Fourier modes per 1 unit in x to reach 107! accuracy. Notice
that it might take longer time to run such a fine mesh for a very large computational domain. If we choose to use 8
Fourier modes per unit length in both x- and y-directions, the spacial error is within 107'” and it can also speed up
the computation. In Table |1} we summarize the error of the solution given by |lu’ — ul,,ll12p)/ |t il 2Dy fOr two
different time steps At = 0.01 and At = 5 x 1073 on D = [-128, 128] x [—16, 16] with 2048 x 256 Fourier modes. It
can be clearly seen that the order of convergence is 2 because the error decreases by a factor around 4 when the time
step is halved. If we take At = 5 x 10~ and keep running the simulation up to ¢ = 12, the magnitude of the error is
always within 2.5 x 1072, In the following simulations, the errors of the solutions are at this magnitude or smaller.

5. Numerical results

Now we present the results of the direct numerical simulation of the KP equation with the following two types of
initial waves consisting of two line-solitons. In particular, we fix the amplitude of one of the line-solitons, and place
these line-solitons in the symmetric shape with respect to the x-axis. This then implies that each profile of the initial
wave is determined by two parameters A, (the amplitude of other soliton) and ¥y (the angle of the wave-vector of the
soliton):

(i) V-shape wave consisting of two semi-infinite line-solitons, i.e. u(x,y,0) = u¥(x,y) + ul(x, y) with
p g 1 2

A
W(x,y) = Ag sech? 4/ 70(x — ytan ) x H(),

ud(x,y) = 2 sech’(x + ytan o) X H(-y),

(5.1

where H(z) is the unit step function,

1 i z20,
H(Z)‘{o it z<0.

Here one should note that the initial locations xE; ;| are zero for both line-solitons, that is, they cross the origin
at t = 0. The shifts of xE; i observed in the simulations provide the information of the interaction property.

(ii) X-shape wave of the linear combination of two line-solitons, i.e. u(x,y,0) = u%(x, y) + ul(x, y) with
p 1 2

[A
u(l)(x, y) = Ap sech? 70(x —ytan¥y),

ud(x,y) = 2 sech’(x + y tan ¥y).

(5.2)

Again note that the initial locations are x 0.

+ =
[i.1
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These initial waves have been considered in certain physical models of interacting waves [L1} 5 [16] [18} 3]. In
particular, in [[16} [18]], the V-shape initial waves were considered to study the generation of large amplitude waves in
shallow water.

The main result of this section is to show numerically that those initial waves converge asymptotically to some of
the exact solutions presented in Section 3] Here what we mean by the convergence is as follows: We first show that
the solution u/(x, y) at the intersection point of V- or X-shape generates a pattern due to the resonant interaction, and
we then identify the pattern near the resonant point with that given by some of the exact solutions u., . (x,y). The
convergence is only in a local sense, and we use the following (relative) error estimate,

— 2 2
E(t) L ||ut - ulexactl|L2(Df,)/||uéxact” Z(D',)’ (53)

where D). is the circular disc defined by

D, :={(x,y) € R : (x = xo(0))” + (v = yo(0))* < r*}.

Here the center (x(#), yo(#)) is chosen as the intersection point of two lines determined from the corresponding exact
solution identified by the following steps:

1. For a given initial wave, we first identify the type of exact solution (i.e. the chord diagram) from the formulae,
Ay = %(ki —k;)* and tan¥[; ;; = k; + k;. This then gives the exact solution with the corresponding A-matrix.
Note here that the entries of the A-matrix are not determined yet.

2. We then minimize the error function E(f) of (5.3) at certain large time # = T by changing the entries in the
A-matrix, that is, we consider
Minimize E(Ty). 5.4

A—matrix
The minimization is achieved by adjusting the solution pattern with the exact one, that is, the pattern determines
the A-matrix whose entries give the locations of all line-solitons including the intermediate solitons in the
solution. With this A-matrix, the center (xo(¢), yo(?)) of the circular domain D', is given by the intersection point
of the lines,
X+ ytan ‘P[,‘[’ji] - C[i/,j/]t = xE[:jl] for 1=1,2, 5.5

where the locations x; ., are expressed in terms of the A-matrix (see Section . Here we have Ay, ;1 =
Ao, Ajpy,j) = 2 and W, ) = —Wpi,,j;) = Wo. The time T) may be taken as Ty = 0, but for most of the cases, we
need T to be sufficiently large. This implies that the solutions have nontrivial location shifts, i.e. x;" | # 0in

, li.j
the solution.

3. We then confirm that E(¢) further decreases for a larger time ¢ > T up-to a time t = T| > Ty, just before the
effects of the boundary enter the disc D'. (those effects include the periodic condition in x and a mismatch on
the boundary patching).

We take the radius r in D' large enough so that the main interaction area is covered for all # < Ty, but D’ should be
kept away from the boundary to avoid any influence coming from the boundaries. The time 7| > T gives an enough
time to develop a pattern close to the corresponding exact solution, but it is also limited to avoid any disturbance from
the boundaries for ¢ < T. In this paper, we give Ty and 7| based on the observation of the numerical results, and we
will report the detailed analysis in a future communication.

5.1. V-shape initial waves

The initial wave form is illustrated in the left panel of Figure The right figure shows the (incomplete) chord
diagrams corresponding to the initial V-shape waves; that is, the upper chord represents the (semi-infinite) line-soliton
iny > 0 and the lower one represents the (semi-infinite) line-soliton in y < 0. We have done the numerical simulations
with six different cases which are marked in Figure[5.1]as (a) through (f). The main result in this section is to show that
each incomplete chord diagram representing the initial wave gets a completion with minimum additional chords which
represents the asymptotic pattern of the solution. Here the minimal completion implies that for a given incomplete
chord diagram, one adds extra chords with minimum total length so that the complete chord diagram represents a
derangement (see also [[10]). For our examples of the cases (a) through (f), we have the following completions:
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Figure 5.1: V-shape initial waves. Each line of the V-shape is a semi-infinite line-soliton. We set those line-solitons to meet at the origin, and fix
the amplitude of the soliton in y < 0 to be 2. Ay is the amplitude of the soliton in y > 0. The right panel shows the incomplete chord diagrams
corresponding to the choice of the values Ag and ¥y. There is no corresponding exact soliton solution on the dotted line of ky = k3.

(a) With k; = kp, the completion is 7 = (é i ‘1‘), i.e. add [3,4]-chord in y > 0. This implies that [3, 4]-soliton appears

in the asymptotic solution in y>0, and the corresponding exact solution is a (1, 2)-soliton (cf. Figure|3.1).

123

(b) With k3 = kg4, the completion is 7 = (5] 2), i.e. add [1,2]-chord in y < O which appears in the asymptotic

solution, and the corresponding solution is a (2, 1)-soliton (cf. Figure 3.1).

(c) The completion is 7 = (3142), i.e. add [1,2]-chord in y < 0 and [3,4]-chord in y > 0. These corresponding
solitons appear behind those initial solitons (cf. Figure[3.8).

(d) The completion is 7 = (2143), i.e. add [1, 2]-chord in y < 0 and [3, 4]-chord in y > 0. The soliton solution is of
O-type, and the semi-infinite initial solitons extend to generate other half with the phase shift (cf. Figure|3.10).

(e) The minimal completion is m = (2341), i.e. add [1,2]- and [3, 4]-chords in y > 0. This is a (1, 3)-soliton. (Note
that the initial wave is a front half of P-type soliton solution, but the minimal completion is not of P-type.) Since
[1,2]-soliton in y > O appears ahead of the wavefront consisting of [2, 3]-soliton in y > 0 and [1, 4]-soliton in
y < 0, the generation of [1, 2]-soliton is impossible. The [1, 2]-soliton is a virtual one, but it gives an influence
on bending the [1, 4]-soliton in y > 0 (see below for the details).

(f) The minimal completion is m = (4123), i.e. add [1, 2]- and [3,4]-chords in y < 0. The is a (3, 1)-type, but again
we note that [3, 4]-soliton in y < 0 is a virtual one (i.e. it locates ahead of the wavefront similar to the previous
case (e)). We also observe the bending of [1,4]-soliton in y > 0 under the influence of this virtual soliton (see
again below for the details).

5.1.1. The case (a)
This is a critical case with k; = k. The line-solitons of V-shape initial wave are [1,3]-soliton in y > 0 and
[1,4]-soliton in y < 0. We take the following values for the amplitudes and angles of the those solitons,

Az =Ap = %, tan Wy 3 = _% = —tan ¥y,
A[1,4] =2, tan‘I’[M] = % = tan ¥y.

With the formulas for the amplitude Ay j; = %(k,- —k j)z and the angle tan};,; = k; + k;, we have the k-parameters
(ki = ko, k3, k4) = (=2, 1, 2). The corresponding exact solution is of (1, 2)-type.

The top figures of Figure illustrate the result of the direct numerical simulation. The simulation shows a
generation of third wave at the point of the intersection of those initial solitons. This generation is due to the resonant
interaction, and this may be identified as [3,4]-soliton of the exact solution, that is, the resonance condition gives

19



T=0 T=5 T=10

4

20 20 20 N
2l 1o 10 : \x : 10 R

0 0 0
0

10 -10 -10
o>, 20 20

-20 0 20 =20 0 20 =20 0 20
T=0 T= T=10

4

20 20 2 20 A

: ] K

2l 1o < 10 w5 A 10 A

0 0 \ 0 %
0 / N XX

10 8 -10 -10
o>, 20 20

-20 0 20 =20 0 20 =20 0 20
0.08
0.06|*
»*

0.02 Faeye

H,
%,
******ﬂmb »

0 5 10
t

Figure 5.2: Numerical simulation of the case (a) in Figure@ The initial wave consists of [1, 3]-soliton in y > 0 and [1, 4]-soliton in y < 0. The
top figures show the result of the direct simulation, the middle figures show the corresponding exact solution of (1,2)-type, and the bottom one
represents the error function E(f) of which is minimized at # = 10. The circles in the exact solution shows the domain D’. A dispersive
radiation appearing behind the interaction region may be considered as a reaction of the generation of the third soliton of [3, 4]-type as a result of
resonant interaction (see the text for the details).

[1,3] + [3,4] = [1,4] and completes the incomplete chord diagram. The generation of [3, 4]-soliton may be also
understood by decomposing the exact solution into two parts, say Uexaet = U + v, Where u is the solution of the KP
equation with our initial wave of [1, 3]- and [1, 4]-solitons. Then v satisfies,

040,y + 6V0,v + D) + 307y = =607 (uv),

which is the KP equation with one extra term in the right hand side. If we assume that the initial solitons remain as
the part of the exact solution ey, the product uv in the extra term has nonzero value only near the origin at t = 0
(this assumption is not totally correct, but the shifts of the initial solitons are very small for most of the cases). We
then expect v to be close to the solution of the KP equation with the initial wave of [3, 4]-soliton only for y > 0 and
x < 0. Since this [3, 4]-soliton is missing in the front half (x > 0), the edge of the wave gets a strong dispersive effect.
Then the edge of the solution v disperses away with a bow-shape wake propagating toward the negative x-axis as can
be seen in the simulation (cf. Figure[5.2). Recall here that the dispersive waves (i.e. non-soliton parts) propagate in
the negative x-direction (see Section [3). Then the decay of the v solution at the front edge implies the appearance of
the [3, 4]-soliton in the exact solution as one can see from u = uex,ee — v. This argument may be also applied to other
cases as well.
Minimizing the error function E(¢) at t = Ty = 10 with @), we obtain the A-matrix of (1, 2)-type,

10 -1.27
A‘(o 1 0.63)’

The minimization is achieved by adjusting the locations of the [1, 3]- and [1, 4]-solitons of the wavefront, and it gives
the shifts
xﬁj] = -0.0079, xE“M] = —0.120.
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Figure 5.3: Numerical simulation of the case (b) in Figure@ The initial wave consists of [1,4]- and [2, 4]-solitons in y > 0 and y < O respectively.
The top figures show the result of the direct simulation, and the middle figures show the corresponding exact solution of (2, 1)-type. The bottom
graph shows the error function E(#) of (3.3) which is minimized at t = 6.

(The A-matrix is then obtained using (3.2)). Thus the new line-soliton of [3,4]-type has a relatively large negative
shift. This may be explained as follows: The [3, 4]-soliton is generated as a part of the tail of [1, 4]-soliton, and in the
beginning stage of the generation, the [3, 4]-soliton has a small amplitude and propagates with slow speed. This causes
a negative shift of this soliton. Also the negative shift in the [1, 4]-soliton is due to the generation of the [3, 4]-soliton,
i.e. losing its momentum. The middle figures of Figure[5.2]show the exact solutions generated by the 7-function with
those parameters (k; = kp, k3, k4) = (—%, %, %) and the A-matrix given above. The circles in the figures show D’ where
we take r = 12 and the center is given by (xo(f) = %t —0.0637, yo(¢) = %t — 0.112). In the bottom figures of Figure
[5.2] we plot the error function E(¢) of (5.3). Figure[5.2]indicates that the asymptotic solution seems to converge to the
exact solution of (1, 2)-type with the above A-matrix and the same k-parameters.

5.1.2. The case (b)
This is also a critical case with k3 = k4. The line-solitons of V-shape initial wave are [1, 3]-soliton in y > 0 and
[2,3]-soliton in y < 0. We take the amplitudes and angles of those solitons to be

3
3> —Z =—tan‘~I’o,

A[2,3] =2, tan‘P[2,3| 43_& = tan V).

{ A[1’3] = AQ =% tan ‘P[]j]

This then gives the k-parameters (ki,ky, ks = k) = (—%, —%, %). Figure illustrates the result of the numerical
simulation. The top figures show the direct simulation of the KP equation. Notice again that a bow-shape wake behind
the interaction point corresponds to the v solution in the decomposition, u = uexaer — v, and the decay of v implies
the appearance (or generation) of [1, 2]-soliton. Notice that v gives the [1, 2]-soliton part in the exact solution. The
middle figures show the corresponding exact solution of (2, 1)-type, whose A-matrix is obtained by minimizing the
error function E(t) att = 6,

A=(1 115 121).
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Figure 5.4: Numerical simulation of the case (c) in Figure@ The initial wave consists of [1,3]-soliton in y > 0 and [2,4]-soliton in y < 0.
The top figures show the result of the direct simulation, and the middle figures show the corresponding exact solution of (3142)-type. The bottom
graph of the error function E(f) which is minimized at # = 10. A large amplitude intermediate soliton is generated at the intersection point, and it
corresponds to the [1, 4]-soliton with the amplitude Ay 47 = 4.5.

+

The shifts of locations x; i obtained in the minimization are given by

xfy = —0.0545,  xbhy = —0.0254,

using (3.I). Those negative shifts may be explained in the similar way as in the previous case. In those figures, the
domain D! has r = 12 and its center (xo(¢) = %t —0.0399, yo(¥) = —%t + 0.0194). The bottom graph in Figure
shows that the solution converges asymptotically to the exact solution of (2, 1)-type with the above A-matrix and the
same k-parameters.

5.1.3. The case (c)
The line-solitons of the initial wave are [1, 3]-soliton in y > 0 and [2,4]-soliton in y < 0. We consider the case
with the larger soliton in y > 0, and take the amplitudes and angles of those solitons as
A[1!3] =Ag=2, tan‘I’“m = -1 =—tan"¥,,
1 = tan .

A[2,4] =2, tan lI"[2’4]

The k-parameters are then given by (ky, ko, k3, k4) = (—%, —%, %, %). The exact solution obtained by the completion of
the chord diagram is given by (3142)-type soliton solution. Figure[5.4]illustrates the result of the numerical simulation.
The top figures show the direct simulation of the KP equation. We observe a bow-shape wake behind the interaction
point. The wake expands and decays, and then we see the appearance of new solitons which form resonant interactions
with the initial solitons. One should note that the solution generates a large amplitude intermediate soliton at the
interaction point, and this soliton is identified as [1, 4]-soliton with the amplitude Aj; 4y = 4.5. This solution has been
considered to describe the Mach reflection of shallow water waves, and the [1, 4]-soliton describes the wave called the
Mach stem [3} [10].
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The middle figures in Figure [5.4] show the corresponding exact solution of (3142)-type whose A-matrix is found
by minimizing E(f) at t = 10,
A= (1 192 0 —1.96)
0 0 1 0064

In the minimization to find the A-matrix, we adjust the locations of solitons including the intermediate solitons, and

using (3.3)), we obtain
X{13) = Xp.41 = —0.01, s = 0.980.

Those values indicate that the solution is very close to the exact solution for all the time. The negative value of
the shifts xf;’ i is due to the generation of a large amplitude soliton [1,4]-type (i.e. the initial solitons loose their
momentum), and s < 1 implies that the [1, 4]-soliton is generated after + = 0. Also note that the [1, 4]-soliton now
resonantly interact with [1, 3]- and [2, 4]-solitons to create new solitons [1, 2]- and [3, 4]-solitons (called the reflected
waves as considered in the Mach reflection problem [11} 3, [10]]). This process then seems to compensate the shifts
of incident waves, even though we observe a large wake behind the interaction point. Notice that the wake disperses,
and the exact solution starts to appear as the wake decays (recall again the decomposition Uexaet = u + v (Where v is
the wake and u is the solution).

The bottom graph in Figure[5.4]shows a rapid convergence of the initial wave to (3142)-type soliton solution with
those parameters of the A-matrix and k values given above, and for the error function, we use D% with r = 12.

5.1.4. The case (d)

The line-solitons of the initial wave are [1, 2]-soliton in y > 0 and [3, 4]-soliton in y < 0. This case corresponds
to the solitons with a large angle interaction. For simplicity, we consider a symmetric initial data with the initial wave
whose amplitudes and angles are given by

5

Any=Ao=2, tan¥pg=-2=-tanV¥,,
A[3,4] =2, tan \P[3’4] = 15—2 = tan ¥y

The k-parameters are then given by (ki, kp, k3, ky) = (—%, —%, %, 1?1). The completion of the chord diagram gives

O-type soliton solution, i.e. (2143)-type. This implies that the solution extends the initial solitons to the negative
x-direction with the same types, i.e. [1,2]- and [3,4]-types in y < 0 and y > 0, respectively. One should note that
the solution also generates the phase shift determined uniquely by the k-parameters. Figure [5.5]illustrates the result
of the numerical simulation. The top figures show the direct simulation of the KP equation. The wake behind the
interaction point has a large negative amplitude, and this corresponds to the v solution in #exoey = # + v. The middle
figures show the corresponding O-type exact solution whose A-matrix is determined by minimizing the error function
E(z) att = 10,

L[t 191 0 0
"o 0o 1 017

Beca}use of our symmetric initial data, we consider the shifts xfru] = x[g’ 4 for the minimization, and using li we
obtain
X5 = X534 = —0.020
.21 = %341 Ve

The negative shifts imply the slow-down of the incidence waves due to the generation of the solitons extending the
initial solitons in the negative x-direction. Those new parts of solitons have the locations x;; i The phase shifts
Axij = x;; ' xE i for the line-solitons are calculated from (3.9), and they are

AX[l,z] = AX[3!4] = 0.593.

The positivity of the phase shifts is due to the attractive force between the line-solitons, and this explains the slow-
down of the initial solitons, i.e. the small negative shifts of xE’l.’j]. The bottom graph in Figure shows E(#) which
is minimized at r = 6, and we take r = 12 for the domain D’.. One can see a rapid convergence of the solution to the
O-type exact solution with those parameters. One should however remark that for a case near the critical one with
ky = ks, there exists a large phase shift in the soliton solution, and the convergence is very slow. Note that the case
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Figure 5.5: Numerical simulation of the case (d) in Figure@ The initial wave consists of [1,2]-soliton in y > 0 and [3, 4]-soliton in y < 0. The
upper figures show the result of the direct simulation, and the middle figures show the corresponding exact solution of (2143)-type (O-type). Notice
a large wake behind the interaction point which extends the initial solitons. The bottom graph shows the error function E(f) which is minimized at
t=06.

with k, = k3 also corresponds to the boundary of the previous case (c) (See Figure [5.1), and the amplitude of the
intermediate soliton generated at the intersection point reaches four times larger than the initial solitons at this limit.
This large amplitude wave generation has been considered as the Mach reflection problem of shallow water wave
[T 116} 3L 101 [19].

5.1.5. The case (e)

The line-solitons of the initial wave are [2, 3]-soliton in y > 0 and [1, 4]-soliton in y < 0. We consider the solitons
parallel to the y-axis with the amplitudes,

{ A[2’3] =Ap =0.25, tan ‘P[zg] =0=—tan"¥,

A[1,4] =2, tan‘I’[1,4] =0 =tan ¥,.

Then the k-parameters are given by (ki, kp, k3, kg) = (-1, —2+5, ﬁﬁ’ 1). We also considered the case with nonzero
angle (i.e. oblique to the y-axis with Wy > 0), and we expected to see a P-type soliton as the asymptotic solution.
However, the numerical simulation suggests that we do not see a solution of P-type, but the asymptotic solution is
somewhat close to the exact solution of (2341)-type as obtained by the minimal completion of the chord diagram.
The (2341)-type is a (1, 3)-type soliton solution with [1,4]-soliton in y < 0 and [1,2]-, [2,3]- and [3, 4]-solitons in
y > 0. Here one should note that the [1, 2]-soliton in y > 0 locates ahead of the wavefront consisting of [1,4]- and
[2, 3]-solitons, so that this soliton cannot be generated by the resonant interaction of those [1, 4]- and [2, 4]-solitons.

Figure [5.6|illustrates the result of the numerical simulation. The top figures show the direct simulation of the KP
equation. We observe that the [1,4]-soliton in y < 0 propagates faster and its tail extends to y > 0. Also note that
a large dispersive wake appearing in y < 0 has negative amplitude and disperses in the negative x-direction. On the
other hand, the tail part in y > 0 seems to have a resonant interaction with the [2, 3]-initial soliton and becomes a new
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Figure 5.6: Numerical simulation of the case (e) in Figure@ The initial wave consists of [2, 3]-soliton in y > 0 and [1, 4]-soliton in y < 0. The
upper figures show the result of the direct simulation, and the lower figures show the corresponding exact solution of (2341)-type obtained by the
minimal completion of the chord diagram given by the initial wave. Notice that the bending on the initial [1, 4]-soliton appears near the point where
the virtual [1, 2]-soliton intersects. The dispersive radiation behind the intersection point may be the part of this [1,4]-soliton.

soliton. This behavior of the solution may be explained by the chord diagram of (2341)-type whose corresponding
exact solution is illustrated in the bottom figures in Figure[5.6f The new soliton generated in y > 0 may be identified
as [3, 4]-soliton. Also we note that the bending of the [1, 4]-soliton observed in the simulation seems to appear at the
point where the [1, 2]-soliton has a resonant interaction with [1, 4]-soliton. This means that the intermediate soliton
in the exact solution is [2, 4]-soliton, and this soliton may give a good approximation of the bending part of the [1, 4]-
soliton. It is interesting to consider this [1, 2]-soliton as a virtual one, which is not visible but has an influence to the
initial solitons. This can be also understood by the similar argument using the decomposition ueyxaer = # + v. In this
case, the initial data for v is given by the [1,2]- and [3, 4]-solitons in uexaer- Then the [3,4]-soliton in uexaer appears
when the solution v decays in this part. On the other hand, the decay of v in the [1, 2]-soliton part seems to occur only
in the region behind the front solitons as seen at t = 5. Non-decaying of the [1, 2]-soliton implies that [1, 2]-soliton
never appears in the solution u, because of the cancellation of uexaer and v on this soliton part. We will give more
details in a future communication.

5.1.6. The case (f)

The line-solitons of the initial wave are [1, 4]-soliton in y > 0 and [2, 3]-soliton in y < 0. Contrary to the previous
case, we have now the larger soliton in y > 0 and the smaller one in y < 0. In a comparison, we also consider the
solitons parallel to the y-axis. We then take the amplitudes and angles of the those solitons as

A[1,4] =Ay=6, tan‘P[1,4] =0 = —tan ¥,
A[2!3] =2, tan ly[zj] =0 =tanY¥,.

Then the k-parameters are given by (ky, ks, k3, k4) = (— V3, =1, 1, ¥3). Since the upper [1, 4]-soliton propagates faster
than the lower one, the lower tail of this soliton appears and then resonates with the lower [2, 3]-soliton. Following
the similar arguments as in the previous case, we expect that (3, 1)-soliton is the corresponding exact solution which
is of (4123)-type as given by the minimal completion of the chord diagram. Figure illustrates the result of the
numerical simulation. The upper figures show the direct simulation, and the lower figures show the exact solution
of (4123)-type. As in the previous case (e), this case shows that the [3,4]-soliton part in the exact solution does not
appear in the solution of the simulation, that is, the [3, 4]-soliton is a virtual one. This can be also explained with the
similar argument as in the previous case. Notice again that the [1,4]-soliton in y > 0 has a virtual interaction with
[3,4]-soliton to get bending near (x = 18,y =7) at ¢t = 6.
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Figure 5.7: Numerical simulation of the case (f) in Figure @ The initial wave consists of [1,4]-soliton in y > 0 and [2, 3]-soliton in y < 0.
The upper figures show the result of the direct simulation, and the lower figures show the corresponding exact solution of (4123)-type obtained
by the minimal completion of the chord diagram. Notice that the bending in the [1,4]-soliton appears near the intersection point with the virtual
[3, 4]-soliton, and the dispersive radiation observed in the simulation is a part of this [3, 4]-soliton.

soliton 1 A tan ‘Po T —

(9)
R
»""
.
(h)
S
"o’ A -
»? g
1 ': -~
- .
~~4'/\\ ’,'
-
heS 4’9 N, 0}
1) .~ Lt
S -~
~~~~~ ""o
0 Sl

soliton 2 A 0 2 \/ﬂ)

Figure 5.8: X-shape initial waves. Each line of the X-shape is an infinite line-soliton solution. We set those line-solitons to meet at the origin,
and fix the amplitude of the soliton with positive angle ¥ to be 2 (the corresponding chord is shown in the lighter color in each region). Ay is the
amplitude of the soliton with negative angle —\¥y. The right panel shows the corresponding chord diagrams with the choice of the values Ag and
Y. There is no exact solution for the degenerate cases marked by the dotted lines.

5.2. X-shape initial waves

The initial wave form is illustrated in the left panel of Figure [5.8] The right figure shows the chord diagrams
corresponding to the initial waves with the parameters (A, tan V). We carried out four different cases marked with
(g) through (j) in Figure [5.8] The main result in this section is to show that each simple sum of line-solitons gets
asymptotically to the exact solution corresponding to the chord diagram given by the initial wave. One should however
note that those initial waves are not the exact solutions, and the simulations provide stability analysis for those exact
solutions. For example, if the exact solution has the phase shift, the asymptotic solution actually converges to this
exact solution by generating the correct phase shifts.

5.2.1. The case (g)

The initial wave consists of [1, 2]- and [3, 4]-soliton. To emphasize the phase shift appearing in the exact solution
of (2143)-type, we consider the initial solitons to be close to the boundary at k, = k3 (but we cannot take the values
so close, since the generation of a large phase-shift needs a long time computation). For simplicity, we also take a
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symmetric initial wave whose amplitudes and angles of the initial solitons are given by

A[l,Z] =Ap=2, tan \P[I,Z] =-2.02 = —tan¥
A[3,4] =2 tan lI"[3,4] =2.02 =tan¥

The k-parameters are then given by (ki, k», k3, k4) = (—2.01,-0.01,0.01,2.01). The numerical simulation in Figure
@] demonstrates the generation of the phase shifts after the interaction, that is, the line-solitons in the left side are
accelerated by their interaction. Note here that the interaction generates the dispersive wake behind the interaction
point which propagates in the negative x-direction.

Minimizing the error function E(¢) at t = 12, we obtain the A-matrix,

A= 1 3.029 0 0
—\o 0 1 0.015
In the minimization by adjusting the locations of the solitons, we use x[*u] = xfgm (due to the symmetry of the
solution), and then we obtain
X{12) = X347 = —0.21.

The negative values are due to the generation of the positive phase shifts given by (3.9),
Axpio) = Axpz 4 = 1.963 > 0.

Namely the accelerations of the back parts of the line-solitons (i.e. the positive phase shifts) imply the deceleration
of the front parts of solitons. The middle figures in Figure [5.9]shows the corresponding O-type soliton solution with
this A-matrix. The circle shows the domain D% with r = 12. Notice the dispersive wake behind the interaction point
in the simulation. The bottom graph in Figure 5.9 shows the convergence of the solution to the O-type solution given
by those A-matrix and the same k-parameters.

5.2.2. The case (h)

The initial wave is the sum of [1, 3]- and [2, 4]-soliton. The corresponding chord diagram is of (3412)-type (i.e.
T-type), and we expect the generation of a box at the intersection point of those solitons. For simplicity, we consider
a symmetric initial wave, and take the amplitudes and angles of those solitons to be

{ A[l 3] = AO = 2, tan ‘{1[1,3] =—1= _tan\}lo

A[274] =2 tan lP[z,4] =1 =tan"¥

The k-parameters are then given by (ky, k2, k3, kq) = (—%, —%, %, %). Although T-type soliton appears for smaller angle
Yy, one should not take so small value. For an example of the symmetric case, if we take ¥y = 0, we obtain the
KdV 2-soliton solution with different amplitudes. So for the case with very small angle ¥, we expect to see those
KdV solitons near the intersection point. However, the solitons expected from the chord diagram have almost the
same amplitude as the incidence solitons for the case with a small angle. The detailed study also shows that near the
intersection point for T-type solution at the time when all four solitons meet at this point (i.e X-shape), the solution
has a small amplitude due to the repulsive force similar to the KdV solitons (see also [4], where the initial X-shape
wave with small angle generates a large soliton at the intersection point). This then implies that our initial wave given
by the sum of two line-solitons creates a large dispersive perturbation at the intersection point (this can be also seen
in the next cases where we discuss the P-type solutions).

The top figures in Figure [5.10]illustrate the numerical simulation, which clearly shows an opening of a resonant
box as expected by the chord diagram of T-type. The corresponding exact solution is illustrated in the middle figures,
where the A-matrix of the solution is obtained by minimizing the error function E(¢) of (3.3) at ¢ = 6,

A= I 0 -0.368 -0.330
o 1 1198 0.123
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Figure 5.9: Numerical simulation of the case (g) in Figure@ The initial wave is the sum of [1,2]- and [3, 4]-solitons. The top figures show the
numerical simulation, and the middle figures show the corresponding exact solution of (2143)-type, i.e. O-type. The bottom graph shows E(f) of
(3-3) which is minimized at r = 12. Notice that a small dispersive radiation appears to generate the correct phase shifts.

+

In the minimization, we take x;; 5, = x[i'2 4 due to the symmetric profile of the solution, and adjust the on-set of the
box (recall (3.3)), and note that the symmetry reduces the number of free parameters to three). We obtain

X1 3] = Xja.41 = 0.025, r=3.63, s = 0.350.

The positive shifts of those [1,3]- and [2,4]-solitons in the wavefront indicate also the positive shift of the newly
generated soliton of [1,4]-type at the front. This is due to the repulsive force exists in the KdV type interaction
explained above, that is, the interaction part in the initial wave has a larger amplitude than that of the exact solution,
so that this part of the solution moves faster than that in the exact solution. This difference may result as a shift of the
location of the [1, 4]-soliton. The phase shifts of the initial waves are obtained from (@),

AX[l,3] = AX[2,4] = 0.549.

The relatively large value » > 1 indicates that the on-set of the box is actually much earlier that # = 0, and s < 1 shows
the positive phase shifts as calculated above.

The bottom graph in Figure [5.10] shows the evolution of the error function E(r) of (5.3) which is minimized at
t = 6. Note here that the circular domain D’ with r = 22 covers well the main feature of the interaction patterns for
all the time computed for ¢t < 7.

5.2.3. The case (i)

The initial wave consists of [1,4]- and [2, 3]-soliton. The corresponding diagram is of (4321)-type (P-type), and
the exact solution of this type has negative (repulsive) phase shift. Here we show how the phase shift is generated in
the simulation. We take the amplitudes and angles of those solitons to be

Aps =Ag= %, tan¥ps =-04 = —tan¥
Apna =2 tan ¥ 4; = 0.4 = tan ¥y
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Figure 5.10: Numerical simulation of the case (h) in Figure@ The initial wave is the sum of [1, 3]- and [2, 4]-solitons. The top figures show the
numerical simulation, and the middle figures show the corresponding exact solution of (3412)-type, i.e. T-type. The bottom graph shows the error
function E(7) of (3-3) which is minimized at 1 = 6.

The k-parameters are then given by (ky, k>, k3, k4) = (—%, —%, %, g). In this case, we also note that taking a very small
angle W, may give a large perturbation to the exact solution, and one should have a large computation time to see the
convergence. The top figures in Figure[5.11|show the numerical simulation. The simulation indicates the generation of
the phase shift in the lower part of the solution. This may be explained as follows: Since the [1, 4]-soliton propagates
faster than the [2, 3]-soliton, the intersection point moves in the upper direction, i.e. the positive y-direction. Then
the effect of the nonlinear interaction may be observed in the lower half (i.e. behind the interactions) of the solution,
and it generates the phase shifts. One should also note that the large bending of the [1, 4]-soliton in y < 0. This is
due to the interaction with the dispersive wake generated around the origin at # = 0, and notice that this bending part
disperses away. The middle figures in Figure[5.11]show the corresponding exact solution of P-type whose A-matrix is

obtained by minimizing the error function E(7) of (3.3) atz = 12,

A= 1 0 0 —0.038)

0 1 1.629 0
In the minimization, we adjust the location of the line-solitons at the wavefront, and using @), we obtain
x[*m] = —-0.125, x[+154] = -0.54.

Notice that the larger shifts in the [1,4]-soliton, which can be also observed in the simulation. This shift is due to the
repulsive force appearing at the intersection point (recall that the exact solution has a smaller amplitude at this point).
The phase shifts of the P-type solution is given by (3.7),

AX[1’4] = —1.10, AX[2!3] = -2.75.

Those large phase shifts are also observed in the simulation, and the bending regions are getting separated from the
intersection point with the correct phase shifts. The bottom graph in Figure[5.11]shows the decay of the error function
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Figure 5.11: Numerical simulation of the case (i) in Figure@ The initial wave is the sum of [1,4]- and [2, 3]-solitons. The top figures show the
numerical simulation, and the middle figures show the corresponding exact solution of (4321)-type, i.e. P-type. The bottom graph shows the error
function E(7) of (5:3) which is minimized at = 12. Note that the bending on the solitons disperses and the interaction pattern converges locally to
that of the corresponding exact solution.

E(t) with D', for r = 10. We also note the saturation E(¢) after # = 11, which may be due to the large deformation of
the solution, and we may need to perform a larger domain computation.

5.2.4. The case (j)

This case is similar to the previous one with [1,4]- and [2, 3]-soliton in the initial wave. However in this case,
the larger soliton of [1, 4]-type has a negative angle (propagating in the negative y-direction), and we expect that the
phase shift now appear in the upper half of the solution. We take the amplitudes and angles of those solitons to be

Ang =4 = 13%9,

tan‘I’[]A] = —% = —tan¥,

tan \P[2,3] 4_11 =tan ¥

The k-parameters are then given by (ky, k», k3, ks) = (—7—1, —%, %, %). The top figures in Figure show the numerical
simulation. One can observe a dispersive wake is generated by a large perturbation in the initial wave near the origin,
and then the wake pushes the [1, 4]-soliton forward. Also the large bending of the [2, 3]-soliton near the origin is due to
the interaction with the wake. Since the [1, 4]-soliton propagates much faster than the other one, the intersection point
moves in the negative y-direction. We can see a clear separation between the dispersive waves causing the deformation
of solitons and the intersection points of P-type. The middle figures in Figure[5.12]illustrate the corresponding P-type
solution whose A-matrix is obtained by minimizing the error function E(¢) at t = 8. We take the radius r = 10 for a

good separation of the dispersive perturbation from the steady P-type soliton part. With this minimization, we get

Lot 0 0 -029
“lo 1 8549 0

In the minimization, we adjust the locations of the line-solitons at the wavefront, and using (@), we obtain
xﬂA] =0.627, xfrm] =0.923.
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Figure 5.12: Numerical simulation of the case (j) in Figure@ The initial wave is the sum of [1,4]- and [2, 3]-solitons. The top figures show the
numerical simulation, and the middle figures show the corresponding exact solution of (4321)-type, i.e. P-type. The bottom graph illustrates the
error function E(t) of @ which is minimized at t = 8. The graph shows a further reduction of the error, that is, the convergence of the solution
to the corresponding exact solution even with a drastic change of the error at the initial stage.

The positive shifts are due to the repulsive interaction at the intersection point as observed in the simulation. The
phase shifts of those incidence solitons are given by (3.7)),

AX|1,4] = —0.934, AX[2’3] =—1.518.

Notice that the [1, 4]-soliton behind the [2, 3]-soliton shifts X141 = xfrl qt Axq1 41 = —0.307, and it gets a larger shift in
the upper part. The large bending in the simulation is generated by a strong perturbation generated at the intersection
point at r = 0. However, the bending part disperses and the intersection point gets away from this part.

The bottom graph in Figure[5.12] shows the decay of the error. We emphasize that the error function gets a rapid
change in the early times. This implies that a drastic change in the profile of the solution due to a large perturbation to
the exact solution. However after ¢ = 3 the solution has a monotone convergence to the exact solution, implying that
the dispersive waves are getting away from the domain D’ as we expected.
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