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Abstract

We investigate the effect of martingale control as a smoother for MC/QMC methods. Numerical
results of estimating low-biased solutions for American put option prices under the Black-Scholes model
demonstrate that using QMC methods can be problematic. But it can be fixed by adding a (local)
martingale control variate into the least-squares estimator to gain accuracy and efficiency. In examples
of estimating European option prices under muitl-factor stochastic volatility models, randomized QMC
methods improve the variance by merely a single digit. After adding a martingale control, the variance
reduction ratio raise up to 700 times for randomized QMC and about 50 times for MC simulations.
When the delta estimation problem is considered, the efficiency of the martingale control variate
method decreases. We propose an importance sampling method which performs better particularly in
the presence of rare events.

Keywords: Option pricing; Multi-factor stochastic volatility models; control variate method; Monte
Carlo and quasi-Monte Carlo methods.

1 Introduction

The evaluation of financial derivatives are central problems in modern finance. In the seminal work
of Black and Scholes [4], the fair price of a European-style derivative, denoted by P , can be presented
as a conditional expectation under the risk-neutral probability space (Ω,F , (Ft)0≤t≤T , IP

?)

P (t, St) = IE?
{
e−r(T−t)H(ST )|Ft

}
, (1)

where the underlying risky asset St is governed by the geometric Brownian motion

dSt = rStdt+ σStdW
?
t . (2)

Other notations are defined as follows: t the current time, T < +∞ the maturity, r the risk-free
interest rate, σ the volatility, W ?

t the standard Brownian motion, H(x) the payoff function satisfying
the usual integrability condition. For example, if H(x) = max {x−K, 0} ≡ (x−K)+ for the strike
price K > 0, it is a call payoff; if H(x) = max {K − x, 0} ≡ (K − x)+, it is a put payoff. A financial
contract with the call or put payoff exercised at the maturity date is called a European call option or
a European put option respectively.
From the simulation point of view, it is straightforward to construct the basic Monte Carlo (MC for
short) estimator

1

N

N∑
i=1

e−rTH(S
(i)
T ) (3)
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where N is the total number of sample paths and S
(i)
T denotes the i-th independent replication of the

random variable ST .
Our main interest in this paper is to improve the accuracy of the estimate obtained from (3) by
variance reduction techniques or by Quasi Monte Carlo (QMC for short) method. Motivated from
stochastic financial theory, every option contract defined in (1) and (2) can be perfectly replicated a
the hedging portfolio such that

P (0, S0) = e−rTH(ST )−M(P ;T ) (4)

where M(P ;T ) is a zero-centered (hedging) martingale

M(P ; t) =

∫ t

0

e−rs
∂P

∂x
(s, Ss)σSsdW

?
s . (5)

Equation (4) can be understood as a martingale representation by applying Ito’s lemma to the dis-
counted option price process e−rtP (t, St) provided that the derivative price function P (t, x) is once
differentiable in time t and twice differentiable in the asset price x. Ideally, if one was able to sample
perfectly for ST and M(P ), then one can run a single Monte Carlo simulation on the right hand side
of (4) to obtain the derivative price P (0, S0). In reality, if one was able to calculateM(P ;T ) perfectly,
the partial derivative ∂P

∂x
(t, x) would be known so that the option price P (t, x) could be known in

advance. Therefore Equation (4) is not feasible for a direct computation for the option price. Never-
theless by employing a zero-centered martingale as a control we can formulate the unbiased control
variate estimator

1

N

N∑
i=1

[
e−rTH(S

(i)
T )−M(i)(P̃ ;T )

]
(6)

for the option price P0 = IE?
{
e−rTH(ST )−M(P̃ ;T )|F0

}
where the new martingale controlM(P̃ ;T )

consists of the price approximation P̃ to the actual option price P . In financial interpretationM(P̃ ;T )
represents the delta hedging portfolio accumulated up to time T , so the term M(P̃ ;T ) is called the
hedging martingale by the price P̃ and the estimator defined in (6) is called the martingale control
variate estimator.
Empirical studies such as [16] on hedging options document the robustness and effectiveness of using
the Black-Scholes delta hedging strategy. Therefore, a financial intuition about the effectiveness of
the martingale control variate e−rTH(ST )−M(P̃ ;T ) is that if the delta ∂P̃

∂x
(t, x) is close to the actual

hedging strategy ∂P
∂x

(t, x), fluctuations of the replicating error will be small so that the variance of the
estimator (6) should be small. In this current study, we adopt the Black-Scholes option price, denoted
by PBS, to approximate the actual option price. Other variance reduction techniques with less or no
financial implication include conditional Monte Carlo [27], importance sampling [13, 7], direct sam-
pling [3], etc. We refer to [14] and references therein.
All Monte Carlo methods mentioned so far are fundamentally related to pseudo random sequences. As
an alternative integral methods using quasi-random sequences (or called low-discrepancy sequences)
have drawn lots of attentions in recent years because its theoretical rate of convergence is O(1/n1−ε)
for all ε > 0 subjected to the dimensionality and the regularity of the integrand [23]. Despite the
regularity of the integrand function corresponding to the payoff H(ST ) is generally poor [14], there are
still many applications of using QMC or randomized QMC as a computational tool in finance. Many
developed QMC techniques are motivated from financial applications [2, 19, 20, 26]. In next section we
give a counterexample of using QMC method to estimate lower bound solutions of American option
prices. After combining the martingale control variate with QMC, we find that the accuracy of the

2



American option price estimate is significantly improved. However when we consider the delta estima-
tion problem in Section 4, the efficiency of the martingale control variate method starts to decrease.
This is due to the regularity of the delta payoff is worse than its option payoff. Alternatively, we
propose an importance sampling method and show efficiency gain from the rare event simulation.
In this paper, we investigate primarily the effect of martingale control variate under MC/QMC meth-
ods. The evaluation of option prices under multifactor stochastic volatility models are also explored.
Several numerical experiments are conducted to compare the variance reduction performance for the
martingale control variate method mentioned above with or without randomized QMC methods.
The organization of this paper is the following. In Section 2, we consider the high and low biased
estimation problem for American options under the Black-Scholes model, and give an example that
pricing low-biased American options by QMC can be infeasible. This can be fixed when martingale
control variates are added into the least-squares estimator. In Section 3 we introduce the class of
multifactor stochastic volatility models and the construction of martingale control by means of per-
turbation techniques. Numerical experiments by Monte Carlo method and quasi-Monte Carlo methods
are presented for one-factor Heston model and generic two-factor stochastic volatility models. We test
several combinations of martingale control variate methods with or without QMC methods, including
the Sobol’ sequence and L’Ecuyer type good lattice points together with the Brownian bridge sam-
pling technique. In Section 4, we consider the delta estimation problem, treated by martingale control
variate method, importance sampling method, and the central difference method.

2 High and Low Biased Estimates of American Option Price

by MC/QMC

The right to early exercise a contingent claim is an important feature for derivative trading. An
American option offers its holder, not the seller, the right but not the obligation to exercise the
contract any time prior to maturity during its contract life time. Based on the no arbitrage argument,
the American option price at time t, denoted by Pt, with maturity T <∞ is considered as an optimal
stopping time problem [8] defined by

Pt = sup
t≤τ≤T

IE?
{
e−r(τ−t)H (Sτ ) |Ft

}
, (7)

where τ denotes a bounded stopping time.
To estimate low-biased American option prices, Longstaff and Schwartz [22] took a primal (dynamic
programming) approach and proposed a least-square regression to estimate the continuation value at
each in-the-money asset price state. By comparing the continuation value and the instant exercise
payoff, their method exploits a decision rule, denoted by τ , for early exercise along each sample path
generated. As a fact that τ being a suboptimal stopping rule, Longstaff-Schwartz’ method induces a
low-biased estimate for American option price at time 0

IE?
{
e−rτH (Sτ ) |F0

}
. ≤ P0 (8)

By the optional sampling theorem [21] we can use a locally hedging martingaleM
(
P̃ ; τ

)
to preserve

the low-biased estimate (8) by

IE?
{
e−rτH (Sτ )−M

(
P̃ ; τ

)
|F0

}
, (9)
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where P̃ is an approximation of the American option price. By the spirit of hedging martingale
discussed in Section 1, we consider

M (PE; τ) =

∫ τ

0

e−rs
∂PE
∂x

(s, Ss)σSsdW
?
s , (10)

where PE denotes the counterpart European option price. In the case of the American put option,
P0 is unknown but its approximation PE admits a closed-form solution, known as the Black-Scholes
formula. Its delta is given by

∂PE
∂x

(t, x;T,K, r, σ) = N
(

ln(x/K) + (r + σ2/2)(T − t)
σ
√
T − t

)
− 1,

where N (x) denotes the cumulative normal integral function.
To estimate high-biased American option prices, Rogers [25] obtained a dual approach to solve the
inf-sup problem over martingales:

P0 = inf
M∈H1

0

IE?

{
sup

0≤t≤T

(
e−rtH(St)−Mt

)
|F0

}
, (11)

where the martingale M· belongs to

H1
0 =

{
(Mt)0≤t≤T : martingales with sup

0≤t≤T
|Mt| ∈ L1 and M0 = 0

}
.

Therefore, for any martingale M ∈ H1
0 , for example Mt = M

(
P̃ ; t
)

, a high-biased estimate of the

American option price is deduced:

P0 ≤ IE?

{
sup

0≤t≤T

(
e−rtH(St)−M

(
P̃ ; t
))
|F0

}
. (12)

Note that when the approximate price P̃ equals to the true American option price P , then the equality
holds. This ca be shown from the Doob-Meyer decomposition [25, 9]. From (9) and (12), we see the
high and low biased estimates are

IE?
{
e−rτH (Sτ )−M

(
P̃ ; τ

)
|F0

}
≤ P0 ≤ IE?

{
sup

0≤t≤T

(
e−rtH(St)−M

(
P̃ ; t
))
|F0

}
. (13)

We remark that these martingales shown on the left-had term and the right-hand term above can
be chosen differently based on user’s interest. In the following numerical example, we use the same
martingale, defined in (10), by choosing the option price approximation P̃as the counterpart European
option price PE.

As an example we consider a pricing problem at time 0 for the American put option with pa-
rameters K = 100, r = 0.06, T = 0.5, and σ = 0.4. Numerical results of the low-biased estimates by
MC/QMC with or without hedging martingales and high-biased estimates with hedging martingales
are demonstrated in Table 1. The first column illustrates a set of different initial asset price S0. The
true American option prices corresponding to S0 are given in Column 6, depicted from from Table 1
of [25]. Monte Carlo simulations are implemented by sample size N = 5000 and time step size (Euler
discretization) ∆t = 0.01. By using the least squares method, Column 2 and Column 3 illustrate
low-biased estimates and their standard errors (in parenthesis) obtained from MC estimator related
to Equation (8) and MC+CV estimator related to Equation (9) respectively. We observe that (1)

4



Table 1: Comparisons of low-biased estimates (Column 2-5), the actual American option prices (Col-
umn 6), and high-biased estimates (Column 7-8). MC denotes the basic Monte Carlo estimates.
MC+CV denotes the control variate estimates with the hedging martingaleM(PE; τ) being the addi-
tive control. Standard errors are shown in the parenthesis. QMC and QMC+CV denote calculations
of Equation (8) and (9,12) using quasi sequences respectively.

S0 LSM LSM LSM LSM P0(true) Dual Dual
MC MC+CV QMC QMC+CV MC+CV QMC+CV

80 20.7368 20.6876 20.9435 20.6626 21.6059 21.947 21.9764
(0.2353) (0.0124) (0.0107)

85 17.3596 17.3586 17.8031 17.3321 18.0374 18.325 18.3590
(0.2244) (0.0134) (0.0128)

90 14.3871 14.3930 15.0429 14.4030 14.9187 15.132 15.1988
(0.2125) (0.0139) (0.0143)

95 11.8719 11.8434 12.6472 11.8795 12.2314 12.371 12.4660
(0.1995) (0.0148) (0.0148)

100 9.8529 9.6898 10.5380 9.6942 9.946 10.147 10.1433
(0.1881) (0.0157) (0.0153)

105 7.9586 7.8029 8.7117 7.8351 8.0281 8.181 8.1941
(0.1684) (0.0154) (0.0151)

110 6.2166 6.2606 7.1663 6.2949 6.4352 6.612 6.5708
(0.1518) (0.0150) (0.0149)

115 5.0815 5.0081 5.8568 5.0221 5.1265 5.269 5.2282
(0.1367) (0.0144) (0.0141)

120 4.0885 3.9389 4.7480 3.9699 4.0611 4.198 4.1358
(0.1245) (0.0146) (0.0134)

those estimates are indeed below the true prices (2) the standard errors are significantly reduced after
adding the martingale control M(PE; τ). For QMC methods we use 5000 Niederreiter sequences of
dimension 100. In column 4 we see clearly that in most situations, except S0 = 80 and 85, low-biaes
QMC estimates are unreasonably greater than the true American prices. The striking part is that after
adding hedging martingales, low-biased QMC+CV estimates shown in Column 5 are indeed below the
true price. These results strongly indicate that the hedging martingale plays the role of a smoother
for MC/QMC methods.
By using the dual method, Column 7 illustrates high-biased estimates and their standard errors (in
parenthesis) obtained from MC+CV estimator related to Equation (12). Note that the dual formula-
tion (11) of the American option price has naturally a martingale control embedded, so there is no need
to discuss the case without hedging martingales. We observe that (1) those estimates are indeed above
the true prices (2) the standard errors are as the same order of Column 3 with martingale control. For
QMC+CV method we see all high-biased QMC+CV estimates are comparable with results obtained
by MC+CV. This shows the reliability of QMC methods in evaluating high-biased estimates.
Because the complexity of American option pricing problems is high, we stress the smooth effect
of hedging martingales by considering European option pricing problems under multifactor stochastic
volatility models. For readers interested in the variance and error analysis for pricing American options
by the primal (least squares method) and the dual method, please refer to [9].
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3 Monte Carlo Pricing under Multi-factor Stochastic Volatil-

ity Models

Stochastic volatility models have been an important class of diffusions as an extend of the Black-
Scholes model. Stochastic volatility models are convenient to capture some stylized facts appearing
either from historical data or implied (or derivatives) data. See [1, 11] and references therein. Under
stochastic volatility models, closed-form solutions for typical option pricing problems barely exist even
for European options. Numerical methods become essential. In this section we describe muiti-factor
stochastic volatility models and the construction of approximate hedging martingales by means of
perturbation techniques.
Under a risk-neutral probability measure IP ? parametrized by the combined market price volatility
premium (Λ1,Λ2) , the multi-factor stochastic volatility model is defined by

dSt = rStdt+ σtStdW
(0)∗
t , (14)

σt = f(Yt, Zt),

dYt =

[
1

ε
c1(Yt) +

g1(Yt)√
ε

Λ1(Yt, Zt)

]
dt+

g1(Yt)√
ε

(
ρ1dW

(0)∗
t +

√
1− ρ2

1dW
(1)∗
t

)
,

dZt =
[
δc2(Zt) +

√
δg2(Zt)Λ2(Yt, Zt)

]
dt

+
√
δg2(Zt)

(
ρ2dW

(0)∗
t + ρ12dW

(1)∗
t +

√
1− ρ2

2 − ρ2
12dW

(2)∗
t

)
,

where St is the underlying asset price process with a constant risk-free interest rate r. Its random
volatility σt is driven by two stochastic processes Yt and Zt varying on the time scales ε and 1/δ, respec-

tively. The vector
(
W

(0)∗
t ,W

(1)∗
t ,W

(2)∗
t

)
consists of three independent standard Brownian motions.

Instant correlation coefficients ρ1, ρ2, and ρ12 satisfy |ρ1| ≤ 1 and |ρ2
2 +ρ2

12| ≤ 1. The volatility function
f is assumed to be smooth bounded. Coefficient functions of processes Yt and Zt, namely (c1, g1,Λ1)
and (c2, g2,Λ2) are assumed to be smooth such that they satisfy the existence and uniqueness condi-
tions for stochastic differential equations. Mean-reverting processes such as Ornstein-Uhlenbeck (OU)
processes or square-root processes are typical examples to model driving volatility processes [12, 17].
Under this setup, the joint process (St, Yt, Zt) is Markovian.
Given the multi-factor stochastic volatility model (14), the price of a plain European option with the
payoff function H and expiry T is defined by

P ε,δ(t, x, y, z) = IE?
t,x,y,z

{
e−r(T−t)H(ST )

}
, (15)

where IE?
t,x,y,z is a short notation for the expectation with respect to IP ? conditioning on the cur-

rent states St = x, Yt = y, Zt = z. A basic Monte Carlo simulation estimates the option price
P ε,δ(0, S0, Y0, Z0) at time 0 by the sample mean

1

N

N∑
i=1

e−rTH(S
(i)
T ) (16)

where N is the total number of sample paths and S
(i)
T denotes the i-th simulated stock price at time

T . Variance reduction techniques are particularly important to accelerate the computing efficiency of
the basic Monte Carlo pricing estimator (16). Next we briefly review the construction of a generic
algorithm, i.e. martingale control variate method, recently proposed by Fouque and Han [8].
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3.1 Construction of Martingale Control Variates

Assuming that the European option price P ε,δ(t, St, Yt, Zt) is twice differentiable in state space and
once differentiable in time, we apply Ito’s lemma to its discounted price e−rtP ε,δ, then integrate from
time 0 to the maturity T . After canceling out the pricing partial differential equation in some non-
martingale terms, the following martingale representation can be obtained [8]

P ε,δ(0, S0, Y0, Z0) = e−rTH(ST )−M0(P ε,δ)− 1√
ε
M1(P ε,δ)−

√
δM2(P ε,δ), (17)

where zero-centered martingales are given by

M0(P ε,δ) =

∫ T

0

e−rs
∂P ε,δ

∂x
(s, Ss, Ys, Zs)f(Ys, Zs)SsdW

(0)∗
s , (18)

M1(P ε,δ) =

∫ T

0

e−rs
∂P ε,δ

∂y
(s, Ss, Ys, Zs)g1(Ys)dW̃

(1)∗
s , (19)

M2(P ε,δ) =

∫ T

0

e−rs
∂P ε,δ

∂z
(s, Ss, Ys, Zs)g2(Zs)dW̃

(2)∗
s , (20)

where the Brownian motions are

W̃ (1)∗
s = ρ1W

(0)∗
s +

√
1− ρ2

1W
(1)∗
s ,

W̃ (2)∗
s = ρ2W

(0)∗
s + ρ12W

(1)∗
s +

√
1− ρ2

2 − ρ2
12W

(2)∗
s .

These martingales play the role of “perfect” controls for Monte Carlo simulations. Namely, if the
martingales (18), (19), and (20) can be exactly computed, then one can just generate one sample
path to evaluate the option price through Equation (17). Unfortunately the gradient components(
∂P ε,δ

∂x
, ∂P

ε,δ

∂y
, ∂P

ε,δ

∂z

)
of the option price appearing in the martingales is not possibly known in advance

when the option price P ε,δ itself is exactly what we want to estimate. However, one can choose an
approximate option price to substitute P ε,δ used in the martingales (18, 19, 20) and still retain mar-
tingale properties.
By an application of singular and regular perturbation techniques, the first order approximation de-
rived in [12] is

P ε,δ(t, x, y, z) ≈ PBS(t, x; σ̄(z)) (21)

where PBS(t, x; σ̄(z)) denotes the solution of the Black-Scholes partial differential equation with the
constant volatility σ̄(z) and the terminal condition PBS(T, x) = H(x). The z-dependent effective
volatility σ̄(z) is defined as the square root of an averaging of the variance function f 2 with respect
to the limiting distribution of Yt :

σ̄2(z) =

∫
f 2(y, z)dΦ(y) =

〈
f 2(y, z)

〉
, (22)

where Φ(y) denotes the invariant distribution of the fast varying process Yt while setting the volatility
premium Λ1 as zero. We use the bracket to represent such average. In the OU case, we choose that
c1(y) = m1 − y and g1(y) = ν1

√
2 with Λ1 = 0 such that 1/ε is the rate of mean reversion, m1 is the

long run mean, and ν1 is the long run standard deviation. Its invariant distribution Φ is normal with
mean m1 and variance ν2

1 . We refer to [12] for detailed discussions of such models.
Note that the approximate option price PBS(t, x; σ̄(z)) is independent of the variable y such that the
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termM1(PBS) diminishes. Since the approximate martingaleM2(PBS) for (20) is small of order
√
δ.

Intuitively we can neglect this term as well. We then select the stochastic integral M0(PBS) as the
main control for the estimator (16) and formulate the following martingale control variate estimator:

1

N

N∑
i=1

[
e−rTH(S

(i)
T )−M(i)

0 (PBS)
]
. (23)

This is the approach taken by Fouque and Han [8], in which the proposed martingale control variate
method is numerically superior to an importance sampling method in [7] for pricing European options.
Under OU-type processes to model (Yt, Zt) in (14) with 0 < ε, δ � 1, the variance of the martingale
control variate for European options is small of order ε and δ. This asymptotic result is shown in [8].

3.2 Variance and Error Analysis for MC/QMC

Based on the fact that random volatility is fluctuating around the long run mean of driving volatilities,
we consider a simplified model which is helpful to explain the effect of martingale control as a smoother
for MC/QMC methods. We assume that under the risk-neutral probability measure Sεt is a perturbed
risky asset price defined by

dSεt = rSεt dt+ σεtS
ε
t dW

∗
t , (24)

where the perturbed volatility around the constant σ is σεt = σ + ε gt. We assume that gt is a
deterministic and bounded function such that σεt is positive and bounded away from 0. A European
option, say call with the strike K, is defined by

P ε (t, Sεt ;σ
ε) = IE?

t,Sεt

{
e−r(T−t)(SεT −K)+

}
, (25)

where the averaged volatility is defined by σ̄ε =
√

1
T−t

∫ T
t

(σεs)
2ds.

Lemma 1 Let N (x) be the cumulative integral function and

d1(t, x;σ) =
log(x/K) + (r + σ2/2)(T − t)

σ
√
T − t

.

Then there exists a constant C such that

N (d1(t, x; σ̄ε))−N (d1(t, x;σ)) < Cε

for any ε > 0, 0 ≤ t ≤ T, and x > 0.
Proof: We observe that for 0 ≤ t < T and x > 0, N (d1(t, x;σ)) is a smooth function in σ and its

partial derivative ∂N (d1(t,x;σ))
∂x

is uniformly bounded. By the mean value theorem, there exists a σ′

between σ and σ̄ε such that

N (d1(t, x; σ̄ε))−N (d1(t, x;σ))

=
∂N (d1(t, x;σ′))

∂x
(σ̄ε − σ)

< C
(σ̄ε)2 − σ2

σ̄ε + σ
< C ε.

Here we abuse the notation C to indicate the existence of some constant.
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Theorem 2 (Variance Analysis) Suppose that the payoff function H is a call and the volatility process
σεt is defined above. For any fixed initial state (0, Sε0 = x), there exist ε > 0 small enough and a positive
C such that

V ar
(
e−rT (SεT −K)+ −M(PBS;T )

)
≤ Cε.

Proof: Using the martingale representation

e−rT (SεT −K)+ − P ε(0, Sε0) =

∫ T

0

e−rt
∂P ε

∂x
(t, Sεt ; σ̄

ε)σεtS
ε
t dW

∗
t (26)

we obtain

V ar
{
e−rT (SεT −K)+ −M(PBS;T )

}
= V ar

{∫ T

0

e−rt
(
∂P ε

∂x
(t, Sεt ; σ̄

ε)− ∂PBS
∂x

(t, Sεt ;σ)

)
σεtS

ε
t dW

∗
t

}
= IE?

{∫ T

0

(N (d1(t, Sεt ; σ̄
ε))−N (d1(t, Sεt ;σ)))2 (σεt )

2 (e−rtSεt )2
dt

}
.

The last equation is obtained from Ito’s isometry theorem. By Lemma 1 and the fact that IE?
{

(e−rtSεt )
2
}

is bounded [8]. Then we get V ar
{
e−rT (SεT −K)+ −M(PBS;T )

}
≤ Cε.

Remark: The financial interpretation of the martingale control term

M(PBS;T ) =

∫ T

0

e−rt
∂PBS
∂x

(t, Sεt ;σ)σεtS
ε
t dW

∗
t

corresponds to the cumulative cost of a delta hedging strategy. From the risk management [18] view-
point, daily hedge for derivatives are important for financial institutions in practice. Empirical studies
[16] has suggested that the delta hedge under Black-Scholes model performs better than those strate-
gies derived from complex pricing models. This empirical evidence is consistent to the effectiveness and
robustness of our martingale control variate method, both theoretically and numerically discussed in
this paper. In addition, this martingale control variate method can be easily extended to hitting time
problems like barrier options and optimal stopping time problems like American options as discussed
in [8].

From Equation (26), we see

e−rT (SεT −K)+ −M(PBS;T )− P ε(0, Sε0) =

∫ T

0

e−rt
(
∂P ε

∂x
(t, Sεt ; σ̄

ε)− ∂PBS
∂x

(t, Sεt ;σ)

)
σεtS

ε
t dW

∗
t .(27)

This equation is very helpful to consider an error analysis for the QMC estimate of

IE?
{
e−rT (SεT −K)+ −M(PBS;T )

}
.

We use Proinov bound [23] to analyze the error of martingale control variate estimator because this
bound primarily requires the countinuity of the integrand. In the implementation of QMC methods,
we first discretize the stochastic integral (27) by Euler scheme as a Riemann sum of normal variables,
then define an integral problem over the hypercube space. The integrand is a countinuous function.
Moreover since the integrand always contains the delta error ∂P ε

∂x
(t, Sεt ; σ̄

ε)− ∂PBS
∂x

(t, Sεt ;σ) which is of
O(ε) as shown in Lemma 1. We therefore assure that the error of QMC estimates is small of O(ε).
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From these analysis, one can see that the variance of a delta-hedged contract, V ar
(
e−rT (SεT −K)+ −M(PBS;T )

)
is small of order ε, so is the error of QMC estimate, while the variance of unhedged (or naked) contact
is of order 1. These theoretical results are confirmed by those jumps of huge variance reduction illus-
trated in the following numerical results, generated from the one-factor Heston model and multi-factor
stochastic volatility model.

3.3 One-factor SV Model: Heston Model

A widely applied mean-reverting process is Heston model [17] which incorporates a square-root diffu-
sion to model the random volatility process. Heston model is an one-factor stochastic volatility model
so that it can be viewed as a special case of our multi-factor SV model (14) after the square-root
process is rescaled in the following way:

dYt =
1

ε
(θ − Yt) dt+

2κ√
ε

√
Yt

(
ρ1dW

(0)∗
t +

√
1− ρ2

1dW
(1)∗
t

)
(28)

and Zt = 0 for all t ≥ 0. The volatility function is defined by f(y, z) =
√
y. The driving volatility (28)

admits a limiting distribution while ε approaches zero. It is known as the central Chi-square random
variable

κ2χν(0) (29)

with the degree of freedom ν = θ/κ2. Its density function is denoted by

φ(x) =
1

κ2

1

2ν/2Γ(ν
2
)

( x
κ2

)ν/2−1

exp

(
−x
2κ2

)
(30)

for x > 0, where Γ(·) is the Gamma function.
Under the risk-neutral pricing probability measure, the European option price is

P ε(t, x, y) = IE?
t,x,y

{
e−r(T−t)H(ST )

}
.

Following the singular perturbation expansion [12], one can derive an asymptotic result

P ε(t, x, y) ≈ PBS(t, x; σ̄) (31)

when ε� 1. As defined in (22) but without the z-component, the effective volatility σ̄ is defined from
σ̄2 =

∫
f(y)2φ(y)dy. By change of variable z = y

κ2 , the effective variance

σ̄2 =
κ2

2ν/2Γ(ν
2
)

∫ ∞
0

zν/2e−z/2dz

= κ2ν

= θ (32)

is deduced. We readily observe that the effective variance σ̄2 is exactly the long-run mean θ of the
square root process (28).
Under the one-factor Heston model specified in Table 2 and 3, the effective variance is σ̄2 = θ = 0.3.
Several variance ratios are illustrated in Table 4 and show significant reduction gained from the
martingale control variate estimator (23) versus the basic Monte Carlo estimator (16). Notice that
the variance reduction ratios performs better when ε are either small (close to 1/50) or large (close to
1/0.1). In the small ε regime, one can use singular perturbation analysis to argue that the approximate

10



Table 2: Parameters used in the rescaled Heston’s model ( 28).

r θ κ ρ f(y)
5% 0.09 0.1 -0.3

√
y

Table 3: Initial conditions and European call option parameters.

$S0 Y0 $K T years
50 0.09 50 1

option price PBS(t, x; σ̄) is close to the true option price. Hence the variance reduction is effective. In
the large ε regime, the process Yt is slowly moving around Y0 = 0.3. This initial value is particularly
chosen so that the driving volatility process

√
Y t is close to the effective volatility σ̄ =

√
θ when

0 ≤ t � ε. Therefore, one can apply regular perturbation argument to explain the accuracy of the
option price approximation and the variance reduction effect. Both singular and regular perturbation
analysis can be found in [12].

3.4 Generic Two-Factor SV Model

In this section, we will compare efficiencies for pricing European call option using control variates
technique developed in the previous section, combined with Monte Carlo and quasi-Monte Carlo
methods.

We assume that the underlying asset S is given by (1). In our computations, we use C++
on Unix as our programming language. The pseudo random number generator we used is ran2() in
[26]. In our comparisons, the sample sizes for MC method are 10240, 20480, 40960, 81920, 163840,
and 327680, respectively; and those for Sobol’ sequence related methods are 1024, 2048, 4096, 8192,
16384, and 32768, respectively, each with 10 random shifts; and the sample sizes for L’Ecuyer’s type
lattice rule points (LTLRP for short) related methods are 1021, 2039, 4093, 8191, 16381, and 32749,
respectively, and again, each with 10 random shifts.

In the following examples, we divide the time interval [0, T ] into m = 128 subintervals. In Table
2, the first column labeled as N indicates the number of Monte Carlo simulations or the Quasi-Monte
Carlo points. The second column labeled as MC indicates the option price estimates (standard errors
in the parenthesis) based on the basic MC estimator (16). All rest columns record variance reduction
ratios between many specific MC/QMC methods and the basic MC estimates. For example, the third
column labeled as MC+CV indicates the variance reduction ratios as the squares of the standard
errors in the second column versus the standard errors obtained from the martingale control variate
estimation (23). The fourth column labeled as Sobol’ indicates the variance reduction rations as the
squares of the standard errors in the second column versus the sandard errors obtained from the
estimation (16) by randomized Sobol’ sequence.
As an example we consider a European call option with payoff H(ST ) = max(ST −K, 0) = (ST −K)+,
where K is the strike price. We take input variables and parameters as follows: S0 = $55, K = $50, r =
0.1 = 10%, T = 1 year, m1 = m2 = −0.8, ν1 = 0.5, ν2 = 0.8, ρ1 = ρ2 = −0.2, ρ12 = 0.0, y0 = z0 =
−1.0, where we specify driving volatility processes as c1(y) = m1 − y, c2(z) = m2 − z,Λ1(y, z) =
Λ2(y, z) = 0, g1(y) = ν1, g2(z) = ν2. For ε and δ, we take ε = 1/50, δ = 0.5. The results are listed
in Tables 2 and 3, where MC+CV stands for Monte Carlo method using control variate technique,
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Table 4: Comparison of simulated European call option prices and their standard errors for different
time scale ε in (28). Let “MC price” denote the sample mean obtained from the basic Monte Carlo
simulation; “ MC+ CV price” denote the sample mean obtained from the Monte Carlo simulation
using martingale control variates. Their standard errors are shown in parenthesis next to the option
price estimates. Let V MC denote the sample variance obtained from the basic Monte Carlo method,
and V MC+CV (PBS(σ̄)) denote the sample variance computed from the martingale control variates
method with the option price approximation PBS(σ̄) in (31).

ε MC price (std err) MC+CV price (std err) V MC/V MC+CV (PBS(σ̄))
1/50 7.0771 (0.1080) 7.0883 (0.0064) 287
1/25 6.9862 (0.1072) 7.0646 (0.0069) 244
1/10 7.1530 (0.1085) 7.0466 (0.0079) 187

1 7.1588 (0.1065) 7.0244 (0.0096) 122
5 7.0064 (0.1059) 7.0236 (0.0092) 132
10 7.0785 (0.1090) 7.0577 (0.0080) 185
25 7.1145 (0.1101) 7.0729 (0.0068) 266
50 6.9737 (0.1095) 7.0737 (0.0063) 298

Sobol+BB means the quasi-Monte Carlo method using Sobol’ sequence with Brownian bridge sampling
technique, LTLRP for QMC method using L’Ecuyer type lattice rule points, etc.

Table 5: Comparison of simulated European call option values and variance reduction ratios for
ε = 1/50, δ = 0.5

N MC MC+CV Sobol’ Sobol+CV Sobol+BB Sobol+CV+BB
1024 11.839(0.126) 45.8 5.0 339.3 2.6 129.3
2048 11.837(0.090) 48.0 2.3 304.8 4.0 138.4
4096 11.862(0.064) 48.4 1.8 124.8 2.5 158.4
8192 11.804(0.045) 47.4 2.3 124.0 2.9 148.4
16384 11.816(0.032) 47.1 1.4 176.1 7.7 115.5
32768 11.857(0.022) 48.1 1.7 235.9 4.5 479.9

Table 5: Comparison of simulated European call option values and variance reduction ratios for
ε = 1/50, δ = 0.5 (continued).

N LTLRP LTLRP+CV LTLRP+BB LTLRP+CV+BB
1021 2.0 75.5 7.3 687.9
2039 3.1 135.1 7.0 298.5
4093 3.1 143.9 2.2 140.1
8191 4.2 347.8 4.9 286.0
16381 3.1 227.9 7.8 94.8
32749 6.4 728.7 15.1 741.6

Table 6: Comparison of time (in seconds) used in the simulation of the above European option
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N MC MC+CV Sobol’ Sobol+CV Sobol+BB Sobol+CV+BB
1024 7 10 7 9 7 12
2048 13 19 13 17 13 18
4096 26 40 26 35 28 39
8192 54 82 56 70 56 78
16384 109 167 107 139 107 157
32768 225 316 222 301 218 318

Table 6: Comparison of time (in seconds) used in simulation of the above European option
(continued).

N LGLP LGLP+CV LGLP+BB LGLP+CV+BB
1021 5 9 7 11
2039 11 17 13 21
4093 24 34 27 40
8191 45 72 56 78
16381 90 167 106 160
32749 184 293 219 311

From Table 5, we observed the following facts. Using the control variate technique, the vari-
ance reduction ratios are around 48 for pseudo-random sequences. Without control variate, both
Sobol’ sequence and L’Ecuyer type lattice rule points, even combined with Brownian bridge sampling
technique, the variance reduction ratios are only a few times better than the MC sampling at most.
However, when combined with control variate, the variance reduction ratios for the Sobol’ sequence
vary from about 124 to 339 for Sobol’+CV and from 115 to 480 for Sobol’+CV+BB; and the variance
reduction ratios for the L’Ecuyer type lattice rule points range from about 75 to 729 for LTLRP+CV
and from 94 to 742 for LTLRP+CV+BB. This implicitly indicates that the new controlled payoff
e−rT (ST −K)+−M0(PBS) is smoother than the original call payoff e−rT (ST −K)+. It can be easily
seen that under the Black-Scholes model with the constant volatility σ, the controlled payoff is exactly
equal to the Black-Scholes option price PBS(0, S0;σ), which is a constant so as a smooth function;
while the original call payoff function is only continuous and even not differentible.
Another interesting observation is that the variance reduction ratios do not always increase when
the two low-discrepancy sequences are combined with control variate and Brownian bridge sampling,
compared with when they are combined with control variate without Brownian bridge sampling.

Regarding time used in simulations, from Table 6 we observed that the time differences among
methods without control variates are not significant, but the time differences between methods with
and without control variates are not ignorable. Similar conclusions are true regarding time used in
simulations for other cases.

4 Delta Estimation

Estimating the sensitivity of option prices over state variables and model parameters are important for
risk management. In this section we consider only the first-order partial derivative of option price with
respect to the underlying risk asset price, namely delta. We adopt (1) pathwise differentiation with
control variate method or importance sampling, and (2) central difference approximation to formula
our problems. As in previous sections, we can construct martingale control variates for Monte Carlo
simulations and a combination of martingale control variates with Sobol sequence in randomized QMC
method.
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By pathwise differentiation (see [14] for instance), the chain rule can be applied to the payoff (ST−K)+

in (15) so that

∂P ε,δ

∂S0

(0, S0, Y0, Z0) = IE?

{
e−rT I{ST>K}

∂ST
∂S0

| S0, Y0, Z0

}
is obtained. Since

e−rT
∂ST
∂S0

= e
R T
0 σtdW

(0)∗
t − 1

2

R T
0 σ2

t dt (33)

is an exponential martingale, one can construct a IP ?-equivalent probability measure P̃ by Girsanov
Theorem. As a result, under the new measure P̃ the delta ∂P ε,δ

∂S0
(0, S0, Y0, Z0) has a probabilistic

representation of the digital-type option

P ε,δ
D (0, S0, Y0, Z0) :=

∂P ε,δ

∂S0

(0, S0, Y0, Z0) = Ẽ
{
I{ST>K} | S0, Y0, Z0

}
, (34)

where the dynamics of St must follow

dSt =
(
r + σ2

t

)
Stdt+ σtStdW̃

(0)
t , (35)

with W̃ (0) being a standard Brownian motion under P̃ . The dynamics of Yt and Zt will change according
to the drift change of W

(0)
t .

Remark: When volatility is constant, denoted by σ, then it is easy to derive a closed-form solution

PD := E {I(ST > K)|S0 = x} = N (d), where d =
ln(S0/K)+

“
r+σ2

2

”
T

σ
√
T

.

4.1 Martingale Control Variate Method

Following the same argument of option price approximation, or see Appendix in [8], the digital call op-
tion P ε,δ

D (0, S0, Y0, Z0) admits the homogenized approximation P̄D(S̄0, Z0) := Ē
{
I{S̄T>K} | S̄0 = S0, Z0

}
,

where the “homogenized” stock price S̄t satisfies

dS̄t =
(
r + σ̄2(Zt)

)
S̄tdt+ σ̄(Zt)S̄tdW̄

(0)
t

with W̄
(0)
t being a standard Brownian motion [11]. In fact, the homogenized approximation Ē

{
I{S̄T>K} | S̄t, Zt

}
is a probabilistic representation of the homogenized “delta”, ∂PBS

∂x
, where PBS defined in Section ??.

The martingale control for the digital call option price (34) can be constructed as in Section ?? so
that similar martingale control variate estimator is obtained as

1

N

N∑
k=1

[
In
S

(k)
T >K

o −M(k)(P̄D, T )

]
. (36)

Numerical results of variance reduction by MC/QMC to estimate delta can be found in Table 7. All
model parameters, initial conditions and mean-reverting rates are chosen the same in previous section
except r = 0.05;σt = exp((Yt+Zt)/2)). The number of time discretization is 100 and the total number
of replications is 10,000.

Table 7: Comparison of variance reduction ratios to estimate the ∆ of an European call option by
martingale control variate method and Importance Sampling method
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K MC MC+CV Sobol Sobol+CV MC+IS Sobol + IS
20 0.9909 (0.00094964) 4.0442 1.0456 3.5274 8.2146 8.7948
50 0.7178 (0.0045) 7.3590 1.0072 7.4577 2.2454 2.2603
100 0.1698 (0.0038) 6.0083 1.0066 5.7454 2.5965 2.4808
200 0.0076 (0.000868) 3.1060 0.9174 3.8311 5.222 4.6259
300 0.0008 (0.000283) 3.1461 0.8183 4.6609 6.4951 4.4322

4.2 Importance Sampling Method

As seen from the derivation in (34), the delta of a European option is a probability such as a default
or survival probability. There have been some extensive studies on estimating these probabilities by
importance sampling techniques particularly in the presence of rare events. See references [5, 14] for
possible techniques and theories to handle these problems.

The basic idea of an “efficient” importance sampling is the following:
(1) apply the change of measure to construct a unbiased estimator under the new probability measure,
so that a rare event under the original probability measure is no longer rare under the new measure,
(2) the second moment of the new estimator has certain optimal property, i.e., in some scaling regime,
the square of the probability is at the same order of the second moment. Next we introduce the
efficient importance sampling method, developed by Han and Vestal [15], which is applicable for
problems related to credit risk.

Consider a change of measure for the prominent Brownian motion

P ε,δ
D (0, S0, Y0, Z0) = Ê {I (ST > K) QT |S0, Y0, Z0} , (37)

where QT = exp
(
h ŴT − h2/2T

)
is a particularly chosen Radon-Nykodymn derivative. In general

the exponent should be in integral form, but we choose the integrand h = log(S0/K)+(r+σ̄2)T
σ̄ T

as an

effective drift-change parameter so that Ŵ
(0)
t = W

(0)
t + h t is a standard Brownian motion under the

new probability measure. For detailed properties such as asymptotic analysis can be found in [15].
According to (37), the importance sampling estimator is defined by

1

N

N∑
k=1

I
(
S

(k)
T > K

)
Q

(k)
T , (38)

where the underlying risky-asset process is governed by

dSt =
(
r + σ2

t − σt h
)
Stdt+ σtStdŴ

(0)
t ,

and the driving volatility processes should be changed correspondingly. Note that if the probability of
the event ST > K is not rare, we can consider its complement, estimate E {I(ST < K)} , then subtract
it by 1 in order to obtain better performance in variance reduction.

4.3 Central Difference Method

Another way to approximate the delta is by central difference. A small increment ∆S > 0 is chosen to
discretize the partial derivative by

P ε,δ
D =

∂P ε,δ

∂S0

≈ P ε,δ(0, S0 + ∆S/2, Y0, Z0)− P ε,δ(0, S0 −∆S/2, Y0, Z0)

∆S

.
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Each European option price corresponding to different initial stock price S0 + ∆S/2 and S0 − ∆S/2
respectively is computed by the martingale control variate method with MC/QMC. Numerical results
of variance reduction by MC/QMC to estimate delta can be found in Table 9.

Table 8: Comparison of variance reduction ratios to approximate the ∆ of an European call option by
Central Difference Scheme

N MC MC+CV Sobol Sobol+CV
1024 0.8490(0.00507) 15.8 2.6 25.7
2048 0.8354(0.00357) 14.7 1.8 7.9
4096 0.8378(0.00253) 14.7 2.8 21.6
8192 0.8355(0.00179) 14.9 5.5 13.6
16384 0.8381(0.00126) 14.7 4.8 19.4
32768 0.8384(0.00090) 14.7 2.8 15.2

In summary, unlike the European call option cases, QMC method doesn’t make a great benefit in
variance reduction in both pathwise differentiation and central difference approximation. This is
because the regularity of the delta function is worse than the call function. In contrast, the importance
sampling methods can be useful for estimating delta, particularly in the case of rare events, e.g. small
of large K. Because the digital payoff is not even continuous, we see that combing our importance
sampling estimator with QMC doesn’t provide better performance in variance reduction.

Regarding to the computing time in our numerical experiments, the importance sampling estimator
(38) takes about half of the martingale control variate (36). This is because the martingale control
M(PBS;T ) is a pathwise control, which requires a series of (approximate) deltas to integrate along
each simulated price trajectory. But the only unknown parameter h within QT of (38) is determined
a priori so that the computing time of our importance sampling estimator is much less and actually
comparable with the basic Monte Carlo estimator.

5 Conclusion

Using (randomized) QMC methods to estimate high dimensional problems of option pricing may not
be effective as shown in many examples presented. Based on the delta hedging strategy in trading
financial derivatives, the value process of a hedging portfolio is considered as a martingale control in
order to reduce the risk (replication error) of traded derivatives. For MC/QMC methods the role of
the martingale control is a smoother so that significant variance reduction ratios can be obtained. We
give an explanation of the effect of the smoother under a perturbed volatility model. When the payoff
function degenerates such as the delta estimation problem, the performance of the martingale control
variate method decreases as well. An alternative importance sampling method is proposed to gain
significant variance reduction when the event estimated is rare.
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