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Abstract

Extreme value methods are widely used in financial applications such as risk analysis, forecasting and pricing models. One of the
challenges with their application in finance is accounting for the temporal dependence between the observations, for example the
stylised fact that financial time series exhibit volatility clustering. Various approaches have been proposed to capture the dependence.
Commonly a two-stage approach is taken, where the volatility dependence is removed using a volatility model like a GARCH (or one
of its many incarnations) followed by application of standard extreme value models to the assumed independent residual innovations.

This study examines an alternative one stage approach, which makes parameter estimation and accounting for the associated
uncertainties more straightforward than the two-stage approach. The location and scale parameters of the extreme value distribution
are defined to follow a conditional autoregressive heteroscedasticity process. Essentially, the model implements GARCH volatility
via the extreme value model parameters. Bayesian inference is used and implemented via Markov chain Monte Carlo, to permit all
sources of uncertainty to be accounted for. The model is applied to both simulated and empirical data to demonstrate performance
in extrapolating the extreme quantiles and quantifying the associated uncertainty.
© 2010 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Modelling the tails of distributions is important in many fields, such as environmental sciences, hydrology, insurance,
finance where the risk of unusually large or small events are of interest. Extreme value theory considers the distributional
behaviour of the extremes of random variables, towards extrapolating the stochastic dynamics of a process to states
with small chances of realization and typically beyond the range of observed data. It is always challenging to justify
the form of extreme models and to estimate parameters due to the inherent sparsity of observations in the tails. Hence,
asymptotically justified parametric models are typically used to represent the data generating process, which can
provide the reliable extrapolations required in such applications.
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The generalised extreme value (GEV) distribution is one such asymptotically justified model used to describe the
limiting distribution of the maximum or minimum of a sequence of independent and identically distributed random
variables. Under certain conditions [4], which include short range dependence between the observations, the distribution
of the maximum or minimum remains within the same GEV distribution family. However, these results are not
necessarily helpful in describing the detailed form of the dependence and cannot always describe all the impacts of the
dependence on inferences for tail related measures. Financial data is well known to exhibit heavy tails and extreme
value theory has been shown to be a very useful tool in estimating and predicting the extremal behaviour of actuarial
and financial products, such as predicting the largest claim in insurance and the Value at Risk (VaR), see [11]. However,
applying extreme value models is not always straightforward because of dependence and/or nonstationary behaviour.
For example, financial returns typically show clusters of observations in the tails, often termed volatility clustering.

There are three common approaches to account for the impact of dependence on inferences. One of these approaches
is to decluster the dependent extremes and then apply standard extreme models to the non-dependent sequence using
statistical declustering algorithms, see [12] for recent developments. Peaks-over-threshold (POT) is one such declus-
tering approach, see [10]. A second common approach is to apply standard extreme value models, but adjust the
uncertainty estimates for the dependence using techniques like block bootstrapping, see [7]. However, the substantial
drawback with both these approaches is although they do not usually provide additional understanding of the dynamics
of the dependence structure.

A common (two-stage) approach in the finance literature (see [17,8,23]) is to capture the dependence in the returns
induced by the volatility clustering using a generalised autoregressive conditional heteroscedastic (GARCH) type
model (see [5] and excellent glossary of ARCH/GARCH variants in [6] and references therein), followed by extreme
value modelling of the approximately independent residual innovations. This approach overcomes the dependence in
the extremes and explicitly captures the dependence structure itself, allowing further insight to be gained. The principal
drawback with this approach is that accounting for the uncertainties associated with both stages is not straightforward.

In this paper, we explicitly model the dependence behaviour of extremes via time-varying extreme value parameters.
We have amalgamated the GARCH model, which is widely used to model dependence in the volatility of financial
time series (see [5]), with the classical GEV model. Specifically, we consider a conditional GEV distribution with the
specification that the extreme value sequence (maxima or minima) following an autoregressive process with a GARCH-
type conditional variance structure. The dependence is captured by appropriate temporal dependence structure in the
location and scale parameters of the GEV. The combination of GEV and GARCH models is shown to be better
suited to explain the extreme quantiles than the classic GARCH model alone, which cannot capture the tail behaviour
adequately with either normally distributed or even fatter tailed distributed (e.g. t) innovations as suggested by [17].
Also, an important benefit of our approach is that it is a one stage model and thus making inferences and accounting
for all uncertainties much easier.

Section 2 gives the review of classical GEV model for stationary sequences. The proposed GEV-GARCH model is
outlined in Section 3. The estimation method of proposed model is discussed in Section 4. This study examines the
dynamics of the maximum and minimum value of intra-day financial returns with focus on explaining the extremal
quantiles, which can be useful in the control of risk. The study has been conducted with both simulated and real data,
the results of which are presented in Sections 5 and 6. Further results on an extension to our approach considered by
[3] are provided in Section 7, which considers what happens when the shape parameter of the GEV is also permitted
to vary according to a GARCH-type structure. It is demonstrated that model identification is very challenging if the
GEV shape parameter is allowed to vary over time in such a manner, as one might expect, due to the inherent difficulty
in estimating this parameter because of the lack of information in the tails. Conclusions follow in Section 8.

2. Generalised extreme value distribution

The generalised extreme value distribution (GEV) is an asymptotically motivated model for describing the dis-
tribution of the maxima and minima of a realized sequence of independent random variables having the distribution
function:

G(x|ξ, σ, μ) = exp

{
−

[
1 + ξ

(
x − μ

σ

)]−1/ξ
}

where 1 + ξ(x − μ)/σ > 0 (1)
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The GEV model has three parameters: the shape ξ, scale σ > 0 and location μ. The density of GEV is defined as

g(x|ξ, σ, μ) = 1

σ
G(x|ξ, σ, μ)

[
1 + ξ

(
x − μ

σ

)]−(1+1/ξ)

where 1 + ξ(x − μ)/σ > 0 (2)

The GEV model can represent three types of tail behaviour determined by the value of shape parameter ξ: Gumbel
type (exponentially decay, like upper tail of normal distribution) which is defined in the limit as ξ → 0, Fréchet type
(heavier than an exponential) tail (ξ > 0) and the Weibull type (bounded) tail (ξ < 0). Classical extreme value theory
shows that, if a limiting distribution for the maxima/minima of a sequence of independent and identically distributed
random variables exists, then it must fall into one of these three types.

3. GEV-GARCH model

The proposed model assumes that the observations come from the GEV distribution following an AR(1)-
GARCH(1,1) process which describes the conditional variance of extremes. Therefore, the distribution function of the
observation xt can be written as:

xt∼GEV (ξ, σt, μt) (3)

G(xt|ξ, σt, μt) = exp

{
−

[
1 + ξ

(
xt − μt

σt

)]−1/ξ
}

,

where σt > 0 and 1 + ξ(xt − μt)/σt > 0, with conditional dependence:

xt = β0 + β1xt−1 + εt

σ2
t = α0 + α1σ

2
t−1 + α2ε

2
t−1

εt−1 = xt−1 − μt−1

where |β1| < 1,α0 > 0,α1 > 0,α2 > 0, and α1 + α2 < 1 to ensure stationarity. As previously stated, it is typically unrealistic
to model ξ as a function of time, due to this parameter requiring very large amounts of the data to get reliable estimates.
Therefore the shape parameter ξ, as supported by empirical evidence, is constant. A simulation study in Section 7 will
show model identification and estimation problems associated with a time-varying shape parameter, as was proposed
in related work by [3].

The assumed GARCH process in the above model exhibits symmetry in how the scale of the GEV distribution (and
therefore variance of the returns) responds to both negative and positive shocks, due to the use of ε2

t−1. In the IBM
example considered in the application below there was only marginal evidence for asymmetric effects and hence a
symmetric model (which is commonplace in the literature) was adopted. In general, however we would expect that if
the intra-day returns for a particular stock or index behave asymmetrically in terms of their volatility response to the
negative and positive shocks that this would be shown strongly in the tails. It is straightforward to extend the above
specification to other GARCH-type formulations with asymmetry in the volatility response to negative or positive
shocks, e.g. GJR-GARCH, EGARCH or QGARCH [14,19,20]. General discussion of asymmetric and symmetric
effects are provided by [15,2,22,16] and catalogue of ARCH/GARCH-type models by [6]. Comparison of the model fit
between the symmetric and asymmetric volatility models would also allow evaluation (and potentially formal testing)
of the evidence for asymmetry in the shock effects.

The expected value and variance of xt are:

E(xt) = μt + σt(τ(1 − ξ) − 1)

ξ
, ξ < 1 (4)

Var(xt) = σ2
t (τ(1 − 2ξ) − τ2(1 − ξ)), ξ < 0.5, (5)

where outside of the ranges for the shape ξ the moments are infinite.
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4. Bayesian inference

Bayesian inference is used for fitting the GEV-GARCH model as we can potentially take advantage of any expert
prior information, which can be important in tail estimation due to the inherent sparsity of extremal data, and to account
for all uncertainties in the estimation. Although, in this study we have deliberately used diffuse priors, to show our
lack or prior information allowing the data to speak for themselves which demonstrates the worst case for estimation
performance. Markov chain Monte Carlo (MCMC) has been used to obtain posterior distributions.

4.1. Prior distributions

The parameter vector θ = (ξ, α0, α1, α2, β0, β1) can be decomposed into two components θa = (ξ, β0) which are
defined over the whole real line and θb = (α0, α1, α2, β1) which are bounded. We use a normal prior on θa and a flat
prior on θb, to indicate little prior information, giving:

π(θa) ∝ exp

{
−1

2

(
θa − μθa

σθa

)2
}

π(θb) ∝ I(θb)

where μθa and σθa are the location and standard deviation. I(θb) is an indicator function which will reflect the constraints
on the parameters defined in Section 3.

4.2. Posterior distribution

Given xt ∼ GEV(ξ, σt, μt) and the density of GEV given in Eq. (2), the posterior is given by:

p(θ|x) ∝
T∏

t=1

g(xt|ξ, σt, μt) × exp

{
−1

2

(
θ1 − μθa

σθa

)2
}

× I(θb) (6)

A random walk Metropolis-Hastings algorithm has been used to sample the posteriors, as it has the advantage of being
free of functional form since the posterior distribution function is not a proper probability function. MCMC has been
used to update component by component, in order of importance of the parameters. Since the shape parameter is the
most important it is updated first. The rest of the components are updated as follows: ξ, α0, α1, α2, β0 and β1. The
parameter restrictions within θb are enforced during the sampling procedure by rejecting the draws that violate them.
The stationarity constraints, |β1| < 1, α1 + α2 < 1 and constraint on range of support of the GEV 1 + ξ(xt − μ)/σt > 0 is
also imposed. The convergence of the final chain is checked by monitoring the marginal distributions of the parameters
obtained from parallel chains, see [13].

5. Model performance assessment by simulation

We first check the stability of the parameter estimation method using simulated data. Three different parameter sets
were considered, with 100 simulated series for each parameter set using the sample size of 2500, which is of similar
length to the application in the following section. The first parameter vector set considered is close to those found for
the application in Section 6. The second parameter set uses a high coefficient of the lag variance term, α1, and the
third parameter use a relative lower value compared to the first set. The different shape parameter values used for these
three sets are to identify the model features for heavier tails. Only positive shape parameters are considered as negative
shape parameters are typically not observed in financial data. The priors were defined as to be very diffuse: ξ ∼ N(0.1,
0.15), α0 ∼ U(0, 0.2), α1 ∼ U(0.30, 0.99), α2 ∼ U(0, 0.5), β0 ∼ N(0, 0.3), β1 ∼ U(0, 0.5), indicating out lack of prior
knowledge of these parameters. Fig. 1 describes the posterior distribution of a simulated sample with parameter θ2
given in Table 1 as an example. The estimated parameter value (posterior mean) and true parameter are consistent for
all parameters and the true parameter value are all contained by the credible interval of posteriors (95% highest density
interval of posteriors). The difference between true parameter value and estimated value is due to sample variability.
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Fig. 1. Posterior distribution of parameters for simulated sample with θ2 in Table 1. The solid line indicate the true parameter values and the dashed
line represent the mean of posteriors over the credible interval, which is denoted by dotted lines.

Table 1 summarizes the results for all the simulated data. The expected posterior predictive estimates are very
close to the true values (indicating low bias) and the sample variation are small. Generally, the root mean square error
(RMSE) for ξ and α1 (the coefficient of lag 1 term on the scale parameter) are higher than others, as expected, since
they are the most difficult parameters to estimate. It is interesting to note that as the shape parameter value increases,
the RMSE falls.

The expected variance of extreme values has been calculated according to Eq. (4) and the extreme volatility is
defined as the square root of the expected variance. The volatilities from the GEV-GARCH are very close to that from a
pure GARCH (AR(1)-GARCH(1,1)) for the simulated data samples, as shown in the simulated example in Fig. 2. This
graph demonstrates the empirical consistency of the GARCH structure on the GEV parameters with the traditional
GARCH variance estimates.

The similarity of the two volatility sequences in Fig. 2 induces the question of what is the added value of the
proposed GEV-GARCH model with respect to GARCH model alone? The GARCH is traditionally combined with
a normal distribution for the innovations. The GEV-GARCH can better capture the extreme quantiles by combining

Table 1
Results of fitting GEV-GARCH to 100 simulated datasets (with sample size of 2500). For each individual sample, the estimated parameter value
is the mean of 95% highest density interval (HPD) of the posterior samples. The estimated parameter value reported as the mean value over 100
samples and the RMSE is also provided.

θ1 TRUE Estim. RMSE θ2 TRUE Estim. RMSE θ3 TRUE Estim. RMSE

ξ 0.08 0.072 0.024 ξ 0.2 0.201 0.016 ξ 0.3 0.2970 0.017
α0 0.01 0.009 0.002 α0 0.01 0.010 0.002 α0 0.05 0.051 0.004
α1 0.45 0.480 0.082 α1 0.80 0.793 0.038 α1 0.50 0.498 0.019
α2 0.08 0.078 0.013 α2 0.02 0.021 0.004 α2 0.10 0.099 0.009
β0 0.21 0.210 0.007 β0 0.01 0.010 0.006 β0 0.05 0.051 0.011
β1 0.32 0.321 0.016 β1 0.10 0.101 0.012 β1 0.20 0.201 0.015
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Fig. 2. Volatilities of a single simulated dataset with θ2 in Table 1. The solid line represents the volatilities from GEV-GARCH model and the dashed
line represents the volatilities from the GARCH (with normal innovations) model.

the flexible extreme value tail behaviour and the conditional variance process. Further, the one stage approach ensures
it much easier to account for uncertainties due to the volatility estimation which is more complex for the traditional
two-stage approach. Fig. 3 plots the sequence of estimated quantiles using both the GEV-GARCH and GARCH (with
assumed normally distributed innovations) models, along with the actual observations for this particular sample. It is
clear that the 95% quantile estimates from the GEV-GARCH model has a better coverage rate of the extreme values
than the corresponding GARCH quantiles, since the positive shape indicates a heavy tail from normal distribution
typically assumed when using the GARCH.

The second part of our simulation study compares the GEV-GARCH to other commonly used estimators. We
compare the proposed GEV-GARCH model, to the two-stage model approach of [17] and a pure GARCH model (with
normal innovations) to assess the general performance in terms of explaining the extreme quantiles. In the second stage
of the [17] approach, they consider only the upper tail of the innovation distribution which can be effectively modelled
using a generalised Pareto distribution (GPD), which can be derived as a tail expansion of the GEV distribution outlined

Fig. 3. Simulated sample with θ2 in Table 1 with 95% quantiles estimates from GEV-GARCH and GARCH (with normal innovations). The dots
indicate the simulated data points. The solid line represents the quantiles from GEV-GARCH model and the dashed line represents the quantiles
from GARCH model (with normal innovations).
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Table 2
RMSE of quantile estimates from 100 simulated datasets of length 2500, using the parameter sets defined in Table 1.

Quantiles 0.9 0.95 0.99 0.999

GEV-GARCH 0.0298 0.0406 0.0688 0.1214
θ1 GARCH-GPD 0.0340 0.0471 0.0824 0.1430

GARCH 0.0339 0.0855 0.2913 0.7257

GEV-GARCH 0.0520 0.0760 0.1540 0.3630
θ2 GARCH-GPD 0.1154 0.1639 0.3051 0.6110

GARCH 0.1347 0.1862 0.7951 2.5168

GEV-GARCH 0.0372 0.0560 0.1701 0.6891

θ3 GARCH-GPD 0.2585 0.3338 1.1061 5.1489
GARCH 0.2238 0.7266 3.4622 12.0951

above. The excesses above some suitably high threshold u can be shown to be well approximated by the GPD with
distribution function given by:

F (x|ξ, σ, u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − ηu

[
1 + ξ

(
x − u

σ

)]−1/ξ

ξ /= 0

1 − ηu exp

(
−x − u

σ

)
ξ = 0

(7)

where ηu = P(x > u) is the probability of exceeding the threshold u and 1 + ξ
(

x−u
σ

)
> 0. The maximum likelihood

estimate of ηu is the sample proportion. We will refer to the two-stage estimates as the GARCH-GPD.
[17] use maximum likelihood estimation when fitting the GPD to the upper tail, whereas we use Bayesian inference

(except for ηu which is well estimated using the sample proportion) for direct comparison to the GEV-GARCH. The
threshold choice can be problematic for GPD (see [18,21,24]), however discussion of these issues is beyond the scope
of the paper. We simply chose to use the upper 25% of the data. A sensitivity analysis was carried out to assess this
prechosen threshold, which showed no spurious artefacts were introduced. We carried out a complete simulation study
with 100 simulated datasets for each parameter set mentioned in Table 1, the full results of which are available upon
request or [24]. The key results are shown in Table 2, which compares the RMSE of the quantile estimates based on
the three different models.

In Table 2 the RMSE for all three models increases with the quantile as expected, due to the reduced information
in the tails. The data is simulated from the GEV-GARCH model, so it is expected that this model will have the
lowest RMSE, as observed in Table 2. Notice that the GEV-GARCH and GARCH-GPD have similar RMSE and both
outperform the standard GARCH. These results show that the commonly used two-stage approach of [17] and our
proposed approach have similar performance for estimating high quantiles. However, our approach has an important
benefit that it is a one stage model which simplifies the parameter estimation and makes it easier to account for all
sources of uncertainty, which is much more challenging in the two stage approach. All the other simulated samples
have similar results. These results suggest that the GEV-GARCH should be preferred if the interest is in modelling or
predicting extremes with conditional variance.

6. Empirical results with financial returns

A similar conditional extreme value model based on high frequency returns which allows all three parameters of
GEV distribution to vary over time is developed by [3]. Their study applies the model to daily 5 min maximum returns
of stock index to compare the relative performance of with GARCH and implied volatility (VIX) in forecasts of realized
volatility. We will return to assess the performance of their approach in Section 7. In our study, the GEV-GARCH
model is also applied to daily 5 min maximum of individual stock returns. The dataset used in this section includes all
intra-day quotes of IBM and the period is from January 3, 1994 to December 31, 2003, leaving a total of 2540 days.
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Table 3
Mean of posterior parameter estimates for 5 min returns of IBM. Note: the CI is the 95% highest posterior credible interval of the posterior.

θ Estimated value CI

Low High

ξ 0.076 0.048 0.104
α0 0.006 0.004 0.007
α1 0.453 0.309 0.598
α2 0.083 0.055 0.113
β0 0.207 0.193 0.221
β1 0.32 0.286 0.356

Followed by [1], we use two time scales to construct 5 min log return to minimize the microstructure noise and the
daily maxima of them is used in the following analysis.

The estimated parameter values for the stock returns are very similar to the simulation results of θ1 reported in the
previous section. Table 3 reports the parameter estimates for the IBM daily 5 min maximum returns and 95% credible
interval of the posterior obtained using MCMC. The GARCH coefficient α1 is less than 0.5. The similarity of GEV-
GARCH volatilities and GARCH volatilities is shown in Fig. 4, indicating that the GEV-GARCH model has captured
the volatility clustering via imposing a time-varying scale parameter. When the quantile estimates are of concern
as Fig. 5, the GEV-GARCH expected quantile (of 95%) has a better coverage rate than the GARCH (with normal
innovations) due to its flexibility in capturing the heavy tail behaviour. Also we can expect a even larger difference
between two quantile estimators when compare higher quantiles since the tail quantile distributions are more skewed
with higher variation at higher quantiles which is showing the asymmetry in the information (and lack of information)
in estimating higher quantiles.

7. Exploration of time-varying shape parameter

In the proposed GEV-GARCH model, the shape parameter of the GEV distribution is constant in time. The shape
parameter is well known to be difficult to estimate requiring very large datasets to get reliable estimates, see [9]. Further,
it is unclear whether it is physically meaningful to allow the shape to rapidly vary in time, as it is driven by market
trading behaviour. [3] consider an extension of the GEV, where they also the shape parameter to vary in time according

Fig. 4. Volatilities of IBM return (5 min maximum). The solid line represents the volatilities from GEV-GARCH model and the dashed line represents
the volatilities from the GARCH model (with normal innovations).
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Fig. 5. Estimated 95% quantiles of IBM returns (5 min maximum). The solid line represents the quantiles from GEV-GARCH model and the dashed
line represents the quantiles from the GARCH model (with normal innovations).

to a GARCH-type structure namely:

Mt∼G(ξt, σt, μt)

μt = μ0 + φMt−1

σt = σ0 + λ1σt−1 + λ2|εt−1|
ξt = ξ0 + γ1ξt−1 + γ2|εt−1|

where Mt denote the block maxima/minima and εt−1 = Mt−1 − μt−1.
In attempting to compare our approach to that of [3] we attempted a simulation study, which frequently failed due

to problems of identifiability of the shape parameter. Fig. 6 gives the profile likelihoods plot for the two shape related
parameters when applying the model of [3] to the real IBM returns above as an example. You will notice that the profile
likelihood has multiple modes, which would clearly cause problems for standard numerical optimization procedures
used for likelihood maximisation, and is also generally very flat which is indicative model identifiability problems
when the shape parameter is permitted vary in time in such dynamic manner.

Fig. 6. Profile likelihood for shape related parameters of Bali and Weinbaum [3] model for IBM stock returns.
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8. Discussions and conclusions

We have proposed a new extreme value model for dynamic estimation of extremal quantiles. To capture the temporal
dependence typically observed in financial applications, that of volatility clustering, the scale and location parame-
ters of the generalised extreme value distribution (GEV) have been defined to exhibit a conditional autoregressive
heteroscedastic type structure. Arguably the most commonly used approach in the finance literature to overcome this
temporal dependence is the two-stage approach of [17], where the volatility dependence is captured by a GARCH
model [5] followed by applying standard extreme value modelling approach to the approximately independent residual
innovations. The proposed approach overcomes the challenges associated with uncertainty estimation in this two-stage
approach, and also avoids the problems associated with threshold determination.

A simulation study and real data application have been used to demonstrate the performance of the GEV-GARCH in
capturing the dynamic of conditional variance of extremes and to model the tail behaviour of the underlying variables.
The GEV-GARCH performance in estimating the conditional variance is compared to the standard GARCH model
with normal residual innovations, and is shown to provide estimates with much smaller RMSE. The performance in
estimating the extremal quantiles is compared the two-stage approach of [17] and standard GARCH approach with
normal residual innovations. The proposed model is shown to outperform the standard GARCH for estimating the tail
quantiles, due to flexibility of the extreme value distribution for capturing the heavy tail behaviour typically observed in
financial times series. The GEV-GARCH provides similar performance to the two-stage approach where the generalised
Pareto distribution is used to describe the tail of the innovation distribution, but has an important benefit in that it is a
one stage procedure, thus making parameter estimation and accounting for the uncertainties more straightforward.

Further results demonstrate model identification and parameter estimation complications when permitting a time-
varying shape parameter with a similar GARCH structure, as proposed by [3]. The shape parameter is known to be
challenging to estimate requiring very large sample sizes, see [9]. It is possible that the real structure of shape could
change over time, for example if the market structure changes. However, it is clear in the results presented that model
identification is problematic if the tail behaviour changes according to a GARCH-type structure. Further work could
investigate a smoothly varying or structural break type model for the shape parameter if there is believed to be some
form of change in market trading behaviour.
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