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Abstract

In this article we compare the mean-square stability properties of the θ-Maruyama and
θ-Milstein method that are used to solve stochastic differential equations. For the linear sta-
bility analysis, we propose an extension of the standard geometric Brownian motion as a test
equation and consider a scalar linear test equation with several multiplicative noise terms.
This test equation allows to begin investigating the influence of multi-dimensional noise on
the stability behaviour of the methods while the analysis is still tractable. Our findings
include: (i) the stability condition for the θ-Milstein method and thus, for some choices of
θ, the conditions on the step-size, are much more restrictive than those for the θ-Maruyama
method; (ii) the precise stability region of the θ-Milstein method explicitly depends on the
noise terms. Further, we investigate the effect of introducing partially implicitness in the
diffusion approximation terms of Milstein-type methods, thus obtaining the possibility to
control the stability properties of these methods with a further method parameter σ. Nu-
merical examples illustrate the results and provide a comparison of the stability behaviour
of the different methods.

Keywords: Stochastic differential equations, Asymptotic mean-square stability, θ-Maruyama
method, θ-Milstein method, Linear stability analysis.
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1 Introduction

In recent years the area of numerical analysis of stochastic differential equations (SDEs) has
expanded at a fast pace. This interest has been driven by different application areas, such as
computational finance, neuroscience or electrical circuit engineering. A large part of research in
stochastic numerics has been aimed towards the development and strong and weak convergence
analysis of several classes of numerical methods. A further important issue for the investigation
of numerical methods consists of examining methods for their ability to preserve qualitative
features of the continuous system they are developed to approximate. A linear stability analysis
is usually the first step of an analysis in this direction. For this the method of interest is applied
to a scalar linear test equation and stability conditions on method parameters and step-size
are derived and compared with the stability condition for the test equation. In deterministic
numerical analysis the underlying idea for a linear stability analysis is based on the following line
of reasoning: one linearises and centres a nonlinear ordinary differential equation x′(t) = f(t,x)
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around an equilibrium, the resulting linear system x′(t) = Ax(t) (A the Jacobian of f evaluated
at equilibrium) is then diagonalised and the system thus decoupled, justifying the use of the
scalar test equation x′(t) = λx(t), λ ∈ C, for the analysis. We refer to, for example, [9, Chapter
IV.2] for more detail on this procedure.

In the stochastic case the same fundamental problem exists: we wish to preserve the qualitative
behaviour of solutions of nonlinear stochastic differential equations following discretisation by a
numerical method. Once again the starting point is a linear stability analysis. We can linearise
and centre a nonlinear SDE around an equilibrium solution (see [10] for the corresponding the-
ory), and this procedure yields a system of SDEs with an m-dimensional driving Wiener process
of the form dX(t) = FX(t)dt +

∑m
r=1GrX(t) dWr(t), t > 0 . Research on stability analysis for

SDEs has focused on the scalar linear test equation dX(t) = λX(t)dt + µ1X(t)dW1(t), where
its solution is called geometric Brownian motion. This corresponds to considering the linearised
SDE system when it can be completely decoupled and with one driving Wiener process. Rel-
evant references are given by, e.g., [3, 11, 12, 20]. Some first explorations of a linear stability
analysis for systems of SDEs have been made in [19, 21], and in [4] suitable linear test systems
have been derived.

The most common and well-known methods to treat SDEs numerically are the Euler-Maruyama
approximation and the Milstein scheme developed in the last century. These methods and their
drift-implicit counterparts have been studied for their stability behaviour, see for example [2, 11,
12, 20], however always only for a one-dimensional noise term in the test equation. Our aim in
this article is to investigate the influence of multi-dimensional noise on the mean-square stability
behaviour of these numerical methods and to compare their stability behaviour. Assuming
that the matrices F and Gr can be diagonalised and the system above decoupled, we propose
a scalar linear equation with an m-dimensional Wiener process, that is dX(t) = λX(t)dt +∑m

r=1 µrX(t)dWr(t), as a suitable test equation. We consider the θ-Maruyama and the θ-
Milstein method and study the asymptotic mean-square stability properties of these methods.
We find that the stability conditions for the θ-Milstein method are not only stronger than those
for the θ-Maruyama method, but they also become more restrictive when increasing the number
of noise terms in the SDE. In particular we find it impossible to conclude A-stability for the
θ-Milstein method, in the sense that we can not define a value or bound θbound for the parameter
θ, such that the method applied to the test equation would be A-stable for all θ ≥ θbound for all
m ≥ 1 and all parameters µr, r = 1, . . . ,m. This indicates that analysing the stability behaviour
of numerical methods using test equations with only a one-dimensional Wiener process may
not provide sufficient insight into the properties of the methods for practical high-dimensional
application problems. We then present a modification of the θ-Milstein method, where we
introduce partial implicitness involving a further parameter σ in the hope to have a better
control on the stability behaviour of the method. The stability analysis indicates that this is
the case, although the stability condition still depends on the number of noise terms. Numerical
experiments illustrate the influence that the choice of method and method parameters have for
practical simulation tasks.

In Section 2 we introduce the linear test equation, the θ-Maruyama method and the θ-Milstein
scheme, we give a precise definition of asymptotic mean-square stability and state stability
conditions for the test equation in the continuous case. Section 3 is devoted to the analysis of
the stability properties of the methods in terms of the arising stochastic difference equations and
we compare the stability regions of both types of methods in Section 4. In Section 5 we introduce
a new class of Milstein type methods and analyse their stability behaviour. We illustrate the
theoretical findings by some numerical experiments in Section 6.
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2 Preliminaries

In this section we introduce the stochastic differential and difference equations, as well as the
notions of stability, that we consider in this article.

We will be concerned with asymptotic mean-square stability of the zero solution of a test equation
with respect to perturbations in the initial data. As a test equation we employ the following
scalar linear stochastic differential equation with multiplicative noise

dX(t) = λX(t)dt+

m∑

r=1

µrX(t)dWr(t), t ≥ t0 ≥ 0, X(t0) = X0, (1)

driven by an m-dimensional standard Wiener process W (t) = (W1(t), . . . ,Wm(t)) given on the
probability space (Ω,F ,P) with a filtration (Ft)t≥t0 . By E we denote expectation with respect to
P. We assume that the coefficients λ and µr, (r = 1, . . . ,m) are complex-valued and without loss
of generality suppose that the initial value X0 is non-random ([16, Chapter 4]). The solution
(X(t))t≥t0 of (1) is a complex-valued stochastic process, where W is a vector-valued Wiener
process in R

m. Alternatively this complex-valued SDE can be written as 2-dimensional vector
SDE in the real and imaginary parts. We denote the real and imaginary part of a complex
number x by R(x) and I(x), respectively, x̄ denotes the complex conjugate and |x| stands for
the absolute value of some x ∈ C.

For any non-zero initial value Equation (1) has a non-trivial path-wise unique strong solution
which we denote by X(t; t0,X0) when we wish to emphasise its dependence on the initial data.
For X0 = 0 the equation obviously admits the zero solution, which is a steady state solution of
the equation.

Definition 2.1. (cf. [10, 16]) The zero solution of Equation (1), X(t) ≡ 0, is

1. mean-square stable, if for each ǫ > 0, there exists a δ ≥ 0 such that

E(|X(t; t0,X0)|2) < ǫ

whenever t ≥ t0 and |X0| < δ;

2. asymptotically mean-square stable, if it is mean-square stable and if there exists a δ ≥ 0
such that whenever |X0| < δ

E(|X(t; t0,X0)|2) → 0 for t → ∞ .

The zero solution is called unstable if it is not stable in the mean-square sense. Definition 2.1
is slightly more general than necessary in the present context, as for the simple linear equation
given by (1) we can take δ arbitrarily large and thus it does not play a significant role.

Proposition 2.2. [10, 16] The zero solution of Equation (1) is asymptotically mean-square
stable if and only if

R(λ) +
1

2

m∑

r=1

|µr|2 < 0 . (2)

We now discuss the stochastic difference equations that arise by applying the θ-Maruyama
method and the θ-Milstein scheme to the scalar test equation (1). We consider numerical
methods for computing approximations Xi ≈ X(ti) of the solution of the test equation (1) at
discrete time points ti = ih (i = 0, 1, . . . ) with constant step-size h.
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The θ-Maruyama method applied to the test equation (1) reads

Xi+1 = Xi + h (θλXi+1 + (1− θ)λXi) +
√
h

m∑

r=1

µrXi ξr,i , i = 0, 1, . . . , (3)

where we have replaced the Wiener increments Iti,ti+h
r = Wr(ti + h) − Wr(ti) by the scaled

random variables
√
h ξr,i. Here each {ξr,i}i∈N is one of m independent sequences of mutually

independent standard Gaussian random variables, i.e., each ξr,i is N (0, 1)-distributed.

The θ-Milstein method applied to the test equation (1) is given by

Xi+1 = Xi + h (θλXi+1 + (1− θ)λXi) +
√
h

m∑

r=1

µrXi ξr,i

+
1

2
h

m∑

r=1

µ2
rXi (ξ

2
r,i − 1) +

1

2
h

m∑

r1,r2=1

r1 6=r2

µr1µr2Xi ξr1,iξr2,i , i = 0, 1, . . . . (4)

Here we have additionally replaced the multiple Wiener integrals

Iti,ti+h
r1,r2 :=

∫ ti+h

ti

∫ s

ti

dWr2(u) dWr1(s)

as follows: (i) If r1 = r2 the multiple Wiener integral Iti,ti+h
r,r can be replaced by 1

2
h(ξ2r,i − 1) for

r = 1, . . . ,m, and (ii) if r1 6= r2 we use the identity Ir1,r2 + Ir2,r1 = Ir1Ir2 to obtain

µr1µr2Ir1,r2 + µr2µr1Ir2,r1 = µr1µr2(Ir1,r2 + Ir2,r1) = µr1µr2Ir1Ir2 = µr1µr2hξr1,iξr2,i .

For θ = 0 the method (3) reduces to the (forward) Euler-Maruyama scheme, which is explicit
in the drift as well as in the diffusion part. For θ > 0 the methods (3) and (4) are drift-implicit.
For θ = 1/2 the scheme (3) is known as stochastic trapezoidal rule and for θ = 1 we obtain the
backward Euler-Maruyama method.

The two last terms in the θ-Milstein method (4) represent a higher order approximation of
the diffusion part in Equation (1) in the sense of mean-square convergence. We call a method
mean-square convergent with order γ (γ > 0) if the global error, X(ti)−Xi, satisfies

max
i=0,1,...

‖X(ti)−Xi‖L2
:= max

i=0,1,...
(E|X(ti)−Xi|2)1/2 ≤ Chγ as h → 0 ,

with a positive error constant C, which is independent of the step-size h. It is well-known that
in the case of multiplicative noise the θ-Milstein method (4) is mean-square convergent of order
γ = 1, whereas the θ-Maruyama method (3) is mean-square convergent of order γ = 1/2.

Obviously the stochastic difference equations (3) and (4) admit the zero solution for the initial
value X0 = 0, which is a steady state solution as well. For any non-zero initial value X0, the
equations have a unique solution provided (1 − hλ θ) 6= 0. We write Xi(t0,X0) again when we
want to emphasise that the solution of the difference equations depends on the initial data.

Definition 2.3. The zero solution of the difference equations (3) and (4) is

1. mean-square stable, if for each ǫ > 0, there exists a δ ≥ 0 such that

E(|Xi(t0,X0)|2) < ǫ

whenever i ≥ 0 and |X0| < δ;
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2. asymptotically mean-square stable, if it is mean-square stable and if there exists a δ ≥ 0
such that whenever |X0| < δ

E(|Xi(t0,X0)|2) → 0 for i → ∞ . (5)

Stability conditions will now involve the coefficients λ, µr (r = 1, . . . ,m) of the test equation
(1), as well as the method parameter θ and the step-size h.

It will be useful to describe the stability region of a stochastic differential or difference equation.
We follow the presentation in [12] and consider sets of parameters SSDE, Sθ-Mar(θ, h), Sθ-Mil(θ, h)
for which the zero solutions of the continuous and the discrete equations are asymptotically
stable, that is

SSDE := {λ, µ1, . . . , µm ∈ C : (2) holds},
Sθ-Mar(θ, h) := {λ, µ1, . . . , µm ∈ C : (5) holds for solutions of (3)},
Sθ-Mil(θ, h) := {λ, µ1, . . . , µm ∈ C : (5) holds for solutions of (4)}.

Further, we consider the extension of the deterministic notion of A-stability [9, 15] to the mean-
square analysis setting and say that a numerical method is A-stable in mean-square [11, 12], if
whenever the zero solution of (1) is asymptotically mean-square stable, then the same is true
for the zero solution of the method for any step-size h > 0. Using the above definitions of the
stability regions, we call the θ-Maruyama or θ-Milstein method A-stable in mean-square if for
all h > 0 we have SSDE ⊆ Sθ-Mar(θ, h) or SSDE ⊆ Sθ-Mil(θ, h).

3 Stability analysis for the numerical methods

For the stochastic difference equations (3) and (4) we now derive stability conditions in depen-
dence on the method parameter θ and the applied step-size h, and compare these conditions
with those for the continuous problem given in Lemma 2.2.

3.1 The θ-Maruyama method

We start by rearranging the stochastic difference equation (3) into the following one-step recur-
rence equation. Then by squaring and taking expectations we obtain a recurrence equation for
the second moments E|Xi|2. As mentioned before, we have to assume that (1 − θhλ) 6= 0 to
guarantee the existence of a unique solution of the recurrence equations.

Rearranging Equation (3) yields the recurrence

Xi+1 =

(
a+

m∑

r=1

br ξr,i

)
Xi , i = 0, 1, . . . , (6)

where

a := 1 +
hλ

1− θhλ
and br :=

√
hµr

1− θhλ
. (7)

Then the recurrence equation for the second moment E|Xi|2, using E(ξr,i) = 0, E(ξ2r,i) = 1, and
the complex conjugate equation of (6), reads

E|Xi+1|2 = E

((
a+

m∑

r=1

br ξr,i
)(
ā+

m∑

r=1

b̄r ξr,i
))

E|Xi|2

=

(
|a|2 +

m∑

r=1

|br|2
)
E|Xi|2 . (8)
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From (8) we can immediately read off necessary and sufficient stability conditions in terms of
the above parameters.

Lemma 3.1. The zero solution of the recurrence equation (6), representing a one-step Maruyama-
type method applied to the test equation (1), is asymptotically mean-square stable if and only
if

|a|2 +
m∑

r=1

|br|2 < 1 . (9)

Now rewriting the stability conditions (9) in terms of the parameters λ and µr (r = 1, . . . ,m)
in the test equation (1), the method parameter θ and the step-size h, using (7), we obtain the
following result.

Corollary 3.2. The zero solution of the stochastic difference equation given by the θ-Maruyama
method (3) applied to the scalar linear test equation (1) is asymptotically mean-square stable if
and only if

R(λ) +
1

2

m∑

r=1

|µr|2 +
1

2
h(1− 2θ)|λ|2 < 0 . (10)

We note that the first two terms in the left-hand sides of (10) are equal to the left-hand side
of (2), that is they correspond to the stability condition for the continuous problem.

Now comparing the stability condition for the continuous problem to that of the discrete problem,
we immediately obtain from (10) an extension of the result [12, Thm. 4.1] to the case of (1)
driven by a multi-dimensional Wiener process.

Corollary 3.3. For all h > 0 it holds that

Sθ-Mar(θ, h) ⊂ SSDE for 0 ≤ θ < 1/2 ,
Sθ-Mar(θ, h) = SSDE for θ = 1/2 ,
Sθ-Mar(θ, h) ⊃ SSDE for θ > 1/2 .

In particular, for θ ≥ 1/2 the θ-Maruyama method is A-stable in mean-square. For 0 ≤ θ < 1/2
and (λ, µ1, . . . , µm) ∈ SSDE, the stability condition (10) for the θ-Maruyama method is satisfied
if and only if

h <
−2(R(λ) + 1

2

∑m
r=1 |µr|2)

(1− 2θ)|λ|2 . (11)

3.2 The θ-Milstein method

We now turn to the θ-Milstein method and first follow the same steps as in the previous section
to deduce a recurrence equation for the second moments of the solution of (4) and read off the
corresponding stability conditions. Rearranging the difference equation (4), we obtain

Xi+1 =

(
â+

m∑

r=1

br ξr,i +

m∑

r1,r2=1

cr1,r2 ξr1,iξr2,i

)
Xi, (12)

where â := a−
m∑

r=1

cr,r, br :=

√
hµr

1− θhλ
, cr1,r2 =

1
2
hµr1µr2

1− θhλ
, (13)
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and a is given in (7). Note that rewriting the parameter â in terms of a provides a convenient
way to compare the stability conditions for the θ-Maruyama and θ-Milstein method.

With analogous calculations as in the previous section and by additionally using E(ξ3r,i) = 0 and

E(ξ4r,i) = 3, we find the recurrence for the second moments of the θ-Milstein method as

E|Xi+1|2

= E

((
â+

m∑

r=1

br ξr,i +

m∑

r1,r2=1

cr1,r2 ξr1,iξr2,i

)(
¯̂a+

m∑

r=1

b̄r ξr,i +

m∑

r1,r2=1

c̄r1,r2 ξr1,iξr2,i

))
E|Xi|2

=

(
â¯̂a+ â

m∑

r=1

c̄r,r + ¯̂a

m∑

r=1

cr,r +

m∑

r=1

br b̄r +
( m∑

r=1

cr,r

)( m∑

r=1

c̄r,r

)

+2
m∑

r=1

cr,r c̄r,r +
m∑

r1,r2=1

r1 6=r2

cr1,r2 ·
m∑

r1,r2=1

r1 6=r2

c̄r1,r2

)
E|Xi|2

=

((
â+

m∑

r=1

cr,r

)(
¯̂a+

m∑

r=1

c̄r,r

)
+

m∑

r=1

br b̄r + 2

m∑

r=1

cr,r c̄r,r +

m∑

r1,r2=1

r1 6=r2

cr1,r2 ·
m∑

r1,r2=1

r1 6=r2

c̄r1,r2

)
E|Xi|2

=

(
|a|2 +

m∑

r=1

|br|2 + 2

m∑

r=1

|cr,r|2 +
m∑

r1,r2=1

r1 6=r2

cr1,r2 ·
m∑

r1,r2=1

r1 6=r2

c̄r1,r2

)
E|Xi|2 . (14)

Again we can read off from (14) necessary and sufficient stability conditions in terms of the
parameters a, br and cr1,r2 .

Lemma 3.4. The zero solution of the recurrence equation (12) given by the θ-Milstein method
applied to the test equation (1), is asymptotically mean-square stable if and only if

|a|2 +
m∑

r=1

|br|2 + 2

m∑

r=1

|cr,r|2 + |csum|2 < 1 , (15)

where csum =
∑m

r1,r2=1, r1 6=r2
cr1,r2.

Remark 3.5. When applied to the linear scalar stochastic differential equation (1), other vari-
ants of one-step Maruyama-type methods and one-step Milstein-type methods can quite often be
rearranged into the recurrence equations (6) and (12), respectively, with appropriate definitions
of the parameters a, br and cr1,r2. Then Lemmata 3.1 and 3.4 can be applied to obtain stability
conditions interpreted with these definitions of a, br and cr1,r2.

The next corollary follows by rewriting the stability condition (15) in terms of the original
parameters using (13).

Corollary 3.6. The zero solution of the stochastic difference equation given by the θ-Milstein
method (4) applied to the scalar linear test equation (1) is asymptotically mean-square stable if
and only if

R(λ) +
1

2

m∑

r=1

|µr|2 +
1

2
h(1 − 2θ)|λ|2 + 1

4
h

m∑

r=1

|µr|4 +
1

8
h
∣∣∣

m∑

r1,r2=1

r1 6=r2

µr1µr2

∣∣∣
2

< 0 . (16)
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Again the first two terms in the left-hand side of (16) are equal to the left-hand side of (2). How-
ever, when comparing the above condition with the stability condition (10) for the θ-Maruyama
method, we see that the left hand side of (16) contains two additional terms, which are always
non-negative and depend on the noise intensities µr (r = 1, . . . ,m) but are independent of the
parameter θ. Thus the precise stability region Sθ-Mil(θ, h) of the θ-Milstein method depends on
the noise intensities µr (r = 1, . . . ,m). Suppose our aim is to use the method parameter θ to
determine the optimal stability region of the θ-Milstein method for a given set of parameters
in (1), that is we aim to find a value of θ such that the sum of the third to the fifth term in (16)
vanish for any step-size h. Then, assuming that (2) holds, we obtain for every set of parameters
µ1, . . . , µm a different value for that optimal θµ1,...,µm

. We define

θµ1,...,µm
:=

1

2
+

m∑

r=1

|µr|4
4 |λ|2 +

|µsum|2
8 |λ|2 , (17)

where

µsum :=

m∑

r1,r2=1, r1 6=r2

µr1µr2 . (18)

For this optimal θµ1,...,µm
we immediately obtain from the stability condition (16) for the θ-

Milstein method the following corollary.

Corollary 3.7. For all h > 0 it holds that

Sθ-Mil(θ, h) ⊂ SSDE for 0 ≤ θ < θµ1,...,µm

Sθ-Mil(θ, h) = SSDE for θ = θµ1,...,µm

Sθ-Mil(θ, h) ⊃ SSDE for θ > θµ1,...,µm
.

Assuming that (λ, µ1, . . . , µm) ∈ SSDE, for 0 ≤ θ < θµ1,...,µm
, the stability condition (16) for the

θ-Milstein method is satisfied if and only if

h <
−2(R(λ) + 1

2

∑m
r=1 |µr|2)

(1− 2θ)|λ|2 + 1
2

∑m
r=1 |µr|4 + 1

4
|µsum|2

. (19)

In particular, condition (19) implies that for θ > 1
2
and (1−2θ)|λ|2+ 1

2

∑m
r=1 |µr|4+ 1

4
|µsum|2 < 0,

the stability condition (16) for the θ-Milstein method is satisfied for any step-size h > 0 .
In the case that (λ, µ1, . . . , µm) 6∈ SSDE, and θ > 1

2
and (1−2θ)|λ|2+ 1

2

∑m
r=1 |µr|4+ 1

4
|µsum|2 > 0,

then the zero solution of the θ-Milstein scheme is also unstable only if condition (19) is imposed
on the step-size h.

Intrinsic in the concept of A-stability is the idea that the property of A-stability of a method
holds for the whole class of differential equations considered as test equations. In the setting of
this article this implies that we would need to find a θbound, a value of or a bound on θµ1,...,µm

,
which is independent of λ, µ1, . . . , µm, such that Sθ-Mil(θ, h) ⊇ SSDE for θ > θbound. In the case
of the θ-Maruyama method the corresponding value of θbound is 1

2
, see Corollary 3.3.

However, considering the simple case of multi-dimensional noise terms having equal noise in-
tensities, we find that, at best, we can find an upper bound θbound independent of the given
parameters λ, µ1, . . . , µm, but depending on the number of noise sources. To see this, let µ1 =
µ2 = · · · = µm. Then, using the squared stability inequality (2) in the form 1

4
|µ1|4/|λ|2 < 1

m2
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and
m∑

r1,r2=1, r1 6=r2

µ1µ1 = µ2
1(m

2 −m) in (17) yields

θµ1,...,µm
<

1

2
+

1

m
+

1

8

|µ1|4
|λ|2 (m2 −m)2

<
1

2
+

1

m
+

1

2
(m− 1)2 , (20)

Thus for example, for one, two and three noise sources (m = 1, 2, 3), we can find a θbound as
3
2
, 3
2
and 15

6
, respectively. In the one-dimensional noise case this corresponds to the result in [11,

Cor. 2.2]. But in general there exists no upper bound θbound for θµ1,...,µm
such that the θ-Milstein

method for any θ ≥ θbound is A-stable for the whole class of equations (1) with arbitrary many
noise terms. In the general case of the SDE (1) it is possible, essentially using the Cauchy-
Schwarz inequality several times, to derive an upper bound θbound for θµ1,...,µm

which also only
depends on m, but as it involves m3 it becomes pointless for large m. Thus, it appears that
the stability condition (16) for the θ-Milstein method becomes very restrictive for an increasing
number of noise terms.

4 Comparisons of the stability regions

In this section we aim to illustrate the results of the previous sections by visually comparing the
stability regions Sθ-Mar(θ, h) and Sθ-Mil(θ, h). As there are too many parameters in the system
to do so in a two-dimensional plot, we only consider the case of the test SDE (1) with multi-
dimensional noise where all the terms have the same noise intensity, i.e., µ1 = µ2 = · · · = µm,
and real-valued coefficients, i.e., we have λ, µ1 ∈ R. We essentially follow [12] regarding the
scaling of the parameters in the plots. Thus we set

x := hλ and y := hmµ2
1 .

The stability conditions (2), (10) and (16) become

x+
1

2
y < 0 , (21)

x+
1

2
y +

1

2
(1− 2θ)x2 < 0 , (22)

x+
1

2
y +

1

2

(
(1− 2θ)x2 +

1

2

1

m
y2 +

1

4
y2(m− 1)2

)
< 0 . (23)

Note that for m = 1 and m = 2 condition (23) yields the same stability region.
To interpret the figures below, observe that given a test equation with parameter values λ and µ1

and m = 1, the point (x, y) = (λ, µ2
1) corresponds to the choice of step-size h = 1. Then varying

the step-size h corresponds to moving along the ray that connects (λ, µ2
1) with the origin, where

going on this ray in the direction of the origin corresponds to decreasing the step-size h. For
m > 1 the scaling is appropriately adapted.

Figure 1 shows the mean-square stability regions of the zero solutions of the SDE (white area
with a dashed border), the θ-Maruyama approximation (light-grey area) and the θ-Milstein
approximation (light dark area to dark-grey area) for different values of the method parameter
θ and illustrates how the stability region of the θ-Milstein method decreases withm and compares
to that of the θ-Maruyama method. In particular, one can observe that the mean-square stability
regions for the θ-Milstein method are always smaller than the stability region of the θ-Maruyama

9



method. For the θ-Maruyama method the figure illustrates the property of A-stability of the
method for θ ≥ 1

2
for all m ≥ 1, where as for the θ-Milstein method we can not conclude

A-stability for a particular θ and all m ≥ 1.
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Figure 1: SDE (1) with µ1 = µ2 = · · · = µm and x = hλ and y = hmµ2

1
: Mean-square stability regions

for the zero solutions of the SDE (white area with dashed border), the θ-Maruyama method (light-grey
area) and the θ-Milstein method for m = 2, 3, 4, 5 (light dark-grey area to dark dark-grey areas).

In [12, Section 4] and [11, Section 3] the stability regions of the θ-Maruyama method and the
θ-Milstein method have been plotted separately for the scalar SDE (1) and real-valued λ, µ1.
To emphasise the different stability properties of both methods even in the case of m = 1,
we provide in Figure 2 a plot of the stability regions of both methods together for the same
setting as in [12, 11] and several values of the method parameter θ. In these cases the stability
regions of the θ-Maruyama method and the θ-Milstein method coincide with that of the SDE if
θ ≥ 1/2 and θ ≥ 3/2, respectively. When using the Euler-Maruyama method and the standard
Milstein method, that is taking θ = 0, the methods that are most often used, then it appears
from Figure 2 that both stability regions are quite small but of similar size. This is already
mentioned in [2, p.114]. However, when taking mean-square accuracy into account and aiming
to reduce numerical costs by using the Milstein method with a larger step-size, one might easily
be prevented from doing so by the more restrictive stability condition of the Milstein method.

5 The effect of introducing partial implicitness in the discreti-

sation of the diffusion term

A brief look at the deterministic case, that is µr = 0 (r = 1, . . . ,m) in (1), (3), (10), etc.,
reminds us that it is by making the approximation implicit and the introduction of the method
parameter θ that one can control the stability properties of the method by suitably choosing

10
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Figure 2: SDE (1) with m = 1 and x = hλ and y = hµ2

1
: Mean-square stability regions for the zero

solutions of the SDE (white area with dashed border), the θ-Maruyama method (light-grey area) and the
θ-Milstein method (dark-grey area).

θ. In this sense it would be useful to develop Milstein-type methods that incorporate implicit
higher order approximations of the diffusion term to have a method parameter for this purpose.

In general, a straightforward introduction of implicitness into approximations of the diffusion
term results in the numerical solution becoming unbounded with positive probability, see [18,
Chap 1.3.4] and [8] for methods avoiding this problem. In this article our aim is to highlight the
effect that an implicit discretisation of the diffusion term can have on the stability properties of
the θ-Milstein method and thus we take advantage of the simple structure of the test equation (1).
The latter results in the fact that in each term in the second last sum in the θ-Milstein method (4)

the double Wiener integral
∫ ti+h
ti

∫ s
ti
dWr(u) dWr(s) can be replaced by 1

2
h(ξ2r,i − 1), for r =

1, . . . ,m. Then the second last term in the method (4) can be written as 1
2
hµ2

rXi ξ
2
r,i− 1

2
hµ2

rXi

for each r and we introduce an implicit approximation with an additional positive method
parameter σ only in the latter term, which does not contain the random variable ξr,i. Thus we
propose, for each r, to use

1

2
hµ2

r

(
Xi ξ

2
r,i −

(
σXi+1 + (1− σ)Xi

))
instead of

1

2
hµ2

r

(
Xi ξ

2
r,i −Xi

)
.

We emphasise that this represents a (partial) implicit approximation of the diffusion term in
contrast to well-known approaches to implicit approximations of the drift term.
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Applied to the scalar linear test-equation (1) the θ-σ-Milstein method then takes the form

Xi+1 = Xi + h
(
θλXi+1 + (1− θ)λXi

)
+

√
h

m∑

r+1

µrXi ξr,i

+
1

2
h

m∑

r=1

µ2
r

(
Xi ξ

2
r,i −

(
σXi+1 + (1− σ)Xi

))
+

1

2
h

m∑

r1,r2=1

r1 6=r2

µr1µr2Xiξr1,iξr2,i , (24)

i = 0, 1, . . . , with the random variables ξr,i defined as in Section 2.

Remark 5.1. The choice of σ = θ yields the θ-Milstein approximation of the Stratonovich-SDE
dX(t) = (λX(t)− 1

2

∑m
r=1 µ

2
rX(t))dt+

∑m
r=1 µrX(t) ◦ dWr(t).

For the stability analysis we follow the same procedure as in Section 3 and first rewrite (24) as
a one-step recurrence

Xi+1 =
1

d

(
â+

m∑

r=1

br ξr,i +

m∑

r1,r2=1

cr1,r2 ξr1,iξr2,i

)
Xi, (25)

where the parameters â, br, cr1,r2 and d are given by

â := 1 + (1− θ)hλ− 1

2
h(1− σ)

m∑

r=1

µ2
r , br :=

√
hµr ,

cr1,r2 :=
1

2
hµr1µr2 , d := 1− θhλ+

1

2
σh

m∑

r=1

µ2
r .

We define a := â +
∑m

r=1 cr,r and assume that (1 − θhλ + 1
2
σh
∑m

r=1 µ
2
r) 6= 0 to guarantee the

existence of a solution to Equation (25). Now squaring and taking the expectation yields

E|Xi+1|2 =
1

|d|2
(
|a|2 +

m∑

r=1

|br|2 + 2

m∑

r=1

|cr,r|2 + |csum|2
)
E|Xi|2 , (26)

where csum =
∑m

r1,r2=1, r1 6=r2
cr1,r2 .

Hence the zero-solution of the stochastic difference equation (25) is asymptotically mean-square
stable if and only if the factor on the right hand side of (26) is less than 1. Rewriting this
condition in terms of λ, µr, h, θ, σ and rearranging, we obtain the following result:

Lemma 5.2. The zero solution of the stochastic difference equation given by the θ-σ-Milstein
method (24) applied to the scalar linear test equation (1) is asymptotically mean-square stable if
and only if

ℜ(λ) + 1

2

m∑

r=1

|µr|2 +
1

2
h(1 − 2θ)|λ|2 + 1

4
h

m∑

r=1

|µr|4 +
1

8
h|µsum|2 + 1

2
σh

m∑

r=1

ℜ(λµ2
r) < 0 , (27)

where again µsum :=
∑m

r1,r2=1, r1 6=r2
µr1µr2.

We note that the first terms in the left-hand side of (27) are equal to the left-hand side of (16).
The additional term 1

2
σh
∑m

r=1 ℜ(λµ2
r) is negative for ℜ(λ) < 0, i.e., when the stability condi-

tion (2) for the test equation (1) is satisfied. Thus, the stability condition (27) in Lemma 5.2 is
less restrictive than the condition (16) for the θ-Milstein method.

Denoting by Sθ-σ-Mil(θ, σ, h) the stability region of the θ-σ-Milstein method, analogous consid-
erations as for Corollary 3.7 yield the next result.
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Corollary 5.3. Define

θ̃µ1,...,µm
:=

1

2
+

m∑

r=1

|µr|4
4 |λ|2 +

|µsum|2
8 |λ|2 +

σ
∑m

r=1ℜ(λµ2
r)

2 |λ|2 .

For all h > 0 it holds that

Sθ-σ-Mil(θ, σ, h) ⊂ SSDE for 0 ≤ θ + σ < θ̃µ1,...,µm
,

Sθ-σ-Mil(θ, σ, h) = SSDE for θ + σ = θ̃µ1,...,µm
,

Sθ-σ-Mil(θ, σ, h) ⊃ SSDE for θ + σ > θ̃µ1,...,µm
.

Then, assuming that (λ, µ1, . . . , µm) ∈ SSDE, for 0 ≤ θ + σ < θ̃µ1,...,µm
the zero solution of the

θ-σ-Milstein method is asymptotically mean-square stable if and only if

h <
−2(R(λ) + 1

2

∑m
r=1 |µr|2 + 1

2
σ
∑m

r=1ℜ(λµ2
r))

(1− 2θ)|λ|2 + 1
2

∑m
r=1 |µr|4 + 1

4
|µsum|2

. (28)

In particular, condition (28) then implies that for θ > 1
2
and (1 − 2θ)|λ|2 + 1

2

∑m
r=1 |µr|4 +

1
4
|µsum|2 < 0, the stability condition (27) for the θ-Milstein method is satisfied for any step-size

h > 0 .

As in Section 4 we illustrate the stability regions of the θ-σ-Milstein method applied to the test
SDE (1) with a single noise (m = 1) in terms of real-valued coefficients λ, µ1 ∈ R. In this case
we can find a bound on θ̃µ1,...,µm

as 3/2. Again, we set x = hλ and y = hµ2
1, and the stability

inequality (27) in terms of x and y reads

x+
1

2
y +

1

2
(1− 2θ)x2 +

1

4
y2 +

1

2
σxy < 0 .

Figures 3 - 5 compare the stability regions for the SDE (1) with m = 1, the θ-Maruyama
method and the θ-σ-Milstein method. In each Figure we have fixed the parameter θ and only
the parameter σ varies. For σ = 0 the plots would correspond to those in Figure 2. We can see
that the stability region of the θ-σ-Milstein method (dark-grey area) is becoming larger when
increasing the parameter σ. Moreover, the stability region coincides with the stability region of
the test equation (1) (white area) if θ + σ ≥ 3/2.
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Figure 3: Mean-square stability regions for the zero solutions of the SDE (white area), the θ-Maruyama
method (light-grey area) and the θ-σ-Milstein method (dark-grey area). Here θ = 0 and σ = 0.5, 1, 1.5.
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Figure 4: Mean-square stability regions for the zero solutions of the SDE (white area and dashed line),
the θ-Maruyama method (light-grey area) and the θ-σ-Milstein method (dark-grey area). Here θ = 0.5
and σ = 0, 0.5, 1.
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Figure 5: Mean-square stability regions for the zero solutions of the SDE (dashed line), the θ-Maruyama
method (light-grey area) and the θ-σ-Milstein method (dark-grey area). Here θ = 1 and σ = 0, 0.5, 1.
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Figure 6: SDE (1) with µ1 = µ2 = · · · = µm and x = hλ and y = hmµ2

1
: Mean-square stability regions

for the zero solutions of the SDE (white area with dashed border), the θ-Maruyama method (light-grey
area) and the θ − σ-Milstein method for σ = 1 and m = 2, 3, 4, 5 (light dark-grey area to dark dark-grey
areas).
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Further, we consider again the SDE (1) with identical noise intensities µ1 = µ2 = . . . = µm and
plot in Figure 6 the stability regions for m = 2, . . . , 5 (again the condition below is the same
for m = 1 and m = 2) and σ = 1 corresponding to the scaling x = hλ and y = hmµ2

1, where
condition (27) now reads

x+
1

2
y +

1

2
(1− 2θ)x2 +

1

4

1

m
y2 +

1

8
y2 (m− 1)2 +

1

2
σxy < 0 .

Again the stability region of the θ-σ-Milstein method decreases with growing m, as in the case
of the θ-Milstein method, which prevents to conclude A-stability for a particular value of θ + σ
and all m ≥ 1. However, the introduction of the (partial) implicitness in the diffusion term
clearly provides an improvement of the stability behaviour for the θ-σ-Milstein method.

6 Numerical experiments

In this section we aim to illustrate the effect that the choice of method and the choice of the
method parameters θ and σ have on practical simulation runs. We consider the test equation
(1) with the following parameters: m = 3, λ = −2, µ1 = 1, µ2 = −1, µ3 = 1, X0 = 0.1, and
integrate for t ∈ [0, 10]. The equation has the explicit solution X(t) = 0.1 · exp((−2 − 3

2
)t +

W1(t)−W2(t) +W3(t)).

The following four figures show numerical simulation studies performed with the θ-Maruyama
method (Figure 7), the θ-Milstein method (Figure 8), the θ-σ-Milstein method with σ = 1
(Figure 9) and the θ-σ-Milstein method with σ = 1.5 (Figure 10), all simulations done with
a fixed step-size h = 1 over the interval [0, 10] with gridpoints ti = i h, i = 0, . . . , 10. The
parameter θ varies as θ = 0, 0.5, 1, 1.5.

Remark 6.1. The analytical results in the previous sections also suggest choices of step-sizes,
such that the zero solution of any one of the numerical methods for a fixed set of parameters
is asymptotically mean-square stable and obviously it is possible to illustrate this by performing
numerical experiments with fixed parameter sets and varying the step-size h. However, the focus
of this article is rather on comparing qualitative properties of methods than on how individual
methods behave for various step-sizes.

Each of the four figures below consists of three pictures. The underlying idea of a stability
analysis of numerical methods is to provide guidance for choosing method parameters and a
step-size such that the numerical solution represents a good approximation of the true solution.
(Note that convergence of a method only guarantees this in the limit for h → 0.) Thus, we plot
in the left picture of each figure the mean-square error e between the exact solution X(ti) and
numerical solution Xi for the corresponding method and choice of method parameters. This
allows to compare the impact of the choice of method on actually computing solutions of SDEs.
However, the quantity of interest in the stability definitions 2.1 and 2.3 are the second moments
of the analytical and numerical solutions. Therefore the other two pictures present plots of the
second moments of the solutions of (1), (3), (4) and (24), in the middle picture estimated from
the numerical simulations of (3), (4) and (24), in the right picture computed form the analytical
solutions. This allows to compare the effect of the choice of method and parameters on the
behaviour of the second moments analytically and also, how well this is approximated by the
numerical methods.

In detail, the figures present the following quantities, where (X(ti, ωj))i=0,...,N and (Xi(ωj))i=1,...,N

denote the values on grid points of a trajectory of the explicit solution of (1) with the above
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parameters and of the numerical trajectory produced by one of the methods, respectively:

MS-error(ti) =

(
1

M

M∑

j=1

(X(ti, ωj)−Xi(ωj))
2

)1/2

≈ (E|X(ti)−Xi|2)1/2 ,

Ê(X2
i ) =

1

M

M∑

j=1

X2
i (ωj) for all i , (29)

E(X2(ti)) = X2
0 · exp

{
(2λ+

m∑

r=1

µ2
r) · ti

}
for all i , (30)

E(X2
i ) = si ·X2

0 for all i . (31)

The expression (29) for Ê(X2
i ) represents an estimator for the second moment of the numeri-

cal approximation, the expression (30) for E(X2(ti)) is the solution of the deterministic ODE
E(X2(t))′ = (2λ +

∑m
r=1 µ

2
r)E(X

2(t)) (see proof of Lemma 2.2) at discrete time-points and the
last expression for E(X2

i ) is the result of applying the recurrences (8), (14) and (26) where s
denotes the factor in front of E(X2

i ) in the right-hand side of the corresponding recurrence equa-
tion. The number of trajectories computed for the above quantities is M = 100000 for each
simulation.

Figures 7 to 10 illustrate the behaviour of the methods for the above set of parameters, in
particular the same fixed step-size h = 1 and different choices of θ and σ. The θ-Maruyama
method provides reliable approximations for θ ≥ 0.5, but not for θ = 0, the θ-Milstein method
in same setting does not provide reliable approximations for θ = 0 and θ = 0.5. In fact, the
numerical solutions for θ = 0.5 in this setting diverge. We can observe the improvement in the
stability behaviour when using the θ-σ-Milstein method introduced in the previous section. In
contrast to the θ-Milstein method this method produces reliable approximations for the choice
of θ = 0.5 when also setting σ = 1. Further, for the choice of σ = 1.5 the θ-σ-Milstein
approximation behaves satisfactorily for all values of θ, thus the implicit term in the diffusion
approximation is effectively stabilising the method.
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Figure 7: MS-error, estimated and analytic second moments using the θ-Maruyama method with step-
size h = 1.
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Figure 8: MS-error, estimated and analytic second moments using the θ-Milstein method with step-size
h = 1.
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Figure 9: MS-error, estimated and analytic second moments using the θ-σ-Milstein method with step-size
h = 1 and σ = 1.
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Figure 10: MS-error, estimated and analytic second moments using the θ-σ-Milstein method with step-
size h = 1 and σ = 1.5.
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7 Conclusions

A linear stability analysis has been performed for the θ-Maruyama method and the θ-Milstein
method, using a linear test equation with several multiplicative noise terms. We have obtained
stability conditions guaranteeing asymptotic mean-square stability of the zero solution of the
stochastic difference equations resulting from both types of methods applied to the test SDE.
Comparing the stability conditions (10) and (16) for the θ-Maruyama and the θ-Milstein method,
respectively, it is quite obvious that the latter is more restrictive than the former, due to the
fourth and fifth term in (16), i.e. 1

4
h
∑m

r=1 |µr|4 + 1
8
h|µsum|2, which is always non-negative. In

particular, this term is the more restrictive, the larger the parameters in the diffusion term in (1)
are. Now, in the case that these parameters are small, that is the so-called small noise case, it
is well known from the corresponding mean-square convergence analysis that Maruyama-type
methods provide sufficiently accurate methods for practicable choices of step-sizes, see [6, 17, 22].
Milstein-type methods include higher order approximations of the diffusion term with the aim
that they are accurate methods for more practicable choices of step-sizes just in the case that
the diffusion term is large. In other words, when dealing with SDEs with larger diffusion
terms, numerical efficiency considerations would suggest using a Milstein-type method with a
larger step-size rather than a Maruyama-type method with a small step-size to obtain numerical
approximations of the solution of an SDE with a similar accuracy. However, Corollary 3.6
indicates that in this case there may be a trade-off and one is faced with restrictions on the
step-size for the Milstein-type method due to stability reasons. Further, we have shown that
the precise stability region of the θ-Milstein method depends on the number and magnitude
of the noise terms, whereas the stability region of the θ-Maruyama method is independent of
them. In particular, it is not possible to define a value θbound such that the θ-Milstein method
can be called A-stable for all θ > θbound for the class of SDEs (1) for an arbitrary number of
driving Wiener processes. For the θ-Maruyama method θbound = 1

2
, as in the deterministic case

and the case of the test equation (1) with m = 1. We provide a modified Milstein-type method
with a partially implicit diffusion approximation and demonstrate that the resulting stability
behaviour can be controlled more favourably. The results highlight that it is necessary to include
multi-dimensional noise into test equations and to study their effects on the practical behaviour
of the methods.
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