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Abstract. We study the bifurcation of limit cycles from the periodic orbits
of a four-dimensional center in a class of piecewise linear differential systems
with two zones. Our main result shows that three is an upper bound for the
number of limit cycles that bifurcate from a center, up to first order expansion
of the displacement function. Moreover, this upper bound is reached. The
main technique used is the averaging method.

1. Introduction and statement of the main result

In the qualitative theory of differential equations the study of their limit cycles
became one of the main topics. For a given differential system a limit cycle is a
periodic orbit isolated in the set of all periodic orbits of the system.

Many questions arise on the limit cycles of the planar differential equations. Two
main lines of research for such equations are, first the 16th Hilbert problem, see
for instance [6, 7], and second the study of how many limit cycles emerge from
the periodic orbits of a centre when we perturb it inside a given class of differential
equations, see, for example, the book [3] and the references there in. More precisely,
the problem of considering the planar linear differential centre

ẋ = −y, ẏ = x

and perturbing it

ẋ = −y + εP (x, y), ẏ = x+ εQ(x, y),

inside a given class of polynomial differential equations and studying the limit cycles
bifurcating from the periodic orbits of the linear centre has attracted the interest
and the research of many mathematicians. Of course, ε is a small parameter.
Here our main concerning is to bring this problem to higher dimension when the
perturbation is piecewise linear.

In [9] Lum and Chua conjectured that a continuous piecewise linear vector field
in the plane with two zones has at most one limit cycle. Moreover if the limit cycle
exists, then it is either attracting or repelling. This conjecture was proved in [4].

The purpose of this paper is to study the problem of Lum and Chua for a class of
piecewise linear differential systems in dimension 4 with two zones, more precisely
to study the maximum number of limit cycles of the 4-dimensional continuous
piecewise linear vector fields with two zones of the form

(1) x′ = A0x+ εF (x);
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for |ε| 6= 0 a sufficiently small real parameter, where

(2) A0 =




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


 ,

and F : R4 → R4 is given by

F (x) = Ax+ ϕ(kTx)b,

with A ∈ M4(R), k, b ∈ R4 \ {0} and ϕ : R → R the piecewise linear function

ϕ(x) =

{
0 for x ∈ (−∞, 1),
mx for x ∈ [1,∞).

For ε = 0 system (1) becomes

(3) x′
1 = −x2, x′

2 = x1, x′
3 = −x4, x′

4 = x3.

Our main result is the following.

Theorem 1. Three is the upper bound for the number of limit cycles of system (1)
which bifurcate from the periodic orbits of system (3), up to first order expansion of
the displacement function of (1) with respect to the small parameter ε. Moreover,
there are systems (1) having three limit cycles.

Theorem 1 is proved in section 3. In section 2 we present the results from the
averaging theory necessary for proving Theorem 1.

In [1] it has been study a similar problem for 4-dimensional continuous piecewise
linear vector fields but with three zones having symmetry respect to the origin. In
fact those piecewise linear vector fields are relevant in control theory.

2. Averaging Theory

The aim of this section is to present the first order averaging method as it was
obtained in Buicǎ & Llibre [2]. Differentiability of the vector field is not needed.
The specific conditions for the existence of a simple isolated zero of the averaged
function are given in terms of the Brouwer degree. In fact, the Brouwer degree
theory is the key point in the proof of this theorem. We remind here that continuity
of some finite dimensional function is a sufficient condition for the existence of its
Brouwer degree (see [8] for precise definitions). For a proof of the next result see
for instance [5, 10, 11].

Theorem 2. We consider the following differential system

(4) x′(t) = εH(t, x) + ε2R(t, x, ε),

where H : R×D → Rn, R : R×D× (−εf , εf ) → Rn are continuous functions, T–
periodic in the first variable, and D is an open subset of Rn. We define h : D×Rn

as

(5) h(z) =

∫ T

0

H(s, z)ds,

and assume that:

(i) H and R are locally Lipschitz with respect to x;
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(ii) for a ∈ D with h(a) = 0, there exists a neighborhood V of a such that
h(z) 6= 0 for all z ∈ V \ {a} and dB(h, V, a) 6= 0.

Then, for |ε| > 0 sufficiently small, there exists an isolated T–periodic solution
ϕ(·, ε) of system (4) such that ϕ(0, ε) → a as ε → 0.

Here we will need some facts from the proof of Theorem 2. Hypothesis (i) assures
the existence and uniqueness of the solution of each initial value problem on the
interval [0, T ]. Hence, for each z ∈ D, it is possible to denote by x(·, z, ε) the
solution of (4) with the initial value x(0, z, ε) = z. We consider also the function
ζ : D × (−εf , εf ) → Rn defined by

(6) ζ(z, ε) =

∫ T

0

[εH(t, x(t, z, ε)) + ε2R(t, x(t, z, ε), ε)]dt.

¿From the proof of Theorem 2 we extract the following facts.

Remark 3. For every z ∈ D the following relation holds

x(T, z, ε)− x(0, z, ε) = ζ(z, ε).

The function ζ can be written in the form

ζ(z, ε) = εh(z) + ε2O(1),

where h is given by (5) and the symbol O(1) denotes a bounded function on every
compact subset of D× (−εf , εf). Moreover, for |ε| sufficiently small, z = ϕ(0, ε) is
an isolated zero of ζ(·, ε).

For concrete systems there is the possibility that the function ζ is not globally
differentiable, but the function h is. In fact, only differentiability in some neigh-
borhood of a fixed isolated zero of h could be enough. When this is the case, one
can use the following remark in order to verify the hypothesis (ii) of Theorem 2.

Remark 4. Let h : D → Rn be a C1 function, with h(a) = 0, where D is an
open subset of Rn and a ∈ D. Whenever a is a simple zero of h (i.e. Jh(a) 6= 0),
there exists a neighborhood V of a such that h(z) 6= 0 for all z ∈ V \ {a}. Then
dB(h, V, a) ∈ {−1, 1}.

3. Proof of Theorem 1

First we show that instead of working with the function ϕ(kTx) in system (1) we
can work without loss of generality with an easier function, namely ϕ(x1), where
x = (x1, . . . , x4).

Lemma 5. By a linear change of variables, and eventually a permutation of the
variables, system (1) can be transformed in the system

(7) x′ = A0x+ εAx+ εϕ(x1)b,

where A = (aij) and b = (bi).

Proof. A linear change of coordinates x = Jy, with J invertible, transforms system
(1) in

ẏ = J−1A0Jy + εJ−1AJy + εϕ(kT Jy)J−1b.

It is easy find J invertible that satisfies J−1A0J = A0 and kTJ = eT1 . �
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In order to apply the averaging method, we put the system in a more suitable
form. It is easy to see that the change of variables (x1, x2, x3, x4) to (θ, r, ρ, s) by

x1 = r cos θ, x2 = r sin θ,
x3 = ρ cos(θ + s), x4 = ρ sin(θ + s),

transforms system (7) into a system of the form

(8)

dr

dθ
= εH1(θ, r, ρ, s) + ε2O(1)

dρ

dθ
= εH2(θ, r, ρ, s) + ε2O(1)

ds

dθ
= εH3(θ, r, ρ, s) + ε2O(1)

for H1, H2 and H3 given by

H1 = cos θ[b1ϕ(r cos θ) + a11r cos θ + a12r sin θ + a13ρ cos θ̃ + a14ρ sin θ̃]+

sin θ[b2ϕ(r cos θ) + a21r cos θ + a22r sin θ + a23ρ cos θ̃ + a24ρ sin θ̃],

H2 = cos θ̃[b3ϕ(r cos θ) + a31r cos θ + a32r sin θ + a33ρ cos θ̃ + a34ρ sin θ̃]+

sin θ̃[b4ϕ(r cos θ) + a41r cos θ + a42r sin θ + a43ρ cos θ̃ + a44ρ sin θ̃],

H3 = (1/r){sin θ[b1ϕ(r cos θ) + a11r cos θ + a12r sin θ + a13ρ cos θ̃ + a14ρ sin θ̃]+

cos θ[b2ϕ(r cos θ) + a21r cos θ + a22r sin θ + a23ρ cos θ̃ + a24ρ sin θ̃]}−
(1/ρ){sin θ̃[b3ϕ(r cos θ) + a31r cos θ + a32r sin θ + a33ρ cos θ̃ + a34ρ sin θ̃]+

cos θ̃[b4ϕ(r cos θ) + a41r cos θ + a42r sin θ + a43ρ cos θ̃ + a44ρ sin θ̃]},

where θ̃ = θ + s.

Next step is apply Theorem 2 obtaining h : Dn → R3, h = (h1, h2, h3) where

hi(r, ρ, s) =

∫ 2π

0

Hi(θ, r, ρ, s)dθ.

We have

(9)

h1(r, ρ, s) = b1I1(r) + π(c1r + c2ρ cos s+ c3ρ sin s),
h2(r, ρ, s) = I1(r)(b3 cos s+ b4 sin s) + π(c4ρ+ c5r cos s+ c6r sin s),
h3(r, ρ, s) = I1(r)(−b2ρ+ b4r cos s− b3r sin s)+

π(c7rρ+ c6r
2 cos s+ c5r

2 sin s+ c3ρ
2 cos s− c2ρ

2 sin s),

where ci are constants that depend linearly on aij and

I1(r) =





−m

√
r2 − 1

r
+m arctan(

√
r2 − 1) if r ≥ 1,

0 if 0 < r < 1.

Next lemma will be useful in the sequel of the proof. It was proved in [1] but
since it is proof is easy we provide it for completeness.

Lemma 6. The equation I1(r) = cr is such that

(1) If c/m < 0 or c/m ≥ π/2 then the equation does not have solution.
(2) If c = 0 then the interval (0, 1] is a continuous of solutions.
(3) If 0 < c/m < π/2 then there is an unique solution r∗ > 1.
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Proof. If c = 0 then it is easy to see that all r ∈ (0, 1] is solution. For c 6= 0 we

consider the change of variables u =
√
r2 − 1 and we obtain the equivalent equation

arctan(u) =
u

1 + u2
+

c

m
.

A simple graphical analysis shows that for 0 < c/m < π/2 we have only one solution
u∗ > 0 that corresponds to r∗ > 1. �

Solving the two first equations of (9) we get

I1(r) =
k2(s)

d(s)
r, ρ =

k1(s)

d(s)
r,

where k1(s) = (b1c6 − b4c1) sin s+ (b1c5 − b3c1) cos s, k2(s) = π(c1c4 − c3c6 sin
2 s−

(c3c5+c2c6) sin s cos s−c2c5 cos
2 s) and d(s) = −b1c4+b4c3 sin

2 s+(b4c2+b3c3) sin s cos s+
b3c2 cos

2 s.
Substituting in to the third equation we obtain

f(s)

d(s)2
r2 = 0,

where f(s) = (c3π cos s−c2π sin s)(k1(s))
2+(b4 cos s−b3 sin s)d(s)k2(s)−b2k1(s)k2(s)+

(c6π cos s− c5π sin s)(d(s))2 + c7πd(s)k1(s).

Observe that if s∗ is a solution of f(s) = 0, then it can be related to a periodic
solution of system (1) only if it satisfies

d(s∗) 6= 0,
k1(s

∗)
d(s∗)

> 0 and 0 <
k2(s

∗)
d(s∗)

<
π

2
.

In this case we apply Lemma 6 and obtain r∗ > 1. And the second equation of (9)
gives ρ∗.

Now we study the maximum number of solutions of the equation f(s) = 0.

Substituting cos s = x and sin s =
√
1− x2 in f(s) = 0 we get

(10) (δ1x+ δ2x
3) + (δ3 + δ4x

2)
√

1− x2 = 0,

and substituting cos s = x and sin s = −
√
1− x2 in f(s) = 0 we get

(11) (δ1x+ δ2x
3)− (δ3 + δ4x

2)
√

1− x2 = 0.

Equations (10) and (11) are equivalent to

(δ1x+ δ2x
3)2 − (δ3 + δ4x

2)2(1− x2) = 0,

which has degree six. Observe that the solutions appear in pairs {x0,−x0}. So if
s∗ is a solution then s∗ + π also is.

The functions f(s), d(s), k1(s) and k2(s) have the properties f(s+ π) = −f(s),
d(s+ π) = d(s), k1(s+ π) = −k1(s) and k2(s+ π) = k2(s). So we have

k1(s
∗)

d(s∗)
> 0 ⇒ k1(s

∗ + π)

d(s∗ + π)
< 0.

We conclude that the maximum number of limit cycles for system (1), up to first
order expansion of the displacement function, is three.
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In order to show that there exists an example with exactly three limit cycles we
consider the values

a11 = −13, a12 = 0, a13 = 0, a14 = 1886, b1 = 1,
a21 = 0.29, a22 = 0, a23 = 0, a24 = 0, b2 = 0,
a31 = −0.006, a32 = 0.02, a33 = 1, a34 = 0, b3 = 0,
a41 = 0, a42 = 0, a43 = 0, a44 = 0, b4 = 0.

Computing the six solutions of f(s) = 0 we get {0, π/4, π/2, π, 5π/4, 3π/2}. And
the values of d(s), k1(s) and k2(s) are given in the following table.

s∗ d(s∗) k1(s
∗) k2(s

∗)
0 −1 −0.0068 −13π

π/4 −1 −0.021 −4.87π
π/2 −1 −0.02 −0.43π
π −1 0.0068 −13π

5π/4 −1 0.021 −4.87π
3π/2 −1 0.02 −0.43π

The three solutions s∗ that satisfy k1(s
∗)/d(s∗) > 0 and k2(s

∗)/d(s∗) > 0 are
{0, π/4, π/2}.

The values of solutions s∗, r∗ and ρ∗ and the value of the Jacobian at the solution
Jh(r∗, ρ∗, s∗) are given in the following table.

s∗ r∗ ρ∗ Jh(r∗, ρ∗, s∗)
0 9.53 0.065 −996.98

π/4 1.78 0.037 354
π/2 1.09 0.02 69
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