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Equivalence Conditions for the Finite Volumes and Finiter&énts Methods in
Spherical Coordinates
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3INRIA Bordeaux—Sud-Ouest, 351 Cours de la Libration 33408&rte, France
bDipartimento di Ingegneria Aerospaziale, Politecnico diavio, Via La Masa, 34, 20156 Milano, Italy

Abstract

A numerical technique for the solution of the compressibbe/fequations over unstructured grids in a spherical
reference is presented. The proposed approach is based ow®a@ finite volume/ finite element discretization in
space. Equivalence conditions relating the finite volume: thie finite element metrics in spherical coordinates are
derived. Numerical simulations of the explosion and imjgongroblems for inviscid compressible flows are carried
out to evaluate the correctness of the numerical schemeangare fairly well to one-dimensional simulations over
very fine grids.

Keywords: Compressible flows; Shock waves; Exploglamplosion problem; Spherical coordinates; Finite
ElemenfVolume methods.

1. Introduction

In a spherical reference, diverse gasdynamics problenibiertlevant symmetries. These are, e.g., detonations,
astrophysical flows, Inertial Confinement Fusion (ICF) agtlons, sonoluminescence phenomena and nuclear explo-
sions [1]. To compute the numerical solution of the compbds$low equations for these kind of flows, an interesting
possibility is provided by the use of a mixed finite volume F\finite element (FE) approach [2]. For example, in
viscous flows, it is possible to use the FV and the FE to comih@dvection and dissipation terms, respectively,
within the same algorithm [3, 4, 5]. The typical approachuddsuch methods is to evaluate the fluxes of the Euler
equations by a classical stabilized node-centered FV selzem to exploit the FE viewpoint to discretize the viscous
or diffusion terms of the NavierStokes equations as well as tolpgsstimate the solution gradients, needed by high
order reconstruction schemes [6]. Such a possibility isetqrd to be of use in the study of thieet of viscosity on
e.g. the formation of stable shock fronts and on the deteatioin of the onset and dynamics of Richtmyer-Meshkov
instabilities in spherical implosions [7].

The combined use of FV and FE techniques is made possibleligttoduction of suitable equivalence conditions
that relate the FV metrics, i.e. cell volumes and integratednals, to the FE integrals. Equivalence conditions
relating the two schemes have been derived for Cartesiamlio@bes in two and three spatial dimensions [6, 8] and
for cylindrical coordinates in axially symmetric two-dim&onal problems [9]. In both cited references, equivatenc
conditions are obtained by neglecting higher order FE dautions. Subsequently in [10], equivalence conditions
for the cylindrical coordinates have been derived for thet fime without introducing any approximation into the
FE discrete expression of the divergence operator, andlirttie diference between the consistent scheme and that
violating the the equivalence conditions have been exarfimethe case of one-dimensional problems in cylindrical
and spherical coordinates. In the present paper the censfstmulation between FV and FE is extended to the case
of spherical coordinateas 6, ¢, with r, 8 and¢, respectively, radial, polar and azimuthal coordinate.

The present paper is structured as follows. In section 2FEhand FV schemes are briefly described for a scalar
conservation law. Equivalence conditions are demonstiatiis case. The extension to the system of Euler equations
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for compressible flow is also sketched. In section 3, nuraésgimulations are presented for the explosion and
implosion problems in the spherical coordinates onrthieplane and are compared to one-dimensional simulations.
In section 4 final remarks and comments are given.

2. Finite volume/element method in spherical coordinates

In the present section, the finite element and finite volureerdie equations for an exemplary scalar conservation
law in a three-dimensional spherical reference are givée.model equation reads
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wheret is the time,r, 8 and¢ are the radial, polar and azimuthal coordinates, respagtiv = u(r, 6, ¢, t) is the
scalar unknown andi®(u) = (f;, f, fs) is the so-called flux function. A more compact form of the edequation is

obtained by introducing the divergence operator in thrieeedsional spherical coordinat&g;- (-), as follows

o(u)

—~ 1 Ve. fo(u) = 1

el (u=0, 1)
with 2 of 1 9 1 of
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Equation (1) is first discretized in space by means of the KkEtlae FV method; equivalence conditions relating the
two approaches are then derived. Finally, the numericarmsehis applied to the compressible Euler equations and
time discretization is discussed.

2.1. Node-pair finite element discretization

The scalar conservation law (1) is first multiplied by theresiné to formally remove the singularity at the origin
of the reference system, see [11]. The weak form of the riegudiguation is obtained by multiplying thefidirential
equation by test functions € V ¢ H(Q) and integrating over the domaihas follows

f¢rsin9@d99+f¢prsinavo-f®(u)dQO,
Q ot Q

to simplify the notation, the infinitesimal volumeQ® = r?sind drddds will not be indicated in the integrals. An
integration by parts gives

fwsin&ﬁ=fgofe(u)-V@(rsinH)+frsin9f®(u)-V@go—9§ rsinge f°(u)-n°,
Q ot Q Q 90

wheredQ is the domain boundary and = n,f + ned + n¢<}) is the outward normal versor fo.
The discrete form of the above equation is obtained by cenisig a finite dimensional spaag c H! of La-
grangian test functiong;, to obtain

fcpirsinH@=fgoif@(u)-vo(rsin0)+frsinaf"(u)-VO i—f rsinfy; f°(u)-n°, Vie N
o ot o o aQy)

where N denotes the set of all nodes of the triangulatidisis the support of the basis functign € V,, associated
to nodei and the shorthand notatid®? = 4Q; N dQ was introduced. The scalar unknown is now interpolated by an
expansion in the same space of the shape function as follows

U(r 0,6, 1) = Un(r, 0.9, ) = > uc®¢k(r, 6. ¢),

keN



to obtain the Bubnov-Galerkin approximation of (1) as
du . . .
Z Mg = | rsin@f(uy) - Vg + | ¢ f°(up) - V4(r siné) — r sinfy; f°(up) - N°, (2)
i~ dt o Q Pl

where); is the set of shape functiopg whose suppo®y overlaps; and where
M, def fr SNy ey dQ°,
Qik

with Qi = Qi N Qk. By resorting to the so-called flux interpolation technid2], the flux functionf®(uy) is now
expanded using the same shape funcgige V; as follows

(0.0, 0) = 1 Y wadr.0.0) = 3 fithentr 0.0,
keN keN
wheref(t) = f°(u(t)), to obtain
Z —MO Z fie fr Sinfp Vi + Z fo fg&,(ka@(r sing) — Z fi fr Sinfgipkn®, 3)
keN; keN; keN; Qi keN; ‘99&

Whereaﬂﬁ( = 0Qi N IQK N IQ andNia is the set of all boundary nodes@f. Using the following identities
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demonstrated in Appendix Appendix A, the node-pair reprigsn of (3) is found to be

dy foafe  fo—fo . fo-fo
_keN. ( k2 - - k2 I'{?k)"'fi'l-i_z k2 o R I8 (4)
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whereN; . = N\{i} andN{’ = N\{i}. In the expression above the following FE metric quantitigsintroduced

i € f r sind(e Voo, — @ V) dee, 5 € f o Vrsing) doe, T, & f @ V4(r sing) dQ”,

Qi Qi Qi (5)
o def . o o o def i R R
Xik = fr sinfipin” doQY’, & = fr Sinfy;n° dogY°.
e 000,

2.2. Edge-based finite volume discretization

The spatially discrete form of the scalar conservation [Bng now obtained according to the node-centred finite
volume approach [13]. To this purpose, the scalar conservktw (1) is multiplied by the quantitysing in written
in integral form to obtain

gfu(r,@,q&, t):—fVO-fO(u), VC C Q,

by integrating by parts the right hand side and by applyimgdivergence theorem the above equation reads

%Lu(r, 0,9, t) = —é fO(u).nO + \f; f@(u).V@(r Sin&),
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Its discrete counterpart is obtained by considering a icentamber of finite volumee€; , with boundarydC;, each of
them surrounding a single nodef the triangulation of).

d fu(r, 0,0, 1) = —SEf@(u)- n° + f f(u)-V{(rsing), VieN
dt Je, ac; c
The finite volumeg; satisfy the following conditions
GinCu=0, VikeN,izk

Uckzsz, Vi,ke N,i £k,
ke N

ieCi=>i¢Ck VikeN,i £k

The first condition guarantees that the open ghtare non-overlapping, the second condition assures thatell
domain is covered by the finite volume, while the third coiodiimplies that each finite volun@, is associated with
a single nodé. Over each control volumg; the cell-averaged unknown is introduced as follows

1
ucr,6,¢, ) ~u == [ u(r,o,9,t),
Vi Je,

whereV; is the volume of the-th cell. Therefore

d _ . .
V?—u =- 9§r singf®.n® + fo-V@(r sing), where V¢ S frsme.
dt ac Ci ol

The boundary integral on the right hand side is now split interface or edge contributions as follows

d . , .
Vﬁ—u = - E frsmaf@-n‘ﬁ—frsmaf@-ne+ . Vr sing)
dt ko2 Joci ac? c

whereN, ;. is the set of the finite volumé sharing a boundary witf;, excludingC; and where&Cix = dCi\dCx #
0,k # i is the so-called cell interface. Due to the piecewise canistaproximation chosen far, the discrete unknown
is discontinuous acrogi’. Therefore a numerical flukj, is introduced, representing an approximatiorf tfu) at
the cell interfacéCix. As it is standard practice the numerical flux is assumed toolbstant over the cell interface,
namely

. . . def P
fr singf - n? = f§, - fr singny = f5 vy with vy = fr singny
0Cik 0Cik dCik

frsinef ey = f7. fr singny = fi v} with » wf fr singny.
ach ac? ach

o]
° o+

If the second-order centred approximation of the fluxes isicered f§, = Tff the final form of the finite volume
approximation of (1) reads,

Ldu fr+fe e e . et -
Viaz;; |2 Vi + 7V = 70, with é‘facg@(rsma) (6)

to be compared to the corresponding FE discretization (4).

2.3. Finite Elementolume equivalence

The equivalence conditions relating the above FV metriaitjtias and the FE ones defined in the previous section
are now derived. To this purpose, relevant properties oFthand FV discretizations are briefly recalled.
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Considering FE metric quantities first, from its definititwve tvectong], is asymmetric, namely,
Mk = ~Tki» (7)
which will be referred in the following as property FE-a. Peoty FE-b is obtained by noting that (see identity A.7)

Z ('ﬁk - ?k)+§? =0,

keN;

which by the Iumpingj':(iD = Z i gives immediately
keN;

G- m=¢ ®)

kEM,:

Property FE-c stems from the following identity

frsin&in@- X® = f 3rsinfy; = 3L7,
.Qi Qi

wherex® is the position vector, i.ex® = r (6, ¢). On the other hand, by integrating by parts, one also has
f r sinfy;Ve. x° = f I sinfg;x° - Ny’ — f @i x° - V(rsing) — r sindx°®- Vi,
fo! filod Q; Q

By substituting the exact expansiah = 3.5, Xp¢k, and by applying the the FE node-pair representation dweestri
in section 2.1, the previous equation can be written as

XO + X0 X — X? fy—f?
° k o k o T2 k o) O g0
3L = Z( 5 I'”ik_Tl'g?k)_xi'Li+Z > X T X
keN;,# kE/ViZ;

By substituting property FE-b in the above identity, onelfinabtains property FE-c as

X0+ X? X0 — X? fp—f°
3L = Z ( k2 I'niek_ k2 l,é«iak)JrZ k2 I'Xi@k~ 9)

KENT# Ken?,

Considering now FV metric quantities, from the fact that= —n; overdCi, property FV-a reads;, = —v,
which corresponds to the conservation property of the seh&mom the Gauss theorem, one also has

fV@(r sing) = 9§r sinon?
Ci IC;i

which, from the definition of FV metric quantities, gives pesty FV-b as
Vi= > vitw
KeN; »

Property FV-c is obtained by noting that

3V = fr Singv®. x° = Sgrsinexo- n — fVQ(r sing) - x°.
Ci IC;i Ci

The right hand side of the previous equation is now computethbans of the FV discretization as described in
section 2.2

X7+ XP —~
VP = Z ' > k-vi@k—x‘?-Vi + X7,
kENi;



inserting the property FV-b in the previous relation, thegarty FV-c is obtained as

X7 + X,
ve= ) — Koye. (10)
KeN; »

Therefore, a FV approximation can be formally obtained fieBhnmetric quantities defined over the same grid
points by setting (see properties/Fi¥-a and -b)

V=M Vi =&, Vi=L.

Note that the mass lumping approximatipp., M, =~ L7, must be introduced in (4) for the equivalence conditions
to be applicable. By subtracting (9) to (10), one finally has

XS — X° Xp — X°
el D I e T P 7 (11)
KeN; » kE/\/i‘?=t

It is remarkable that dierently from the Cartesian case [6, 8], in the sphericaresfee, as well as in the cylindrical
reference [10], the FV cell is not coincident with the FE lledpnass matrix. Moreover, the shape of the FV cells
that guarantees equivalence with FE discretization stillains to be determined. The equivalence conditions atlowe
us to link the metrics of the FV scheme to the FE integrals jptdssible now to construct an hybrid scheme in which
the FV and FE scheme can be combined to discretized the adyaod difusive terms, respectively, in a consistent
manner. In the next section is reported a FV scheme for therEeguation in which the metrics are computed directly
from the FE integrals.

2.4. Fully discrete form of the Euler equations in spherimabrdinates

The Euler equations in spherical coordinates for compoessiviscid flows are now briefly recalled. Theffair-
ential form reads

ou® s’

Vo.fe = —— 12
ot " rsing (12)
whereu°(r, 6, ¢, t) = (o, n*, EYT is the vector unknown of the densjty momentum vecton® = (m,, my, my;)" and
total energy per unit volume'; f° is the flux function of the Euler equations in a sphericalmefiee, defined as

m my my
% 0 mymy mymy
P P I3
o(110 mmy m mymy
f(u ): P Yol +10 P >
mm, mymy ™o
I3 P P
r:“—)(E‘+H) %(E‘+H) %(Et+ﬂ)

ands® is the matrix of the source term, defined as

0 0
m
(T)H + H) + (Tf + H)
Su°) = _me sing + % +II|cosd = §sind + S cos,
_ _
P P
0 0




with TI(u®) the pressure function in terms of the conservative vagmhFor a polytropic, i.e., constant specific heats,
ideal gas the pressure function reads
P2
O ]
2p
wherey is the ratio of the specific heats at constant pressure andwo|By introducing the FE approximation of the
unknownu® and the reinterpolation of the flux functiéhand of the source terns, s°, namely

= Y GO 9), P = Y RO e(r6,9),

keN keN
W)= ) B 6.9), W)= SO@.6.9),
keN keN

according to the procedures detailed in section (2.1) irctfse of a scalar conservation law, the node-pair centered
lumped FE approximation of the Euler equations (12) is imiatetly obtained as follows

_du? fo+f0 -1 s fo—f . .
Lid_tlz_k;;t( 2|"7ik_ 2|'§ik)+fi’|—i_k§) 2'°Xik—fi-§?+§Li+§3Li,

with the FE metric quantities defined in (5) and where

L= Z fr sir? 6i i, L = Z fr sing cosdyigx.

keN; ¥ ik ken; ¥ Qi
The corresponding FV discretization of the Euler equatismggven by

du Pafe
Vid_tlz_kgvlIT"]ik+fi°Li_fi°‘fio+§|-i+§l-i’

whereV? is computed from the equivalence condition (11). In the cotaton, a TVD [14] numerical flux is used,
with the van Leer limiter [15]. The fully discrete form of tHeuler system is obtained by a two-step Backward
Differencing Formula. At each time level, a dual time-steppaodphique is used to solve the time-implicit problem
[16].

3. Numerical Results

In the present section, numerical results for convergirydiverging spherical shock waves are presented in the
two-dimension case, i.@-¢ plane, and the results are compared against the solutidhe ohe-dimensional scheme
[11].

The case of the explosion problem is considered first. Thepaational domain consists of a circular region with
radiusL. Initial conditions are as follows. The velocity is assuni@the zero everywhere; the density is uniform and
equal to 1, whereas the pressure is ten times greater thaiutsin the outer zone only in a circular region centred at
the origin with radiud_/2. The perturbed state is indicated as state 1, while therturped state is indicated as state
2, namely,

P, for r<L/2
o) =ps Vr, U@y =0 v, P(r)={ I

whereu is the fluid velocity. The thermodynamic variables are madeedsionless by the values of the unperturbed
zone and lengths are made dimensionless by the radius oftheutational domain as follows

p=pps P=PPs T=rL, T=tL~lps/Ps U =u+P2/pa
where the overbar indicates dimensional variableslaisthe unit reference length. In all computations, the idseel

model for nitrogeny = cp/c, = 1.39) is used. The computational domain is shown in figure 1yevae@epresentative
7
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Figure 1: Exemplary grid for the explosion and implosiontgeons. The grid is the coarse one, see Table 1

mesh Nodes Triangles Resolution
Coarse 9551 18745 0.01

Medium 20683 40841 0.007
Fine 39153 77587 0.005

Table 1: Properties of the grids used in all the bidimendisimaulations.
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Figure 2: Density isoline for the explosion problem: &) 0.05; (b)t = 0.16; (c)t = 0.20. Each isoline corresponds
to a density dierence ofAp/pret = 0.03. (d) Pressure signal along the- 0 axis at the same time levels: the solid
line is the reference one-dimensional solutions, the @shdd line is the bidimensional solution.

computational grid is also show. All the meshes employediastructured isotropic grids of Delaunay type generated
by the means of the advancing front method of Rebay [17]. lithalsimulations the wall-slip boundary conditions
are applied to the boundaries of the computational domaitalile 1 are reported the properties of thedent grid
used to perform the simulations. In figure 2(a)—(c) densityimes at dierent time levels are shown for the explosion
problem. The grid used in the computation shown is the fineaonkthe time step iat = 1.5 x 1074, A spherical
shock wave propagates towards the outer boundary of the watigmal domain; the shock wave is followed by a
contact discontinuity. A rarefaction wave propagates towahe origin and is then reflected outward. Note that
the initial corrugation of the shock front, due to the un+fegbape of the initial discontinuity caused by its discrete
representation over an unstructured grid of triangleslearty visible also at later times. In figure 2(d) the pressur
signal along they = 0 axis is compared against the reference one-dimensiosidtsdor three dierent time levels.
The one-dimensional computation was performed over a gwdced grid made of 2 001 nodes, which corresponds
to an element spacing of610™*. A grid dependence study is shown in figure 3(a). Pressumalsigilong the/ = 0

axis are compared at tinte= 0.16 for the three dferent grid resolutions, numerical results are find to be atmo
independent from the grid resolution. Time step dependeacéde appreciated from figure 3(b), where the pressure

9
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Figure 3: Comparison of the pressure signal alongytked axis for the explosion problem at time levet 0.16 for
grids with diferent space resolution (a), and foffdient time steps (b). The signal is compared against theerefe
one-dimensional solution.

signals for three dierent time steps is shown at time= 0.16 for the medium grid. Numerical results are found to
be independent from the chosen time step. In all computstibie solution at the grid node located at the origin of
the reference systemfers from a significant undershoot, which however does ngiggate inside the domain and
does not &ect the correct propagation of the reflected waves. In figuneigherical results for the implosion problem
are shown. The initial condition is as in the explosion peoin] where now the high pressure region is the outer one
and the low pressure region israt L/2. The grid is the fine grid and the time step i§ X 104, A rarefaction
wave propagates towards the outer boundary; a shock wave eoigtact surface propagates inwards. The intensity
of the shock increases as it moves towards the origin; wherslilock wave is reflected at the origin, a region of
high pressurgemperature is observed. Due to the symmetry of the solatiohof the computational domain, the
spherical implosion and explosion problems can be alsolatexdiby axially symmetric Euler equations formulated in
a cylindrical coordinate system, as done in [10]. The spglaéend axisymmetric solution correspond to the solution
of the same problem on two ftiérent planes, i.e., the¢ plane in the spherical problem and theR plane in the
axisymmetric problem, wher2 is the coordinate along the axis of symmetry &g the coordinate along the axis
normal to the axis of symmetry. The solutions in sphericalrdmates are shown together with the corresponding
solutions in axisymmetric coordinates in figure 5 for thelegjmn problem and in figure 6 for the implosion problem.
In order to reconstruct the complete spherical solutiorsgiteerical and axisymmetric solutions are represented each
on the corresponding plane.

4. Conclusions

A novel unstructured-grid hybrid finite elem@mlume method in a spherical reference was presented. The pr
posed approach represents an extension to the the spharigdinates system of the node-pair scheme developed
recently for the cylindrical case and earlier for the Caatene and moves from suitable equivalence conditions
linking finite element integrals to the corresponding finikdume metrics, such as the cell volume or the integrated
normals. The equivalence conditions were derived hereowitmtroducing any approximation and allowed to de-
termine all needed finite volume metric quantities from &rétement ones. This technique opens the way to mixed
FV/FE formulation, in which the advective terms are computedhegymeans of the TVD FV approach and the FE

10
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Figure 4: Density isoline for the implosion problem: {a) 0.02; (b)t = 0.12; (c)t = 0.16. Each isoline corresponds
to a density dierence ofAp/pres = 0.03. (d) Pressure signal along the- 0 axis at the same time levels: the solid
line is the reference one-dimensional solutions, the dstidd line is the bi-dimensional solution.
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Figure 5: Pressure (a), (c) and density a (b), (d) contaurhe explosion problem at twoftirent time levelst = 0.1
first row,t = 0.16 second row. On the horizontal plane is represented thei@olof the bi-dimensional spherical
problem on the—¢ plane, while on the vertical plane is represented the soiudf the cylindrical axisymmetric
problem on th&Z-R plane.
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Figure 6: Pressure (a), (c) and density a (b), (d) contaurihe implosion problem at two filerent time levelst = 0.1
first row, t = 0.16 second row. On the horizontal plane is represented theti@olof the bidimensional spherical
problem on the—¢ plane, while on the vertical plane is represented the soiudf the cylindrical axisymmetric
problem on th&-R plane.
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scheme is used to discretize the additional contributioribe flow equations due to the action of viscosity and ther-
mal conductivity. In the present work, where only inviscichglations are considered, the hybrid approach is limited
to the finite volume metrics computations. Numerical resate presented for two-dimensional compressible flows.
These are the numerical simulation of the explosion andasiph problems, in which an initial discontinuity in pres-
sure results in the formation of a diverging and converghmack, respectively. The computed pressure and density
profile agree fairly well with one-dimensional simulationdpherical symmetry over a very fine grid. The solutions
obtained in spherical reference also agree fairly well withcorresponding solutions in a cylindrical referencenghe
the axisymmetric condition has been used to simulate sdlexkplosions and implosions.
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Appendix A. Node-pair finite element for a scalar conservatn law

In this appendix, the following two identities are demoattd, namely

- e Tt it
eN; ik keN;,# keN;,#
and
> fﬁ-frfin9¢i¢kn®= D= )i - -6, (A2)
keN; e kE)Vi[.);é

which together allow to recast the discrete Bubnov-Galegmation (3) in its node-pair counterpart (4).

The proof of the identity (A.1) is considered first. The in@gn the left hand side of the Eq. (A.1) is assembled
considering the contributions coming from each eleneintthe mesh, exploiting the local support property of the
shape functions, as follows

Z fe- fr Sindp Vi = Z Z fre fr SinByx Vi, (A.3)
Qe

keN; Qi ecE; keN®
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whereg&; is the set of the elements having the nedecommon andVe is the set of the nodes of elemeamntThe first
summation on the right-hand side is limited to the elemeaitgained in the suppof?; of nodei, which are the only
ones to give a nonzero contribution to integrals contaitiegunctiony;. Note thatQ; = | Jeg, Q°. Considering now
the following identity from the Gauss theorem

fVQ(r Sinfyipy) dQ° = f I Sinfy;kn® doQ°,
Qe 8

Qe
which allows to write

erinHtkaO | = —frsianoiVOgok—fcpicka@(r sin9)+f r sinfBy;pn°. (A.4)
Qe Qe Qe 0

Qe
Thanks to the previous relation one deduces

. 1 . 1 .
fr Sinfp Vi = — fr Sinfp Vi + = erIr]HtkaO i
Qe 2 Qe 2 Qe

1 . 1 . . .
= fr Sinfpk Vi + = (— fr Sindy; Vepy — ftpitpkve(r sing) +f rsmacpicpkn@) (A.5)
2 Qe 2 Qe Qe ﬁ

Qe

1. 1 . 1 . B
=—3ng — 5 | vigkVArsing) + r Sinfy;jpkn°,
2 ! 2 Qe 2 BQS

where in the last equality has been introduced the elemeatétibutionsy;® of the elemeneto the vectom;,
o def .
U ff sind(i Viek — Vi),
QixNQe

suchthatyy = Yecsney) ']Ik By the relation (A.5), the integral (A.3) becomes

Z fe | RekVpi = Z Z fo. (Zn'k ftp. k— 5 R<p.<pkn) (A.6)

KeN; Qi ec&; keN®
On the other hand, from the Eq. (A.5) follows also that
me = - fR‘PkV i — f‘Pi‘PkVO(r sind) + | Rpipn”,
Qe Qe
which can be recast, using the equation (A.4), as
U ZIR‘PiVO‘Pk + f%s@kV@(f sinf) — | Rpipkn”.
Qe Qe Qe

Summing up the last relation for all the nodeselonging to the elemei§)® and using the fact thgf e Viu(x®) =
0,Vx° € QFf, one obtains

Z(;}ﬁ(@_ [awsna + eRgmokn@):o. (A7)

keNe
Summing up the previous relation for all the elements batuntp & and multiplying by the vectof?, follows that

Z Z i ( - ftplcka@(r sing) + f R«picpkn") =0.
ecE; keN® aQe
Multiplying this relation by ¥2 and adding it to the right hand side of (A.6) one has

fy+ 17 fp—f7 )
Z foo | RokVpi Z Z( K e+ k2 L. Lcepitpkve(r smH))

keN; Qi ecE; keN®

NI fa,o.gokn

ec&i keNe©




By recalling thab;ie’@ Ofore¢ (& N &), thatny, = Yecenen ’7|k and thatp; = 0, the right hand side of the last
equation can be written as

fo+ f? fo—f?
Zfii' R¢kV°i=—Z( k2 "'I?k+%'§?k)

keN; Qi KeN; »
o] o]
fk B fi ©
+ > Rdspitpkn ,
kENi{:L BQik

that is the relation (A.1).
Considering now the proof of the identity (A.2), in the lefird side of (A.2) the contribute of the nodis put

into evidence, namely
fR‘P|<Pkn + fo fR‘Pl‘Pl

Z fi- fR‘PI‘Pkn

keN?,

The quantity

is now added and subtracted from the right hand side to obtain
PRIt thp,tpkn = > (fg-1)- thp,tpkn + 12 > [Rag.
keN? keN?, keN? e

By recalling thaty,», ¢k(x°) = 1, x° € Q°, Ve € &, one has

P fR%sOkn—Z(f@—f) fR¢.¢kn+f® f Raim"

keN? keNy,

= > (e =) xp + -6,

keN?,
which is the relation (A.2). Using the relations (A.1), (Ai& possible to write (2) as follow

dug forfe  fo-fe .
ZMH(E:_ Z ( k2 L+ K ) Zf f¢i¢kV®(rS|n0)

KeN: KeN: # KeN; Qi

fo_ g0 (A.8)
-2

fl 0 — fo.go
Xik = Ti "6
keN?,

with the metric quantities defined in (5). In the previousti®n is necessary to write in node-pair form also the
second term on the right hand side. By recalling that

Z fi: f‘ﬁi‘PkV@(rSinG): Z fi: f<ﬁi90kV®(r5in9)+ fy fWPkV@(rSiW),

keNi Qi keNi - Qi Qi

by adding and subtracting to the previous relation the falg quantity

Y, ti+ [anvsin,

KeEN » Qic
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one has

Z fies f‘Pi‘PkVQ(I' sing) = Z (fo— 1)+ [ @iV sing) +
Qig

Z fo. ftpitpkve(r sing)

kENi Qik kENi} kENi Qik
= Z (fg =1 [ oieV(rsing) + f7- f<in®(r sing) (A.9)
KeN Qi Qi
= > (fi -1 [@av(rsing + 7T
kENi; Qik

by substituting this relation into the (A.8) one has the npd# FE discretization of the scalar equation (1)

©

du forfe  fiofe \
Liaz—Z( > ~ My - > —- G|+ - L

keN;,#
. (A.10)

- Y - g

N,

where the mass matrix has been lumped

With Lo = Yyen, M .
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