
 

Permanent link to this version 

http://hdl.handle.net/11311/663612 
 
 

 
RE.PUBLIC@POLIMI 
Research Publications at Politecnico di Milano 
 

  
  

 
 
Post-Print 
 
 
 
This is the accepted version of: 
 
 
D. De Santis, G. Geraci, A. Guardone 
Equivalence Conditions for the Finite Volume and Finite Element Methods in Spherical 
Coordinates 
Mathematics and Computers in Simulation, Vol. 106, 2014, p. 60-75 
doi:10.1016/j.matcom.2012.04.010 
 
 
 
 
 
The final publication is available at https://doi.org/10.1016/j.matcom.2012.04.010 
 
Access to the published version may require subscription. 
 
 
  
 
When citing this work, cite the original published paper. 
 
 
 
 
 



Equivalence Conditions for the Finite Volumes and Finite Elements Methods in
Spherical Coordinates

D. De Santisa, G. Geracia, A. Guardoneb,∗

aINRIA Bordeaux–Sud-Ouest, 351 Cours de la Libration 33405 Talence, France
bDipartimento di Ingegneria Aerospaziale, Politecnico di Milano, Via La Masa, 34, 20156 Milano, Italy

Abstract

A numerical technique for the solution of the compressible flow equations over unstructured grids in a spherical
reference is presented. The proposed approach is based on a mixed finite volume/ finite element discretization in
space. Equivalence conditions relating the finite volume and the finite element metrics in spherical coordinates are
derived. Numerical simulations of the explosion and implosion problems for inviscid compressible flows are carried
out to evaluate the correctness of the numerical scheme and compare fairly well to one-dimensional simulations over
very fine grids.

Keywords: Compressible flows; Shock waves; Explosion/Implosion problem; Spherical coordinates; Finite
Element/Volume methods.

1. Introduction

In a spherical reference, diverse gasdynamics problems exhibit relevant symmetries. These are, e.g., detonations,
astrophysical flows, Inertial Confinement Fusion (ICF) applications, sonoluminescence phenomena and nuclear explo-
sions [1]. To compute the numerical solution of the compressible flow equations for these kind of flows, an interesting
possibility is provided by the use of a mixed finite volume (FV) / finite element (FE) approach [2]. For example, in
viscous flows, it is possible to use the FV and the FE to computethe advection and dissipation terms, respectively,
within the same algorithm [3, 4, 5]. The typical approach to build such methods is to evaluate the fluxes of the Euler
equations by a classical stabilized node-centered FV scheme and to exploit the FE viewpoint to discretize the viscous
or diffusion terms of the NavierStokes equations as well as to possibly estimate the solution gradients, needed by high
order reconstruction schemes [6]. Such a possibility is expected to be of use in the study of the effect of viscosity on
e.g. the formation of stable shock fronts and on the determination of the onset and dynamics of Richtmyer-Meshkov
instabilities in spherical implosions [7].

The combined use of FV and FE techniques is made possible by the introduction of suitable equivalence conditions
that relate the FV metrics, i.e. cell volumes and integratednormals, to the FE integrals. Equivalence conditions
relating the two schemes have been derived for Cartesian coordinates in two and three spatial dimensions [6, 8] and
for cylindrical coordinates in axially symmetric two-dimensional problems [9]. In both cited references, equivalence
conditions are obtained by neglecting higher order FE contributions. Subsequently in [10], equivalence conditions
for the cylindrical coordinates have been derived for the first time without introducing any approximation into the
FE discrete expression of the divergence operator, and in [11] the difference between the consistent scheme and that
violating the the equivalence conditions have been examined for the case of one-dimensional problems in cylindrical
and spherical coordinates. In the present paper the consistent formulation between FV and FE is extended to the case
of spherical coordinatesr, θ, φ, with r, θ andφ, respectively, radial, polar and azimuthal coordinate.

The present paper is structured as follows. In section 2, theFE and FV schemes are briefly described for a scalar
conservation law. Equivalence conditions are demonstrated in this case. The extension to the system of Euler equations
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for compressible flow is also sketched. In section 3, numerical simulations are presented for the explosion and
implosion problems in the spherical coordinates on ther–φ plane and are compared to one-dimensional simulations.
In section 4 final remarks and comments are given.

2. Finite volume/element method in spherical coordinates

In the present section, the finite element and finite volume discrete equations for an exemplary scalar conservation
law in a three-dimensional spherical reference are given. The model equation reads

∂u
∂t
+

1
r2

∂

∂r
(r2 fr ) +

1
r sinθ

∂

∂θ
(sinθ fθ) +

1
r sinθ

∂ fφ
∂φ
= 0,

wheret is the time,r, θ andφ are the radial, polar and azimuthal coordinates, respectively, u = u(r, θ, φ, t) is the
scalar unknown andf ⊙(u) = ( fr , fθ, fφ) is the so-called flux function. A more compact form of the above equation is
obtained by introducing the divergence operator in three-dimensional spherical coordinates,∇⊙ · (·), as follows

∂(u)
∂t
+ ∇⊙ · f ⊙(u) = 0, (1)

with

∇
⊙
· f ⊙(u) =

2
r

fr +
∂ fr
∂r
+

1
r sinθ

∂

∂θ
(sinθ fθ) +

1
r sinθ

∂ fφ
∂φ

Equation (1) is first discretized in space by means of the FE and the FV method; equivalence conditions relating the
two approaches are then derived. Finally, the numerical scheme is applied to the compressible Euler equations and
time discretization is discussed.

2.1. Node-pair finite element discretization

The scalar conservation law (1) is first multiplied by the term r sinθ to formally remove the singularity at the origin
of the reference system, see [11]. The weak form of the resulting equation is obtained by multiplying the differential
equation by test functionsϕ ∈ V ⊂ H1(Ω) and integrating over the domainΩ as follows

∫

Ω

ϕ r sinθ
∂u
∂t

dΩ⊙ +
∫

Ω

ϕ r sinθ∇⊙ · f ⊙(u) dΩ⊙,

to simplify the notation, the infinitesimal volumedΩ⊙ = r2 sinθ drdθdφ will not be indicated in the integrals. An
integration by parts gives

∫

Ω

ϕ r sinθ
∂u
∂t
=

∫

Ω

ϕ f ⊙(u) · ∇⊙(r sinθ) +
∫

Ω

r sinθ f ⊙(u) · ∇⊙ϕ −
∮

∂Ω

r sinθ ϕ f ⊙(u) · n⊙,

where∂Ω is the domain boundary andn⊙ = nr r̂ + nθθ̂ + nφφ̂ is the outward normal versor toΩ.
The discrete form of the above equation is obtained by considering a finite dimensional spaceVh ⊂ H1 of La-

grangian test functionsϕh, to obtain
∫

Ωi

ϕir sinθ
∂u
∂t
=

∫

Ωi

ϕi f ⊙(u) · ∇⊙(r sinθ) +
∫

Ωi

r sinθ f ⊙(u) · ∇⊙ϕi −

∫

∂Ω∂i

r sinθϕi f ⊙(u) · n⊙, ∀i ∈ N

whereN denotes the set of all nodes of the triangulations,Ωi is the support of the basis functionϕi ∈ Vh associated
to nodei and the shorthand notation∂Ω∂i = ∂Ωi ∩ ∂Ω was introduced. The scalar unknown is now interpolated by an
expansion in the same space of the shape function as follows

u(r, θ, φ, t) ≃ uh(r, θ, φ, t) =
∑

k∈N

uk(t)ϕk(r, θ, φ),
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to obtain the Bubnov-Galerkin approximation of (1) as

∑

k∈Ni

duk

dt
M⊙

ik =

∫

Ωi

r sinθ f ⊙(uh) · ∇⊙ϕi +

∫

Ωi

ϕi f ⊙(uh) · ∇⊙(r sinθ) −
∫

∂Ω∂i

r sinθϕi f ⊙(uh) · n⊙, (2)

whereNi is the set of shape functionsϕk whose supportΩk overlapsΩi and where

M⊙

ik
def
=

∫

Ωik

r sinθϕiϕk dΩ⊙,

with Ωik = Ωi ∩ Ωk. By resorting to the so-called flux interpolation technique[12], the flux functionf ⊙(uh) is now
expanded using the same shape functionϕh ∈ Vh as follows

f ⊙(uh(r, θ, φ, t)) = f ⊙
(

∑

k∈N

uk(t)ϕk(r, θ, φ)

)

≃
∑

k∈N

f ⊙k(t)ϕk(r, θ, φ),

wheref ⊙k(t) = f ⊙(uk(t)), to obtain

∑

k∈Ni

duk

dt
M⊙

ik =
∑

k∈Ni

f ⊙k ·
∫

Ωik

r sinθϕk∇
⊙ϕi +

∑

k∈Ni

f ⊙k ·
∫

Ωik

ϕiϕk∇
⊙(r sinθ) −

∑

k∈Ni

f ⊙k ·
∫

∂Ω∂ik

r sinθϕiϕkn⊙, (3)

where∂Ω∂ik = ∂Ωi ∩ ∂Ωk ∩ ∂Ω andN∂i is the set of all boundary nodes ofΩi . Using the following identities

∑

k∈Ni

f ⊙k ·
∫

Ωik

r sinθϕk∇
⊙ϕi =

∑

k∈Ni ,,

(

f ⊙k + f ⊙i
2

· η⊙ik −
f ⊙k − f ⊙i

2
· ζ⊙ik

)

+
∑

k∈Ni ,,

f ⊙k − f ⊙i
2

·χ⊙ik,

∑

k∈Ni

f ⊙k ·
∫

∂Ω∂ik

r sinθϕiϕkn⊙ =
∑

k∈N∂i,,

(

f ⊙k − f ⊙i
)

·χ⊙ik − f ⊙i · ξ
⊙

i ,

demonstrated in Appendix Appendix A, the node-pair representation of (3) is found to be

L⊙i
dui

dt
= −

∑

k∈Ni ,,

(

f ⊙k + f ⊙i
2

· η⊙ik −
f ⊙k − f ⊙i

2
· ζ⊙ik

)

+ f ⊙i · L̂
⊙

i −
∑

k∈N∂i,,

f ⊙k − f ⊙i
2

·χ⊙ik − f ⊙i · ξ
⊙

i , (4)

whereNi,, = N\{i} andN∂i,, = N
∂\{i}. In the expression above the following FE metric quantitiesare introduced

η⊙ik
def
=

∫

Ωik

r sinθ(ϕi∇
⊙ϕk − ϕk∇

⊙ϕi) dΩ⊙, ζ⊙ik
def
=

∫

Ωik

ϕiϕk∇
⊙(r sinθ) dΩ⊙, L̂

⊙

i
def
=

∫

Ωik

ϕi∇
⊙(r sinθ) dΩ⊙,

χ⊙ik
def
=

∫

∂Ω∂ik

r sinθϕiϕkn⊙ d∂Ω⊙, ξ⊙i
def
=

∫

∂Ω∂ik

r sinθϕi n⊙ d∂Ω⊙.
(5)

2.2. Edge-based finite volume discretization

The spatially discrete form of the scalar conservation law (1) is now obtained according to the node-centred finite
volume approach [13]. To this purpose, the scalar conservation law (1) is multiplied by the quantityr sinθ in written
in integral form to obtain

d
dt

∫

C

u(r, θ, φ, t) = −
∫

C

∇
⊙
· f ⊙(u), ∀C ⊆ Ω,

by integrating by parts the right hand side and by applying the divergence theorem the above equation reads

d
dt

∫

C

u(r, θ, φ, t) = −
∮

C

f ⊙(u) · n⊙ +
∫

C

f ⊙(u) · ∇⊙(r sinθ),

3



Its discrete counterpart is obtained by considering a certain number of finite volumesCi , with boundary∂Ci, each of
them surrounding a single nodei of the triangulation ofΩ.

d
dt

∫

Ci

u(r, θ, φ, t) = −
∮

∂Ci

f ⊙(u) · n⊙ +
∫

C

f ⊙(u) · ∇⊙(r sinθ), ∀i ∈ N

The finite volumesCi satisfy the following conditions

C̊i ∩ C̊k = ∅, ∀i, k ∈ N , i , k,
⋃

k∈N

Ck = Ω, ∀i, k ∈ N , i , k,

i ∈ Ci ⇒ i < Ck, ∀i, k ∈ N , i , k.

The first condition guarantees that the open setsC̊i are non-overlapping, the second condition assures that allthe
domain is covered by the finite volume, while the third condition implies that each finite volumeCi is associated with
a single nodei. Over each control volumeCi the cell-averaged unknown is introduced as follows

u(r, θ, φ, t) ≃ ui =
1
Vi

∫

Ci

u(r, θ, φ, t),

whereVi is the volume of thei-th cell. Therefore

V⊙i
dui

dt
= −

∮

∂Ci

r sinθ f ⊙ · n⊙ +
∫

Ci

f ⊙ · ∇⊙(r sinθ), where V⊙i
def
=

∫

Ci

r sinθ.

The boundary integral on the right hand side is now split intointerface or edge contributions as follows

V⊙i
dui

dt
= −

∑

k∈Ni ,,

∫

∂Cik

r sinθ f ⊙ · n⊙i −
∫

∂C∂i

r sinθ f ⊙ · n⊙ +
∫

Ci

f ⊙ · ∇⊙(r sinθ)

whereNi,, is the set of the finite volumeCk sharing a boundary withCi , excludingCi and where∂Cik = ∂Ci\∂Ck ,

∅, k , i is the so-called cell interface. Due to the piecewise constant approximation chosen foru, the discrete unknown
is discontinuous across∂Cik. Therefore a numerical fluxf ⊙ik is introduced, representing an approximation off ⊙(u) at
the cell interface∂Cik. As it is standard practice the numerical flux is assumed to beconstant over the cell interface,
namely

∫

∂Cik

r sinθ f · n⊙i ≃ f ⊙ik ·
∫

∂Cik

r sinθn⊙i = f ⊙ik · ν
⊙

ik with ν⊙ik
def
=

∫

∂Cik

r sinθn⊙i
∫

∂C∂i

r sinθ f · n⊙i ≃ f ⊙i ·
∫

∂C∂i

r sinθn⊙i = f ⊙ik · ν
⊙

i with ν⊙i
def
=

∫

∂C∂i

r sinθn⊙i .

If the second-order centred approximation of the fluxes is considered,f ⊙ik =
f⊙i + f⊙k

2 , the final form of the finite volume
approximation of (1) reads,

V⊙i
dui

dt
= −

∑

k∈Ni,,

f ⊙i + f ⊙k
2

· ν⊙ik + f ⊙i · V̂
⊙

i − f ⊙i · ν
⊙

i , with V̂
⊙

i
def
=

∫

∂C∂i

∇
⊙(r sinθ) (6)

to be compared to the corresponding FE discretization (4).

2.3. Finite Element/Volume equivalence

The equivalence conditions relating the above FV metric quantities and the FE ones defined in the previous section
are now derived. To this purpose, relevant properties of theFE and FV discretizations are briefly recalled.
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Considering FE metric quantities first, from its definition the vectorη⊙ik is asymmetric, namely,

η⊙ik = −η
⊙

ki, (7)

which will be referred in the following as property FE-a. Property FE-b is obtained by noting that (see identity A.7)
∑

k∈Ni

(

η⊙ik − ζ
⊙

ik

)

+ ξ⊙i = 0,

which by the lumpinĝL
⊙

i =
∑

k∈Ni

ζ⊙ik gives immediately

L̂
⊙

i −
∑

k∈Ni,,

η⊙ik = ξ
⊙

i . (8)

Property FE-c stems from the following identity
∫

Ωi

r sinθϕi∇
⊙
· x⊙ =

∫

Ωi

3r sinθϕi = 3L⊙i ,

wherex⊙ is the position vector, i.e.,x⊙ = r r̂(θ, φ). On the other hand, by integrating by parts, one also has
∫

Ωi

r sinθϕi∇
⊙
· x⊙ =

∫

∂Ω∂i

r sinθϕi x⊙ · n⊙i −
∫

Ωi

ϕi x⊙ · ∇⊙(r sinθ) −
∫

Ωi

r sinθx⊙ · ∇⊙ϕi ,

By substituting the exact expansionx⊙ =
∑

k∈Ni
x⊙kϕk, and by applying the the FE node-pair representation described

in section 2.1, the previous equation can be written as

3L⊙i =
∑

k∈Ni ,,

(

x⊙k + x⊙i
2
·η⊙ik −

x⊙k − x⊙i
2
· ζ⊙ik

)

− x⊙i · L̂
⊙

i +
∑

k∈N∂i,,

f ⊙k − f ⊙i
2

·χ⊙ik + x⊙i · ξ
⊙

i .

By substituting property FE-b in the above identity, one finally obtains property FE-c as

3L⊙i =
∑

k∈Ni ,,

(

x⊙k + x⊙i
2
· η⊙ik −

x⊙k − x⊙i
2
· ζ⊙ik

)

+
∑

k∈N∂i,,

f ⊙k − f ⊙i
2

·χ⊙ik. (9)

Considering now FV metric quantities, from the fact thatn⊙i = −n⊙k over∂Cik, property FV-a readsν⊙ik = −ν
⊙

ki,
which corresponds to the conservation property of the scheme. From the Gauss theorem, one also has

∫

Ci

∇
⊙(r sinθ) =

∮

∂Ci

r sinθn⊙i

which, from the definition of FV metric quantities, gives property FV-b as

V̂
⊙

i =
∑

k∈Ni,,

ν⊙ik + ν
⊙

i .

Property FV-c is obtained by noting that

3V⊙i =
∫

Ci

r sinθ∇⊙ · x⊙ =
∮

∂Ci

r sinθx⊙ · n⊙i −
∫

Ci

∇
⊙(r sinθ) · x⊙.

The right hand side of the previous equation is now computed by means of the FV discretization as described in
section 2.2

3V⊙i =
∑

k∈Ni,,

x⊙i + x⊙k
2
· ν⊙ik − x⊙i · V̂

⊙

i + x⊙i · ν
⊙

i ,

5



inserting the property FV-b in the previous relation, the property FV-c is obtained as

3V⊙i =
∑

k∈Ni,,

x⊙i + x⊙k
2
· ν⊙ik. (10)

Therefore, a FV approximation can be formally obtained fromFE metric quantities defined over the same grid
points by setting (see properties FE/FV-a and -b)

ν⊙ik = η
⊙

ik, ν
⊙

i = ξ
⊙

i , V̂
⊙

i = L̂
⊙

i .

Note that the mass lumping approximation
∑

k∈Ni
M⊙

ik ≃ L⊙i , must be introduced in (4) for the equivalence conditions
to be applicable. By subtracting (9) to (10), one finally has

V⊙i = L⊙i +
∑

k∈Ni,,

x⊙k − x⊙i
6
· ζ⊙ik −

∑

k∈N∂i,,

x⊙k − x⊙i
6
·χ⊙ik (11)

It is remarkable that differently from the Cartesian case [6, 8], in the spherical reference, as well as in the cylindrical
reference [10], the FV cell is not coincident with the FE lumped mass matrix. Moreover, the shape of the FV cells
that guarantees equivalence with FE discretization still remains to be determined. The equivalence conditions allowed
us to link the metrics of the FV scheme to the FE integrals. It is possible now to construct an hybrid scheme in which
the FV and FE scheme can be combined to discretized the advective and diffusive terms, respectively, in a consistent
manner. In the next section is reported a FV scheme for the Euler equation in which the metrics are computed directly
from the FE integrals.

2.4. Fully discrete form of the Euler equations in sphericalcoordinates

The Euler equations in spherical coordinates for compressible inviscid flows are now briefly recalled. The differ-
ential form reads

∂u⊙

∂t
+ ∇⊙ · f⊙ =

s⊙

r sinθ
(12)

whereu⊙(r, θ, φ, t) = (ρ,m⊙,Et)T is the vector unknown of the densityρ, momentum vectorm⊙ = (mr ,mθ,mφ)T and
total energy per unit volumeEt; f⊙ is the flux function of the Euler equations in a spherical reference, defined as

f⊙(u⊙) =













































































mr mθ mφ
m2

r
ρ
+ Π

mθmr
ρ

mφmr

ρ

mr mθ
ρ

m2
θ

ρ
+ Π

mφmθ
ρ

mr mφ
ρ

mθmφ
ρ

m2
φ

ρ
+ Π

mr
ρ

(

Et + Π
) mθ

ρ

(

Et + Π
) mφ

ρ

(

Et + Π
)













































































,

ands⊙ is the matrix of the source term, defined as

s⊙(u⊙) =







































































0
(

m2
θ

ρ
+ Π

)

+

(

m2
φ

ρ
+ Π

)

−
mθmr

ρ

−
mφmr

ρ

0







































































sinθ +







































































0

0

m2
φ

ρ
+ Π

−
mφmθ
ρ

0







































































cosθ = s̆⊙ sinθ + s̄⊙ cosθ,
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with Π(u⊙) the pressure function in terms of the conservative variables. For a polytropic, i.e., constant specific heats,
ideal gas the pressure function reads

Π(u⊙) = (γ − 1)

(

Et −
|m⊙|2

2ρ

)

,

whereγ is the ratio of the specific heats at constant pressure and volume. By introducing the FE approximation of the
unknownu⊙ and the reinterpolation of the flux functionf⊙ and of the source terms̆s⊙, s̄⊙, namely

u⊙ ≃
∑

k∈N

u⊙k(t) ϕk(r, θ, φ), f⊙(u⊙) ≃
∑

k∈N

f⊙k(t) ϕk(r, θ, φ),

s̆⊙(u⊙) ≃
∑

k∈N

s̆⊙k(t) ϕk(r, θ, φ), s̄⊙(u⊙) ≃
∑

k∈N

s̄⊙k(t) ϕk(r, θ, φ),

according to the procedures detailed in section (2.1) in thecase of a scalar conservation law, the node-pair centered
lumped FE approximation of the Euler equations (12) is immediately obtained as follows

L⊙i
du⊙i
dt
= −

∑

k∈Ni ,,

(

f⊙k + f⊙i
2
·η⊙ik −

f⊙k − f⊙i
2
· ζ⊙ik

)

+ f⊙i · L̂
⊙

i −
∑

k∈N∂i,,

f⊙k − f⊙i
2
·χ⊙ik − f⊙i · ξ

⊙

i + s̆⊙L̆i + s̄⊙Ľi ,

with the FE metric quantities defined in (5) and where

L̆i =
∑

k∈Ni

∫

Ωik

r sin2 θϕiϕk, L̄i =
∑

k∈Ni

∫

Ωik

r sinθ cosθϕiϕk.

The corresponding FV discretization of the Euler equationsis given by

V⊙i
du⊙i
dt
= −

∑

k∈Ni,,

f⊙i + f⊙k
2
·η⊙ik + f ⊙i · L̂

⊙

i − f ⊙i · ξ
⊙

i + s̆⊙i L̂i + s̄⊙i Ľi ,

whereV⊙i is computed from the equivalence condition (11). In the computation, a TVD [14] numerical flux is used,
with the van Leer limiter [15]. The fully discrete form of theEuler system is obtained by a two-step Backward
Differencing Formula. At each time level, a dual time-stepping technique is used to solve the time-implicit problem
[16].

3. Numerical Results

In the present section, numerical results for converging and diverging spherical shock waves are presented in the
two-dimension case, i.e.r-φ plane, and the results are compared against the solutions ofthe one-dimensional scheme
[11].

The case of the explosion problem is considered first. The computational domain consists of a circular region with
radiusL. Initial conditions are as follows. The velocity is assumedto be zero everywhere; the density is uniform and
equal to 1, whereas the pressure is ten times greater than itsvalue in the outer zone only in a circular region centred at
the origin with radiusL/2. The perturbed state is indicated as state 1, while the unperturbed state is indicated as state
2, namely,

ρ(r) = ρ1 ∀r, u(r) = 0 ∀r, P(r) =

{

P1 for r ≤ L/2
P2 for r > L/2

whereu is the fluid velocity. The thermodynamic variables are made dimensionless by the values of the unperturbed
zone and lengths are made dimensionless by the radius of the computational domain as follows

ρ̄ = ρρ̄2, P̄ = PP̄2, r̄ = r L̄, t̄ = tL̄
√

ρ̄2/P̄2, ū = u
√

P̄2/ρ̄2,

where the overbar indicates dimensional variables andL̄ is the unit reference length. In all computations, the idealgas
model for nitrogen (γ = cP/cv = 1.39) is used. The computational domain is shown in figure 1, where a representative
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Figure 1: Exemplary grid for the explosion and implosion problems. The grid is the coarse one, see Table 1.

mesh Nodes Triangles Resolution
Coarse 9 551 18 745 0.01

Medium 20 683 40 841 0.007
Fine 39 153 77 587 0.005

Table 1: Properties of the grids used in all the bidimensional simulations.
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Figure 2: Density isoline for the explosion problem: (a)t = 0.05; (b)t = 0.16; (c)t = 0.20. Each isoline corresponds
to a density difference of∆ρ/ρre f = 0.03. (d) Pressure signal along they = 0 axis at the same time levels: the solid
line is the reference one-dimensional solutions, the dot-dashed line is the bidimensional solution.

computational grid is also show. All the meshes employed areunstructured isotropic grids of Delaunay type generated
by the means of the advancing front method of Rebay [17]. In all the simulations the wall-slip boundary conditions
are applied to the boundaries of the computational domain. In table 1 are reported the properties of the different grid
used to perform the simulations. In figure 2(a)–(c) density isolines at different time levels are shown for the explosion
problem. The grid used in the computation shown is the fine oneand the time step is∆t = 1.5× 10−4. A spherical
shock wave propagates towards the outer boundary of the computational domain; the shock wave is followed by a
contact discontinuity. A rarefaction wave propagates towards the origin and is then reflected outward. Note that
the initial corrugation of the shock front, due to the un-even shape of the initial discontinuity caused by its discrete
representation over an unstructured grid of triangles, is clearly visible also at later times. In figure 2(d) the pressure
signal along they = 0 axis is compared against the reference one-dimensional results for three different time levels.
The one-dimensional computation was performed over a evenly-spaced grid made of 2 001 nodes, which corresponds
to an element spacing of 5× 10−4. A grid dependence study is shown in figure 3(a). Pressure signals along they = 0
axis are compared at timet = 0.16 for the three different grid resolutions, numerical results are find to be almost
independent from the grid resolution. Time step dependencecan be appreciated from figure 3(b), where the pressure
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Figure 3: Comparison of the pressure signal along they = 0 axis for the explosion problem at time levelt = 0.16 for
grids with different space resolution (a), and for different time steps (b). The signal is compared against the reference
one-dimensional solution.

signals for three different time steps is shown at timet = 0.16 for the medium grid. Numerical results are found to
be independent from the chosen time step. In all computations, the solution at the grid node located at the origin of
the reference system suffers from a significant undershoot, which however does not propagate inside the domain and
does not affect the correct propagation of the reflected waves. In figure 4, numerical results for the implosion problem
are shown. The initial condition is as in the explosion problem, where now the high pressure region is the outer one
and the low pressure region is atr ≤ L/2. The grid is the fine grid and the time step is 1.5 × 10−4. A rarefaction
wave propagates towards the outer boundary; a shock wave anda contact surface propagates inwards. The intensity
of the shock increases as it moves towards the origin; when the shock wave is reflected at the origin, a region of
high pressure/temperature is observed. Due to the symmetry of the solutionand of the computational domain, the
spherical implosion and explosion problems can be also simulated by axially symmetric Euler equations formulated in
a cylindrical coordinate system, as done in [10]. The spherical and axisymmetric solution correspond to the solution
of the same problem on two different planes, i.e., ther-φ plane in the spherical problem and theZ-R plane in the
axisymmetric problem, whereZ is the coordinate along the axis of symmetry andR is the coordinate along the axis
normal to the axis of symmetry. The solutions in spherical coordinates are shown together with the corresponding
solutions in axisymmetric coordinates in figure 5 for the explosion problem and in figure 6 for the implosion problem.
In order to reconstruct the complete spherical solution thespherical and axisymmetric solutions are represented each
on the corresponding plane.

4. Conclusions

A novel unstructured-grid hybrid finite element/volume method in a spherical reference was presented. The pro-
posed approach represents an extension to the the sphericalcoordinates system of the node-pair scheme developed
recently for the cylindrical case and earlier for the Cartesian one and moves from suitable equivalence conditions
linking finite element integrals to the corresponding finitevolume metrics, such as the cell volume or the integrated
normals. The equivalence conditions were derived here without introducing any approximation and allowed to de-
termine all needed finite volume metric quantities from finite element ones. This technique opens the way to mixed
FV/FE formulation, in which the advective terms are computed bythe means of the TVD FV approach and the FE
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Figure 4: Density isoline for the implosion problem: (a)t = 0.02; (b)t = 0.12; (c)t = 0.16. Each isoline corresponds
to a density difference of∆ρ/ρre f = 0.03. (d) Pressure signal along they = 0 axis at the same time levels: the solid
line is the reference one-dimensional solutions, the dot-dashed line is the bi-dimensional solution.
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(a) (b)

(c) (d)

Figure 5: Pressure (a), (c) and density à (b), (d) contours for the explosion problem at two different time levels:t = 0.1
first row, t = 0.16 second row. On the horizontal plane is represented the solution of the bi-dimensional spherical
problem on ther–φ plane, while on the vertical plane is represented the solution of the cylindrical axisymmetric
problem on theZ–Rplane.
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(a) (b)

(c) (d)

Figure 6: Pressure (a), (c) and density à (b), (d) contours for the implosion problem at two different time levels:t = 0.1
first row, t = 0.16 second row. On the horizontal plane is represented the solution of the bidimensional spherical
problem on ther–φ plane, while on the vertical plane is represented the solution of the cylindrical axisymmetric
problem on theZ–Rplane.
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scheme is used to discretize the additional contributions to the flow equations due to the action of viscosity and ther-
mal conductivity. In the present work, where only inviscid simulations are considered, the hybrid approach is limited
to the finite volume metrics computations. Numerical results are presented for two-dimensional compressible flows.
These are the numerical simulation of the explosion and implosion problems, in which an initial discontinuity in pres-
sure results in the formation of a diverging and converging shock, respectively. The computed pressure and density
profile agree fairly well with one-dimensional simulation in spherical symmetry over a very fine grid. The solutions
obtained in spherical reference also agree fairly well withthe corresponding solutions in a cylindrical reference where
the axisymmetric condition has been used to simulate spherical explosions and implosions.
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Appendix A. Node-pair finite element for a scalar conservation law

In this appendix, the following two identities are demonstrated, namely

∑

k∈Ni

f ⊙k ·
∫

Ωik

r sinθϕk∇
⊙ϕi =

∑

k∈Ni ,,

(

f ⊙k + f ⊙i
2

· η⊙ik −
f ⊙k − f ⊙i

2
· ζ⊙ik

)

+
∑

k∈Ni ,,

f ⊙k − f ⊙i
2

·χ⊙ik (A.1)

and
∑

k∈Ni

f ⊙k ·
∫

∂Ω∂ik

r sinθϕiϕkn⊙ =
∑

k∈N∂i,,

(

f ⊙k − f ⊙i
)

·χ⊙ik − f ⊙i · ξ
⊙

i , (A.2)

which together allow to recast the discrete Bubnov-Galekinequation (3) in its node-pair counterpart (4).
The proof of the identity (A.1) is considered first. The integral on the left hand side of the Eq. (A.1) is assembled

considering the contributions coming from each elemente in the mesh, exploiting the local support property of the
shape functions, as follows

∑

k∈Ni

f ⊙k ·
∫

Ωik

r sinθϕk∇
⊙ϕi =

∑

e∈Ei

∑

k∈Ne

f ⊙k ·
∫

Ωe
r sinθϕk∇

⊙ϕi , (A.3)
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whereEi is the set of the elements having the nodei in common andNe is the set of the nodes of elemente. The first
summation on the right-hand side is limited to the elements contained in the supportΩi of nodei, which are the only
ones to give a nonzero contribution to integrals containingthe functionϕi . Note thatΩi =

⋃

e∈Ei
Ωe. Considering now

the following identity from the Gauss theorem
∫

Ωe
∇
⊙(r sinθϕiϕk) dΩ⊙ =

∫

∂Ωe
r sinθϕiϕkn⊙ d∂Ω⊙,

which allows to write
∫

Ωe
r sinθϕk∇

⊙ϕi = −

∫

Ωe
r sinθϕi∇

⊙ϕk −

∫

Ωe
ϕiϕk∇

⊙(r sinθ) +
∫

∂Ωe
r sinθϕiϕkn⊙. (A.4)

Thanks to the previous relation one deduces
∫

Ωe
r sinθϕk∇

⊙ϕi =
1
2

∫

Ωe
r sinθϕk∇

⊙ϕi +
1
2

∫

Ωe
r sinθϕk∇

⊙ϕi

=
1
2

∫

Ωe
r sinθϕk∇

⊙ϕi +
1
2

(

−

∫

Ωe
r sinθϕi∇

⊙ϕk −

∫

Ωe
ϕiϕk∇

⊙(r sinθ) +
∫

∂Ωe
r sinθϕiϕkn⊙

)

= −
1
2
η

e,⊙
ik −

1
2

∫

Ωe
ϕiϕk∇

⊙(r sinθ) +
1
2

∫

∂Ωe
r sinθϕiϕkn⊙,

(A.5)

where in the last equality has been introduced the elementalcontributionsηe,⊙
ik of the elemente to the vectorη⊙ik

ηe,⊙
ik

def
=

∫

Ωik∩Ω
e

r sinθ(ϕi∇
⊙ϕk − ϕk∇

⊙ϕi),

such thatη⊙ik =
∑

e∈(Ei∩Ek) η
e,⊙
ik . By the relation (A.5), the integral (A.3) becomes

∑

k∈Ni

f ⊙k ·
∫

Ωik

Rϕk∇
⊙ϕi = −

∑

e∈Ei

∑

k∈Ne

f ⊙k ·
(

1
2
ηe,⊙

ik +
1
2

∫

Ωe
ϕiϕk −

1
2

∫

∂Ωe
Rϕiϕkn⊙

)

. (A.6)

On the other hand, from the Eq. (A.5) follows also that

η
e,⊙
ik = −2

∫

Ωe
Rϕk∇

⊙ϕi −

∫

Ωe
ϕiϕk∇

⊙(r sinθ) +
∫

∂Ωe
Rϕiϕkn⊙,

which can be recast, using the equation (A.4), as

ηe,⊙
ik = 2

∫

Ωe
Rϕi∇

⊙ϕk +

∫

Ωe
ϕiϕk∇

⊙(r sinθ) −
∫

∂Ωe
Rϕiϕkn⊙.

Summing up the last relation for all the nodesk belonging to the elementΩe and using the fact that
∑

k∈Ne ∇
⊙ϕk(x⊙) =

0,∀x⊙ ∈ Ωe, one obtains
∑

k∈Ne

(

η
e,⊙
ik −

∫

Ωe
ϕiϕk∇

⊙(r sinθ) +
∫

∂Ωe
Rϕiϕkn⊙

)

= 0. (A.7)

Summing up the previous relation for all the elements belonging toEi and multiplying by the vectorf ⊙i , follows that

∑

e∈Ei

∑

k∈Ne

f ⊙i ·
(

ηe,⊙
ik −

∫

Ωe
ϕiϕk∇

⊙(r sinθ) +
∫

∂Ωe
Rϕiϕkn⊙

)

= 0.

Multiplying this relation by 1/2 and adding it to the right hand side of (A.6) one has

∑

k∈Ni

f ⊙k ·
∫

Ωik

Rϕk∇
⊙ϕi = −

∑

e∈Ei

∑

k∈Ne

(

f ⊙k + f ⊙i
2

· η
e,⊙
ik +

f ⊙k − f ⊙i
2

·

∫

Ωe
ϕiϕk∇

⊙(r sinθ)

)

+
∑

e∈Ei

∑

k∈Ne

f ⊙k − f ⊙i
2

·

∫

∂Ωe
Rϕiϕkn⊙.
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By recalling thatηe,⊙
ik = 0 for e < (Ei ∩ Ek), thatη⊙ik =

∑

e∈(Ei∩Ek) η
e,⊙
ik and thatη∅ii = 0, the right hand side of the last

equation can be written as

∑

k∈Ni

f ⊙k ·
∫

Ωik

Rϕk∇
⊙ϕi = −

∑

k∈Ni,,

(

f ⊙k + f ⊙i
2

· η⊙ik +
f ⊙k − f ⊙i

2
· ζ⊙ik

)

+
∑

k∈N∂i,,

f ⊙k − f ⊙i
2

·

∫

∂Ω∂ik

Rϕiϕkn⊙,

that is the relation (A.1).
Considering now the proof of the identity (A.2), in the left hand side of (A.2) the contribute of the nodei is put

into evidence, namely
∑

k∈N∂i

f ⊙k ·
∫

∂Ω∂ik

Rϕiϕkn⊙ =
∑

k∈N∂i,,

f ⊙k ·
∫

∂Ω∂ik

Rϕiϕkn⊙ + f ⊙i ·
∫

∂Ω∂ik

Rϕiϕi n⊙.

The quantity
∑

k∈N∂i,,

f ⊙i ·
∫

∂Ω∂ik

Rϕiϕkn⊙,

is now added and subtracted from the right hand side to obtain

∑

k∈N∂i

f ⊙k ·
∫

∂Ω∂ik

Rϕiϕkn⊙ =
∑

k∈N∂i,,

( f ⊙k − f ⊙i ) ·
∫

∂Ω∂ik

Rϕiϕkn⊙ + f ⊙i ·
∑

k∈N∂i

∫

∂Ω∂ik

Rϕiϕkn⊙.

By recalling that
∑

k∈Ne
ϕk(x⊙) = 1, x⊙ ∈ Ωe,∀e∈ E, one has

∑

k∈N∂i

f ⊙k ·
∫

∂Ω∂ik

Rϕiϕkn⊙ =
∑

k∈N∂i,,

( f ⊙k − f ⊙i ) ·
∫

∂Ω∂ik

Rϕiϕkn⊙ + f ⊙i ·
∫

∂Ω∂i

Rϕi n⊙

=
∑

k∈N∂i,,

( f ⊙k − f ⊙i ) ·χ
⊙

ik + f ⊙i · ξ
⊙

i ,

which is the relation (A.2). Using the relations (A.1), (A.2) is possible to write (2) as follow

∑

k∈Ni

M⊙

ik

duk

dt
= −

∑

k∈Ni ,,

(

f ⊙k + f ⊙i
2

· η⊙ik +
f ⊙k − f ⊙i

2
· ζ⊙ik

)

+
∑

k∈Ni

f ⊙k ·
∫

Ωik

ϕiϕk∇
⊙(r sinθ)

−
∑

k∈N∂i,,

f ⊙k − f ⊙i
2

·χ⊙ik − f ⊙i · ξ
⊙

i ,

(A.8)

with the metric quantities defined in (5). In the previous relation is necessary to write in node-pair form also the
second term on the right hand side. By recalling that

∑

k∈Ni

f ⊙k ·
∫

Ωik

ϕiϕk∇
⊙(r sinθ) =

∑

k∈Ni,,

f ⊙k ·
∫

Ωik

ϕiϕk∇
⊙(r sinθ) + f ⊙i ·

∫

Ωik

ϕiϕk∇
⊙(r sinθ),

by adding and subtracting to the previous relation the following quantity

∑

k∈Ni,,

f ⊙i ·
∫

Ωik

ϕiϕk∇
⊙(r sinθ),

16



one has

∑

k∈Ni

f ⊙k ·
∫

Ωik

ϕiϕk∇
⊙(r sinθ) =

∑

k∈Ni,,

( f ⊙k − f ⊙i ) ·
∫

Ωik

ϕiϕk∇
⊙(r sinθ) +

∑

k∈Ni

f ⊙i ·
∫

Ωik

ϕiϕk∇
⊙(r sinθ)

=
∑

k∈Ni,,

( f ⊙k − f ⊙i ) ·
∫

Ωik

ϕiϕk∇
⊙(r sinθ) + f ⊙i ·

∫

Ωik

ϕi∇
⊙(r sinθ)

=
∑

k∈Ni,,

( f ⊙k − f ⊙i ) ·
∫

Ωik

ϕiϕk∇
⊙(r sinθ) + f ⊙i · L̂

⊙

i .

(A.9)

by substituting this relation into the (A.8) one has the node-pair FE discretization of the scalar equation (1)

L⊙i
dui

dt
= −

∑

k∈Ni ,,

(

f ⊙k + f ⊙i
2

·η⊙ik −
f ⊙k − f ⊙i

2
· ζ⊙ik

)

+ f ⊙i · L̂
⊙

i

−
∑

k∈N∂i,,

f ⊙k − f ⊙i
2

·χ⊙ik − f ⊙i · ξ
⊙

i ,

(A.10)

where the mass matrix has been lumped
∑

k∈Ni

M⊙

ik

dui

dt
≃ L⊙i

dui

dt
,

with L⊙i =
∑

k∈Ni
M⊙

ik.
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