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Abstract

Stochastic frontier analysis (SFA) is often used to estimate technical efficiency
of entities such as firms, countries or municipalities. A potential dependence
between the two components of the error term can be taken into account by a
copula function. While estimation of the model is straightforward using the
Corrected Ordinary Least Squares (COLS) and Maximum Likelihood (ML)
methods, an open issue concerns the inference of the technical efficiencies.
We propose a parametric bootstrap algorithm which is an extension of an
algorithm proposed by Simar and Wilson [18] to the dependence case. This
allows us to estimate the efficiency percentile confidence intervals. We apply
the model to the estimation of technical efficiencies of moroccan municipali-
ties.

Keywords: Bootstrap, Copulas, Efficiency, Inference, Stochastic frontier
analysis

1. Introduction

Efficiency analysis has often been carried out using nonparametric frontier
models such as the Data Envelopment Analysis (DEA) or the Free Disposal
Hull (FDH). An alternative approach is to use Stochastic Frontier Analysis
(SFA), which includes an error term such that deviations from the fron-
tier can be purely random without necessarily indicating inefficency. SFA
can be formulated both in a parametric or nonparametric framework, but
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the parametric SFA has certainly been predominant in the literature and in
applications. The basic idea of all approaches is the comparison between
the Decision Making Units (DMU, firms for example) in order to know how
inputs are used to produce outputs and the comparison is based on the Tech-
nical Efficiency (TE) score achieved by each unit. By definition, technical
efficiency reflects the ability of the firm to obtain maximal output from a
given set of inputs.

The nonparametric frontier approach using DEA or FDH requires min-
imal assumptions regarding the structure of the production and does not
impose restrictions on the functional form relating inputs and outputs. It
does not account for noise in the data, so it implicitly assumes that every
deviation from the frontier is considered as inefficiency.

However, in the parametric SFA, assumptions have to be made both about
the functional form and the distribution of the two types of error, namely,
the symmetric stochastic error term and the divergence of observations from
the efficient frontier. This stochastic frontier approach in the efficiency anal-
ysis was simultaneously and independently introduced by Aigner, Lovell and
Schmidt [2] and by Meeusen and Van den Broeck [13]. Later, several exten-
sions have been proposed by, for example, Agahi, Zarafshani and Behjat [1],
Greene [9, 8], Kumbhakar and Knox Lovell [12], Simar and Wilson [18] and
Smith [19]. A FRONTIER software was developed by Coelli [6] in order
to estimate the stochastic frontier production and the cost function in the
case where the two components of the error term are independent. This soft-
ware is now also available in the statistical computation environment R, see
[16]. As a consequence of its increasing computational availability, stochastic
frontier analysis has been widely applied in several areas.

Recently, Smith [19] has proposed an SFA model allowing for dependence
between the two error components. The dependence can be explicitly mod-
elled using copula functions, while maintaining typical assumptions about
the marginal distribution of the error terms. Estimation of the model using
the Corrected Ordinary Least Squares (COLS) and Maximum Likelihood
(ML) methods is straightforward but can be computationally challenging.
Furthermore, inference about the technical efficiencies is not standard. In
this paper, we propose a bootstrap procedure, which is an extension of an
algorithm proposed by Simar and Wilson [18] to the copula case. This al-
lows to obtain not only point estimates, but also confidence intervals for the
estimated technical efficiencies.

We apply the model to the estimation of technical efficiencies of moroccan

2



municipalities, defining operating receipts as input and financial autonomy
as output. The model is estimated with alternative distributions for the one-
sided error term, as well as alternative copulas. The best model is selected
using classical information criteria. The obtained bootstrap confidence inter-
vals for the technical efficiency estimates are narrow, confirming the adequacy
of our methodology and the interpretation of the results. We find that, con-
trary to common understanding, no municipality in the central regions of the
country is close to the frontier.

The remainder of the paper is organized as follows. The second sec-
tion gives an overview of parametric SFA and its history, the third section
presents the model with dependent error terms and explains the estimation
and inference using the bootstrap. The fourth section presents the applica-
tion of the proposed methodology, and finally the conclusions in Section 5
will summarize the analysis.

2. Parametric stochastic frontier models

Classical parametric stochastic frontier models assume that there is a
production function f that converts X ∈ Rp

+, a vector of inputs of dimension
p, into a scalar output Y ∈ R+. Supposing that one has n observations of
(Xi, Yi) the model can be written for the i-th DMU as

yi = f (xi, β) + εi, i = 1, · · · , n (1)

where yi = log (Yi), xi = log (Xi), β is a vector of parameters of dimension
l+1 to be estimated, and εi is a stochastic error term. The function f (xi, β)
is interpreted as the production frontier.

The stochastic term εi contains information about both the noise and the
inefficiency. It can be decomposed into a technical inefficiency and a noise
term, which can be estimated. In particular, a typical specification is given
by

εi = vi − ui, (2)

where v is a Gaussian error term, (vi ∼ N (0, σ2
V )), and u is a stochastic error

term with non-negative support (ui ≥ 0, a.s.).
Note that the stochastic component vi that describes random noise af-

fecting the production process is not directly attributable to the producer
or the underlying technology. The noise may come from weather changes,
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economic adversities, etc. The other component, ui, measures technical in-
efficiency in the sense that it measures the shortfall of output yi from its
maximal possible value given by the stochastic frontier (f (xi, β) + vi) and it
is equal to zero for a technically efficient decision unit. Then, the one-sided
error term ui ≥ 0 allows the distinction between DMU (e.g. firms) that are
on the frontier (ui = 0) and others that are below the frontier (ui > 0).

The stochastic model then permits to estimate β and its standard errors
and, consequently, to make statistical tests of hypotheses. However, one of
the criticisms of this model is that there is no a priori justification for the
selection of the distributional form for ui. Several choices have been made
in the literature, see e.g. the overview of Kumbhakar and Knox Lovell [12],
for example, the exponential, the half-normal, the truncated normal or the
Gamma distribution. Furthermore, in order to decompose the error term ε
into its two components, one has to make assumptions on their dependence.
Classical SFA assumes that they are independent. Let us first recall this
approach, see e.g. Jondrow, Knox Lovell, Materov and Schmidt [11].

2.1. Classical SFA with independence

The parameters of the model described by (1) and (2) can be estimated
using, for instance, the maximum likelihood method and εi can be predicted

by ε̂i = yi − f
(
xi, β̂

)
, which contains information on ui. Jondrow, Knox

Lovell, Materov and Schmidt [11] propose a decomposition by considering the
expected value of u, conditional on ε = v − u. They proceed by considering
the conditional distribution of ui given εi. Either the mean or the mode of
this distribution can be used as a predictor of ui.

In the Normal-half-normal case, vi ∼ N (0, σ2
V ), u has a half-normal dis-

tribution (ui ∼ N+ (0, σ2
U)), and v and u are supposed to be independent.

Based on these assumptions, one can derive analytical expressions for the
marginal distribution of ε and the conditional distribution of u given ε, see
Jondrow, Knox Lovell, Materov and Schmidt [11].

2.2. SFA with dependent error components

Consider in this section the simplest cross-section case with n independent
DMUs. The most general way to introduce dependence is to use copula
functions, which in the present context has been proposed recently by Smith
[19]. Appendix A gives a definition and some properties of copulas, and
provides frequently used examples of parametric copula functions.

4



Let us consider the normal, half-normal production frontier model with
Cobb-Douglas production function. Thus, let v ∼ i.i.d.N(0, σ2

V ) and u ≥ 0,
u ∼ i.i.d.N+(0, σ2

U) with E(u) = σU
√

2/π and V ar(u) = ((π − 2) /π)σ2
U .

We know also that ε = v − u, and hence V ar (ε) = V ar (u) + V ar (v) −
2Cov (u, v). Therefore, a positive correlation between u and v (i.e. Cov (u, v) > 0)
reduces the variance of ε, and a negative correlation increases it.

The joint density of u and v when they are dependent is expressed for all
u ≥ 0 and v ∈ Rn by

gθ (u, v) = f1(u)f2(v)cθ (F1(u), F2(v))

In the following we give two examples. Consider first the Gaussian copula
(see Appendix A.1), for which the joint density of u and v can be derived as

gθ (u, v) =
1

πσUσV
exp

{
− 1

2σ2
U

u2 − 1

2σ2
V

v2

}
= .

[
φ2,θ (Φ−1 (F1 (u)) ,Φ−1 (F2 (v)))

φ (Φ−1 (F1 (u))) .φ (Φ−1 (F2 (v)))

]
,

where θ ∈ [−1, 1] is the parameter of the copula, F1 (u) = 2Φ (u/σU) and
F2 (v) = Φ (v/σV ).1

For the case of an FGM copula (see Appendix A.2), the joint density
becomes

gθ (u, v) =
1

πσUσV
exp

{
− 1

2σ2
U

u2 − 1

2σ2
V

v2

}
.

[
1 + θ − 4θΦ

(
u

σU

)
− 2θΦ

(
v

σV

)
+ 8θΦ

(
u

σU

)
Φ

(
v

σV

)]
,

where θ ∈ [−1, 1]. The joint density of u and ε is obtained by replacing v in
gθ (u, v) by v = ε+ u.

To obtain the density of ε , the joint density of u and ε is then integrated
by the variable u,

gθ (ε) =

∫ +∞

0

gθ (u, ε) du

1Note that F1(u) =
∫ u
−∞

2
σU

√
2π

exp

{
− 1

2

(
t
σU

)2}
dt =

∫ u/σU

−∞
2√
2π

exp
{
− 1

2z
2
}

dz =

2Φ
(
u
σU

)
.
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=

∫ +∞

0

f1(u)f2(ε+ u)cθ (F1(u), F2(ε+ u)) du

= EU (f2(ε+ u)cθ (F1(u), F2(ε+ u))) (3)

If no analytical solution of the integral is available, one can approximate it
numerically via simulation by drawing a large number m of random variables
U from the marginal distribution of u, and calculate for any value ε,

gθ (εi) ∼=
1

m

m∑
j=1

f2(εi + uj)cθ (F1(uj), F2(εi + uj))

Replacing ε by y − f (x, β) in the expression of gθ (ε) gives the density of y.
Assuming independence across DMUs, the log likelihood function is given by

l (ϑ) =
n∑
i=1

log gθ (εi) =
n∑
i=1

log gθ (yi − f (xi, β)) , (4)

where ϑ = (σU , σV , θ, β)′, and the ML estimator of ϑ is defined as

ϑ̂ML = arg max
ϑ∈Θ

l (ϑ)

Maximization of the log likelihood function is typically done using nu-
merical techniques, as analytical solutions are rarely available.

Based on ML parameter estimates, one can address the issue of estimating
technical efficiencies, defined as the expectation of efficiency conditional on
observed residuals, see Battese and Coelli [3]. Hence, technical efficiency
of DMUs, which depends on the parameter ϑ = (σU , σV , θ, β) and on the
observed input x and output y, is defined by

TEϑ = E
(

exp {−U} | ε
)

Using the marginal distribution of ε in (3), and the joint density of u and ε
we can calculate

TEϑ =

∫
R+

exp {−u} gθ (u | ε) du

=
1

gθ (ε)

∫
R+

exp {−u} gθ (u, ε) du

=
EU

(
exp {−u} .f2 (u+ ε) .cθ

(
F1 (u) , F2 (u+ ε)

))
EU

(
f2 (u+ ε) .cθ

(
F1 (u) , F2 (u+ ε)

)) (5)
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For a given ϑ, this expression can again be approximated via simulation by
drawing a large number of random variables U and approximate the expec-
tations appearing in numerator and denominator by the corresponding sim-
ulation means. Replacing ϑ by its ML estimator provides the ML estimator
of TEϑ.

While point estimation of TEϑ is straightforward, although it may be
computationally demanding, it is less obvious how to obtain interval esti-
mates and how to do inference. We next describe an algorithm for obtaining
confidence intervals for the technical efficiencies.

2.3. Bootstrap confidence intervals for technical efficiencies

We now propose a statistical inference procedure to construct confidence
intervals for technical efficiencies in the SFA model with dependence. We use
an extension of the bootstrap procedure described in Simar and Wilson [18].
In particular, step 2 of algorithm#3 of Simar and Wilson [18] is modified
to take into account the dependence between u∗i and v∗i using the Clayton
copula. The various steps of the algorithm are as follows:

Step 1. Estimate ϑ = (σU , σV , θ, β0, β1) according to (4), using (xi, yi) , i =
1, . . . , n and using numerical optimization procedures to get

ϑ̂ =
(
σ̂U , σ̂V , θ̂, β̂0, β̂1

)
and to compute TEϑ̂.

Step 2. For i = 1, . . . , n, draw u∗i ∼ N+ (0, σ̂2
U) and v∗i ∼ N (0, σ̂2

V ) such that
their dependence is given by the Clayton copula, and then compute

y∗i = f
(
xi, β̂

)
+ v∗i − u∗i .

There are several procedures to generate the pair (u∗i , v
∗
i ) with depen-

dence given by the Clayton copula, we mention one of them which
uses the conditional distribution approach described in Nelsen [15],
page 41 and denoted cw1 (w2),

cw1 (w2) = P (W2 ≤ w2 | W1 = w1)

= lim
∆w1→0

C (w1 + ∆w1, w2)− C (w1, w2)

∆w1

=
∂C (w1, w2)

∂w1

.(6)

The four steps of this procedure are:

a) Draw two independent uniform random variables (w1i, t2i) such
that w1i ∼ U (0, 1) and t2i ∼ U (0, 1).

b) Set w2i =
[
w−θ̂1i

(
t
−θ̂/(1+θ̂)
2i − 1

)
+ 1
]−1/θ̂

.
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c) Set u∗i = F−1
1 (w1i) and v∗i = F−1

2 (w2i), where F1 and F2 are the
cumulative distribution function of the N+ (0, σ̂2

U) and N (0, σ̂2
V )

respectively.
d) Repeat steps a) to c) to generate n pairs (u∗i , v

∗
i ).

Step 3. Using the pseudo-data S ∗
b,n = {(xi, y∗i )}

n
i=1, compute a bootstrap

estimate ϑ̂∗b = arg maxϑ∈Θ l
(
ϑ | S ∗

b,n

)
after replacing yi by y∗i in (4)

and then compute a bootstrap estimate T̂E
∗
b using (5) after replacing

ε by ε∗b = y − f(x, β̂∗b ), where x and y represent the observed data.

Step 4. Repeat steps 2 and 3 B times to obtain estimates B∗ = {ϑ̂∗b}Bb=1.
Then, use B∗ to obtain the set of B bootstrap estimates of technical

efficiency, E ∗ = {T̂E
∗
b}Bb=1. For each individual i (row i of the E ∗ ma-

trix, denoted by E ∗i ), i = 1, . . . , n, compute the
(
α
2

)
and the

(
1− α

2

)
quantiles for E ∗i by considering its B components. The 100× (1− α)
percentile bootstrap confidence interval of the statistic of interest

TE is obtained by the probability P
(

(E ∗i )α
2
< TEi < (E ∗i )1−α

2

)
=

1−α. Hence, using the 100×
(
α
2

)
and 100×

(
1− α

2

)
percentiles, we

define the lower and the upper bounds of the confidence interval as

TEi ∈
[
(E ∗i )α

2
, (E ∗i )1−α

2

]
.

The proposed algorithm may be computationally intensive but it is straight-
forward to apply and to implement. Furthermore, bootstrap techniques have
the advantage of taking implicitly the estimation uncertainty of the param-
eters into account.

We investigate the performance of the proposed method in a small Monte
Carlo study. We use the same model and parameters as in Simar and Wilson
(2010), i.e. β0 = log(20), β1 = 0.8, λ = σu/σv = 2, and quantiles of ε given
by ε(q), where q ∈ Q and Q = {0.1, 0.3, 0.5, 0.7, 0.9}. The input value is fixed
at x0 = 60, and five log-output values are given by y(q) = exp(β1+β2x0+ε(q)),
corresponding to the five quantiles of ε(q). The dependence parameter θ of
the Clayton copula is fixed at 0.1. We use n = 100 as sample size, M = 120
Monte Carlo trials, and B = 100 bootstrap replications. The estimated
coverages of the bootstrap confidence intervals are given in Table 1. The
results confirm those of Simar and Wilson (2010) for the independence case,
but suggest that the over-coverage is slightly larger under dependence across
the five quantiles.
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Table 1: Estimated coverages of E[e−U |θ, x0 = 60, y0 = y(q)] by bootstrap confidence
intervals

quantile 1− α
0.9 0.95 0.99

0.1 0.96 0.97 1
0.3 0.95 0.97 1
0.5 0.95 0.96 0.99
0.7 0.95 0.97 0.99
0.9 0.95 0.97 1

3. An analysis of the efficiency of Moroccan municipalities

In this application, 1298 Moroccan rural municipalities (DMUs) are con-
sidered to produce one output which is the financial autonomy using oper-
ating receipts as input for the budgetary year 1998/1999. The operating
receipts include ten receipts which are the urban tax, the tax on the collec-
tion of waste, the tax of the licence, the forest domain product, the taxes
and assimilated taxes, the product of services, the product and the income
of goods, the concessions, the subsidies and competition and finally the or-
der receipts. We chose to use the aggregate measure of operating receipts
as the single input because it is a meaningful variable and because it allows
us to reduce the dimensional complexity. Some preliminary analysis with a
multiple input framework did not change the main conclusions drawn from
the aggregate input case.

Furthermore, financial autonomy is defined as the ratio of the own re-
ceipts and the operating expenses. As for the own receipts, they include all
operating receipts except the subsidies and competition. After the decen-
tralization of the Moroccan administration, this kind of data is not available
after 1999. Thus, our data consists of pairs (Xi, Yi) where Xi represents
the single input expressed by the operating receipts of the DMUi used to
produce the output Yi, i.e. the financial autonomy of the same DMUi.

Municipalities are clustered in provinces and regions, and we could have
added a hierarchical structure to the model, but did not pursue this direction
for simplicity. In the interpretation of the results, we will come back to this
point and try to interpret the estimated DMU efficiencies with respect to
their geographical and political situation.

To represent the production technology, we consider the frequently used
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Cobb-Douglas and translog production functions, see e.g. Christensen, Jor-
genson and Lau [5] for a general definition of the translog production func-
tion. The Cobb-Douglas function is nested in the translog one, such that it
can be tested. In our case with just one input variable, the test reduces to
testing a linear model against a quadratic one.

Our distributional assumptions about the error terms are as follows. For
the random noise term v we assume a normal distribution, while either a
half-normal (HN) or truncated normal (TN) distribution are adopted for the
inefficiency component u. Again, the HN model is nested in the TN model,
such that it can be tested easily. The general model with translog production
function and TN distribution for u then reads

yi = β0 + β1xi + β2x
2
i + vi − ui, i = 1, ..., n (7)

where

vi ∼ N
(
0, σ2

V

)
, ui ∼ N+

(
µ, σ2

U

)
.

The special case Cobb-Douglas is attained by restricting β2 = 0, and HN by
restricting µ = 0. The stochastic frontier model in (7) with independent u
and v is estimated by Maximum Likelihood, where initial values are set to
the Ordinary Least Squares (OLS) estimates. The OLS estimators of β1 and
β2 are unbiased, and the intercept can be bias-adjusted using the Corrected
Ordinary Least Square (COLS) method, see e.g. Greene [10].

Assuming independence of u and v, the results summarized in Table
2 reveal that models with the Translog function have slightly higher log-
Likelihood values compared with the corresponding Cobb-Douglas models.
Using a likelihood ratio test statistic, the null hypothesis β2 = 0 can not be
rejected with a p-value equal to 0.4130 in the half-normal case, and 0.6079
in the truncated normal case. Therefore, we pursue our analysis accepting
the Cobb-Douglas specification. In addition, testing µ = 0 in the truncated
normal model does not lead to a rejection at a level of 5%, which means
that we accept the half-normal specification. Thus, the Normal-HN model
with Cobb-Douglas production function is considered and its estimates will
be chosen as initial values in the case of dependence between u and v. They
are reported in Table 3.

As it is not possible to directly estimate the error components u and v,
but only their difference, v − u, we can not directly test the independence
between them. However, it is possible to generalize the preferred model
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Table 2: Technical Efficiency and Log-Likelihood values in the independence case

Name(Pop. Order) CD-HN TL-HN CD-TN TL-TN

Tagante(244) 0.919 0.917 0.916 0.915
Tidili Mesfioua(1239) 0.881 0.880 0.887 0.888
Agafay(667) 0.848 0.850 0.861 0.863
Timzguida-Ouftas(185) 0.831 0.834 0.848 0.850
Adaghas(102) 0.819 0.819 0.839 0.840
Bouhmame(1252) 0.814 0.817 0.835 0.837
Ida ou Guelloul(313) 0.809 0.811 0.831 0.834
Taghazout(234) 0.809 0.811 0.830 0.833
Mouarid(299) 0.807 0.808 0.830 0.832
Ait Aissi Ihahane(257) 0.805 0.807 0.828 0.830
...

...
...

...
...

Jdiriya(46) 0.021 0.021 0.021 0.021
Tifariti(69) 0.021 0.020 0.020 0.021
Haouza(77) 0.021 0.020 0.020 0.020
log-likelihood -1771.50 -1771.165 -1764.131 -1764.117
mean 0.478 0.475 0.558 0.560

HN: half-normal; TN: truncated normal; CD: Cobb Douglas; TL: translog

Table 3: Maximum likelihood estimates in the independence case
for the CD-HN model

Estimate Std. Error t value p.value
β0 -12.0559 0.6036 -19.975 < 2.2e-16
β1 1.1149 0.0410 27.196 < 2.2e-16
σ2 1.8322 0.1184 15.474 < 2.2e-16
γ 0.7796 0.0321 24.323 < 2.2e-16
λ 1.8808

σU 1.1952
σV 0.6355

λ, σU , σV computed from λ = σU

σV
, σ2 = σ2

U + σ2
V and γ = λ2

1+λ2
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under independence, i.e. CD-HN, to allow for dependence. In particular,
introducing a copula which nests the product copula, i.e. independence, as
a special case allows to test the null hypothesis of independence using a
likelihood ratio test, or use a model selection criterion such as AIC or BIC to
distinguish between the two models. In our case, it will turn out that copula
models significantly outperform the model assuming independence, which
indicates that the assumption of independence is too restrictive. Ignoring
dependence between the error components may lead to biased estimates of
β, σU and σV . In the following, we therefore consider various copula models
for the joint distribution of u and v.

The maximization of the log-likelihood function in (4) often requires nu-
merical derivatives. We use the MLE function from the stats4 package in the
R software. The estimates under independence reported in the Table 3 are
used as initial values. Several optimization methods as a variant of a sim-
ulated annealing method (SANN) given in Bélisle [4] and the Nelder-Mead
method given in Nelder and Mead [14] are offered in the R package, but the
selected one is the Nelder-Mead method.

As pointed out by Ritter and Simar [17] and Simar and Wilson [18], the
estimation with location parameter µ in the TN model can be numerically
difficult and may require very large sample sizes. The reason is that, for
moderate sample sizes, the likelihood function is flat with respect to µ, such
that a practical identification issue arises, although asymptotically the model
is well identified. An alternative is to set this parameter to a predetermined
value. In our case, we have experimented with several values and have chosen
to set µ = −1 for the models with truncated normal distribution, as it gave in
most cases the best fit. Technical efficiencies are estimated according to (5)
for ten models using the Cobb-Douglas function, the normal distribution for
the noise term v, the half-normal and the truncated normal distributions with
µ = −1 for the inefficiency error u and using five copulas. These copulas are
the Ali-Mikhail-Haq (AMH), Clayton, Fairlie-Gumbel-Morgenstern (FGM),
Frank and Gaussian copulas.
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Table 5: ML estimator of ϑ for the HN-Clay model

ϑ Estimate Std. Error tstat = ϑ̂k
SE(ϑ̂k)

β0 -11.6612 0.0017 -6859.530
β1 1.1290 0.0037 305.135
θ 1.3750 0.0027 509.259

σU 1.9167 0.0018 1064.833
σV 0.7583 0.0017 446.059

logLik -1750.948

Table 4 reports a subsample of the estimated technical efficiencies for the
ten alternative models, together with the estimated θ of the corresponding
copula. Furthermore, the ratio of standard deviations λ = σU/σV is reported,
which is a measure for the asymmetry of the composite error distribution.
Finally, the estimated likelihood values are reported. Since all models have
the same number of parameters, standard model selection criteria such as
AIC or BIC are equivalent to choosing the model with the highest likelihood
value. In our case, this is the model where the error term v has a Normal
distribution, the inefficiency term u has a half-normal distribution and where
the dependence between u and v is expressed by the Clayton copula. This
preferred model will be denoted HN-Clay.

The parameter estimates of the HN-Clay model are presented in Ta-
ble 5. Note that all parameters are significantly different from zero at all
usual significance levels. In particular, the independence hypothesis θ = 0 is
clearly rejected. To interpret the association between u and v we calculate
Kendall’s τ which is the probability of concordance minus the probability of
discordance, and is thus standardized to the interval [−1, 1]. For the Clayton
copula, Kendall’s τ is given by τ = θ/ (θ + 2) and for the estimated θ = 1.375
takes the value τ = 0.407. Clearly, the probability of concordance is higher
than the probability of discordance for the random variables u and v.

To classify the estimation results with respect to the 1298 districts, we
rank these with respect to increasing population size. Note from the results
in Table 4 that the ranking of efficiency estimates is almost always the same
irrespective of the model. No district is close to the frontier, the highest
efficiency is attained for the Tagante (244) district, which is in the Guelmim
Province (50) in the south of Morocco and which is ranked 244-th according
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to (increasing) population size. The following districts are Tidili Mesfioua
(1239) in the Al Haouz Province (20), Agafay (667) in Agadir Idaoutanane
Province (16), Timzguida-Ouftas (185) in Essaouira Province (47), Adaghas
(102) in Essaouira Province (47), and Bouhmame (1252) in Safi Province
(44). For the chosen HN-Clay model, the Tagante (244) district, for instance,
could reach efficiency by reducing its resources by 25.2 percent. The least
efficient of all districts is Tifariti (69) in the Es-Smara province(48), with
receipts covering less than 1 percent of its expenses.

Note also that there is a very big disparity between districts of the
Guelmim-Es Semara region in so far as it includes the the most efficient
district as well as the three least efficient ones. However, they belong to
completely different provinces which are Guelmim for the first one and Es-
Semara for the three last ones and both provinces have different geographical
specificities. On the other hand, among the ten most efficient districts, seven
are in the Marrakech-Tensift-Al Haouz region and among these seven munic-
ipalities, five are in the Essaouira Province. Even if they are well classified,
their estimates of technical efficiency remain quite far from the frontier irre-
spective of the model used for the dependence.

It is surprising not to find among the most efficient municipalities those of
the central regions (for example the Rabat-Salé-Zemmour-Zaër or the Grand
Casablanca regions) which are close to the central administration and where
local council members typically have a high training level. However, in the
absence of data on the geographical distance and on the training level of the
local elected officials, their effects on the municipality efficiency cannot be
formally tested.

Except for the models with Frank and Gaussian copula, efficiency means
and medians of all models where the inefficiency term u has a half-normal
distribution are lower than those using the truncated normal distribution.
Note that the choice of copula affects the estimated efficiency level. The
highest levels are obtained for the Frank copula, the lowest for Clayton (HN)
and Gaussian (TN). Note also that the medians are higher than the means in
both cases, reflecting the fact that both distributions are negatively skewed
in all cases. This can be seen in Figure 1, which displays the Box-plots of
estimated efficiencies for all models and which illustrate the dispersion and
skewness of their distributions.

Figure 2 depicts the estimated gθ (ε) density for the HN-Clay model.
It clearly shows the skewness, which can also be expressed in terms of the
estimated ratio of standard errors, λ = σU/σV , taking a value 2.528, recalling
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Figure 1: Boxplot of TE for ten models with HN and TN(µ = −1)
 

 

that a symmetric density would be obtained for λ = 0. Note also that due to
the dependence between the two error components, the mode of the density
is not at zero but shifted to the left. Intuitively, introducing a dependence
between u and v, which is positive in our case, tends to reduce the general
level of estimated technical efficiencies, which can also be seen by comparing
the results of Table 4 with those of the independence case in Table 2.

Figure 2: gθ (ε) distribution for the N-HN-Clay Copula model
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We now provide estimated 95% confidence intervals for the technical ef-
ficiencies using the bootstrap algorithm presented in Section 2.3. Table 6
gives an overview of the lower and the upper bounds of bootstrap confidence
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Table 6: TE confidence intervals for the HN-Clay model
Name(Pop. Order) Province Region Lower TE Upper
Tagante(244) Guelmim Guelmim-Es Smara 0.6933 0.7484 0.8753
Tidili Mesfioua(1239) Alhouz Marrakech-T.-H.*** 0.5863 0.6468 0.8111
Agafay(667) Marrakech M.* Marrakech-T.-H.*** 0.5183 0.5772 0.7558
Timzguida-Ouftas(185) Essaouira Marrakech-T.-H.*** 0.4939 0.5495 0.7284
Adaghas(102) Essaouira Marrakech-T.-H.*** 0.4813 0.5331 0.7145
Bouhmame(1252) El Jadida Doukkala-Abda 0.4752 0.5269 0.7039
Ida ou Guelloul(313) Essaouira Marrakech-T.-H.*** 0.4712 0.5217 0.6985
Taghazout(234) Agadir I. O.** Sous-Massa-Draâ 0.4695 0.5202 0.6945
Mouarid(299) Essaouira Marrakech-T.-H.*** 0.4693 0.5190 0.6959
Ait Aissi Ihahane(257) Essaouira Marrakech-T.-H.*** 0.4674 0.5169 0.6925
... ... ... ... ... ...
Ain Blal(237) Settat Chaouia-Ouardigha 0.4388 0.4741 0.6034
Amerzgane(611) Ouarzazate Sous-Massa-Draâ 0.4483 0.4739 0.5377
Sidi Lahsen(773) Taourirt Oriental 0.4483 0.4739 0.5375
... ... ... ... ... ...
Jdiriya(46) Es-Semara Guelmim-Es Smara 0.0032 0.0039 0.0066
Haouza(77) Es-Semara Guelmim-Es Smara 0.0032 0.0038 0.0066
Tifariti(69) Es-Semara Guelmim-Es Smara 0.0031 0.0037 0.0063

*Marrakech M.: Marrakech Menara, **Agadir I. O.: Agadir Ida Outanane, ***Marrakech-T.H.:
Marrakech-Tensift-Al Haouz.

intervals for the N-HN-Clay model with number of bootstrap replications
B = 700. As summarized in this table, each estimated efficiency is covered
by the associated confidence interval as expected, and generally the range of
each confidence interval is rather small. Note that the estimated efficiencies
are generally closer to the lower limit of the interval and, hence, the intervals
are not symmetric around the estimated TE values, which is also as expected.

It may be of further interest to discover any links of estimated technical
efficiencies with observed characteristics such as the population size. For
the selected model HN-Clay we use Kendall’s independence test between
technical efficiencies and population size, which yields a statistic τ = −0.0468
and corresponding p-value equal to 0.0011. Thus we reject the null hypothesis
of independence. The relation between the two variables is opposite, so
that highly populated districts tend to be less efficient. This may suggest
that population size influences financial autonomy, in which case it could be
included in the model.

4. Conclusion

In the framework of a stochastic frontier analysis with dependence be-
tween the noise term V and inefficiency U , we introduce a bootstrap pro-
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cedure to estimate confidence intervals for technical efficiencies. Applying
the model to the financing of Moroccan rural districts, we find that esti-
mated technical efficiencies allowing for dependence through copulas tend to
be lower than under independence, while the ranking remained basically the
same. Furthermore, the most efficient districts are in the regions of Guelmim-
ES Semara, Marrakech-Tensift-El Haouz, Sous-Massa-Draâ and Doukkala-
Abda and, contrary to prior expectations, no districts of the central regions
is among the top classified. We find a significant negative link between
estimated technical efficiencies and population size, indicating that highly
populated districts tend to be less efficient. Future research may provide a
detailed analysis of the socio-economic and demographic factors that could
explain inefficiencies such as the geographical distance from the center and
the training level of the local councils members.
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Appendix A.

In this appendix we give some definitions and properties of copula func-
tions, which can be used to model the dependence between random variables
in a general way.
Definition An n-dimensional copula is a distribution function defined on
[0, 1]n with standard uniform marginal distributions.

For general properties of copulas, we refer to Nelsen [15]. The following
fundamental theorem has mainly motivated the widespread use of copulas.
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Sklar’s theorem (1959): Given a multidimensional distribution function
F which has F1, ..., Fn as marginals, there exists a copula C of dimension n
such that for all a = (a1, ..., an) ∈ Rn :

F (a1, ..., an) = C(F1 (a1) , ..., Fn (an) ),

where Fi (ai) = wi for all i = 1, ..., n and C
(→
w
)

= C (w1, ..., wn) is a joint

distribution of uniform marginals. Furthermore, if marginals are continuous,
the copula C is unique and for all w ∈ [0, 1]n we can write

C
(→
w
)

= F (F−1
1 (w1) , ..., F−1

n (wn) ).

The function Π (w1, w2) = w1.w2 is called the product copula and has
an important statistical interpretation: Let w1 = F1 (u) and w2 = F2 (v),
Π (w1, w2) is the copula of U and V if and only if they are independent.
In the following we give expressions for some bivariate copulas and their
densities. The copulas considered in this paper are the Ali-Mikhail-Haq
(AMH), Clayton, Fairlie-Gumbel-Morgenstern (FGM), Frank and Gaussian
copulas. They all nest the product copula (i.e. independence) as a special
case. For more details, see e.g. Genest and Favre [7] and Nelsen [15].

Appendix A.1. Gaussian copula
The Gaussian copula is given by

Cθ (w1, w2) = Φ2,θ

(
Φ−1 (w1) ,Φ−1 (w2)

)
(A.1)

and the Gaussian copula density function is obtained by differentiation w.r.t.
w1 and w2 as

cθ (w1, w2) =
φ2,θ (Φ−1 (w1) ,Φ−1 (w2))

φ (Φ−1 (w1)) .φ (Φ−1 (w2))
=

φ2,θ (t1, t2)

φ (t1) .φ (t2)
(A.2)

with ti = Φ−1 (wi) for all i = 1, 2, and where w1 = F1 (u) and w2 = F2 (v)
are the marginal distributions of u and v, respectively, θ is equal to the cor-
relation coefficient, φ (ti) = Φ′ (ti) denotes the standard normal probability
density function (p.d.f.), Φ the cumulative distribution function (c.d.f.) of
the univariate standard normal distribution, and Φ2,θ denotes the c.d.f. of a
bivariate Gaussian random variable with correlation θ and whose marginals
are standard normal. The function Φ2,θ does not have a closed form expres-
sion, but it can be evaluated numerically. Furthermore, being in the class of
elliptical distributions, the Gaussian copula is symmetric.

19



Appendix A.2. FGM copula

The Farlie-Gumbel-Morgenstern copula, denoted FGM copula is the only
copula which has a functional form as a second order polynomial in w1 and
w2. This FGM copula is defined in the bivariate case as

Cθ (w1, w2) = w1w2Pθ (w1, w2) , θ ∈ [−1, 1] (A.3)

where the polynomial Pθ (w1, w2) = 1 + θ (1− w1) (1− w2), hence

Cθ (w1, w2) = w1w2 [1 + θ (1− w1) (1− w2)] , θ ∈ [−1, 1] , (A.4)

where

cθ (w1, w2) =
∂2Cθ (w1, w2)

∂w1∂w2

= 1 + θ − 2θw1 − 2θw2 + 4w1w2, (A.5)

Cθ and cθ are respectively the c.d.f. and the p.d.f. copula. The product
copula is obtained as a special case for θ = 0. The FGM copula is symmetric
(exchangeable), meaning that Cθ (w1, w2) = Cθ (w2, w1) for all (w1, w2) ∈ I2

and that (w1, w2) and (w2, w1) are identically distributed.

Appendix A.3. Ali-Mikhail-Haq (AMH) copula

The AMH copula can represent both positive and negative independence.
The distribution and the density expressions of this copula are respectively

Cθ (w1, w2) =
w1w2

1− θ (1− w1) (1− w2)
, θ ∈ [−1, 1] (A.6)

cθ (w1, w2) = Aθ (w1, w2) /Bθ (w1, w2) , θ ∈ [−1, 1] (A.7)

where

Aθ (w1, w2) = −(1− 2θ + θ2w1w2 + θw1w2 − θ2w2

+ θ2 + θw1 + θw2 − θ2w1), (A.8)

Bθ (w1, w2) = (−1 + θ − θw1 − θw2 + θw1w2)3 . (A.9)

If θ = 0, then the two variables U and V are independent.
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Appendix A.4. Clayton copula

The distribution clayton copula is defined by

Cθ (w1, w2) =
(
w−θ1 + w−θ2 − 1

)−1/θ
, θ > 0 (A.10)

The density expression is

cθ (w1, w2) = w−1−θ
1 w−1−θ

2

((
w−θ1 + w−θ2 − 1

)−2−1/θ
)

(1 + θ) , θ > 0.(A.11)

As the parameter θ approaches zero, the two variables U and V become
independent and the product copula is obtained as the limiting case:
limθ→0Cθ (w1, w2) = Π (w1, w2).

Appendix A.5. Frank copula

The cdf of the Frank copula is given for all θ ∈ R∗ by

Cθ (w1, w2) = −1

θ
ln

(
1 +

(exp {−θw1} − 1) (exp {−θw2} − 1)

exp {−θ} − 1

)
, (A.12)

and the corresponding density by

cθ (w1, w2) = Dθ (w1, w2) /Eθ (w1, w2) , θ ∈ R∗ (A.13)

where D and E are defined as

Dθ (w1, w2) = exp {(1 + w1 + w2) θ} (exp {θ} − 1) θ, (A.14)

Eθ (w1, w2) = ( exp {θ}+ exp {(w1 + w2) θ}
− exp {θ + w1θ} − exp {θ + w2θ} )2. (A.15)

As for the Clayton copula, if θ → 0, then the product copula is obtained as
the limiting case.
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