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Abstract

Due to errors in measurements and inherent variability in the quantities of
interest, models based on random differential equations give more realistic re-
sults than their deterministic counterpart. The generalized polynomial chaos
(gPC) is a powerful technique used to approximate the solution of these equa-
tions when the random inputs follow standard probability distributions. But
in many cases these random inputs do not have a standard probability dis-
tribution. In this paper, we present a step-by-step constructive methodology
to implement directly a useful version of adaptive gPC for arbitrary distribu-
tions, extending the applicability of the gPC. The paper mainly focuses on
the computational aspects, on the implementation of the method and on the
creation of a useful software tool. This tool allows the user to easily change
the types of distributions and the order of the expansions, and to study their
effects on the convergence and on the results. Several examples illustrating
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the usefulness of the method are included.

Keywords: random differential equations, adaptive polynomial chaos,
computing

1. Introduction and motivation

In dealing with random differential equations, a considerable number of
useful methods have been developed [13, 20, 5, 4, 15, 14, 18, 21, 3, 8, 6]. Here,
we are specifically interested in the generalized Polynomial Chaos method
(gPC) since it has been shown to be particularly effective for a number of
problems [12, 26, 9]. gPC was proposed by Xiu and Karniadakis [26] as a
remarkable generalization of the pioneering work by N. Wiener [25], which is
usually referred to as the homogeneous chaos or Hermite-PC.

The application of gPC requires that every random model parameter
belongs to some of the standard probability distributions. Otherwise, it
has to be approximated by some of them. In practice, this approximation
is usually made by using Gaussian random variables. Although in many
practical cases the previous approach can be legitimized by the Central Limit
Theorem, it is desirable to investigate alternative approaches since sometimes
such approximations cannot be assumed or, even if it can be assumed, the
improvement of the accuracy of the results constitutes a goal itself.

The aim of this paper is to present a method that provides researchers,
that do not know the foundations of gPC, a step-by-step computational ap-
proach technique to implement an adaptive gPC method to be used in ran-
dom continuous models (random differential equations). In this method the
random inputs do not need to belong necessarily to some of the standard
probability families. This point has great interest since, in practice, most
of random variables constructed to model real phenomena likely do not fit
the standard distributions, and therefore the proposed method extends the
applicability of the gPC. This approach requires the construction of prob-
ability density functions of input random variables that, according to gPC
method, will play the same role as the weighting functions do [26]. Notice
that methods to build such probability density functions from sampled data
are well-developed [16, 19, 23|. Several illustrative examples including practi-
cal applications showing the usefulness of the proposed method are presented
in this paper.

This paper is organized as follows. For the sake of clarity, in Section 2



we summarize gPC method focusing on its application to solve random dif-
ferential equations. Section 3 is devoted to introducing a variation of gPC
adapted to the case where every random model parameter may have probabil-
ity distributions different from the standard ones. A pseudo-code algorithm
to compute the main statistical functions of the solution stochastic process
to random differential equations is developed in Section 4, where significant
computational comments are included. In Section 5, we apply adaptive gPC
to solve several illustrative examples including both, test-problems and mod-
els appearing in applications. Finally, conclusions are drawn in Section 6.

2. gPC method: a short review focusing on the solution of random
differential equations

For the sake of clarity in the subsequent developments, this section ex-
plains how gPC works in dealing with the solution of random differential
equations

D(t,E(w);y) = f(L,&(w)), (1)

where © denotes a differential operator; y = y(t, £(w)) is the solution stochas-
tic process to be determined and f(¢,&(w)) is a forcing term. Notice that in
the random differential equation (1) uncertainty is represented by &€ and it
just enters through their coefficients and forcing term, although in practice
it could also be considered via initial and/or boundary conditions.

Let (92,3, P) be a probability space, and let us consider the set L? whose
elements are second-order real random variables, that is, real random vari-
ables ¢ having finite variance, or equivalently E [(?] < oo, where E[] de-
notes the expectation operator. The set L? endowed with the inner product
(¢1,¢) = E[¢1¢)], is a Hilbert space, usually denoted by L2(,§, P) [17].
The norm inferred by the above inner product determines the mean-square
convergence.

gPC is a powerful technique to represent spectrally in the random dimen-
sion random variables ¢ and stochastic processes y(t) in L*(Q,§, P). These
representations are given by infinite random series defined in terms of cer-
tain orthogonal polynomial expansions {®;} which depend on a number of

random variables &(w) = (& (w), & (W), . ..), w € Q,

(= ZQ@(&M), y(t) = Zyi(t)fbi(ﬁ(w))- (2)



As we pointed out in the previous section, the choice of the trial basis
{®;} is crucial in dealing with random differential equations and it is what
distinguishes homogeneous chaos from gPC. In the first one, {®;} are just
the Hermite polynomials defined in terms of Gaussian random variables &;.
Whereas in gPC, {®;} belong to the Wiener-Askey scheme (which contains
Hermite polynomials as a particular case) and &; are standard random vari-
ables, such as binomial, Poisson, beta, gamma, etc, that are linked to the
orthogonal polynomial basis {®;} [26].

For each y(t) € L*(Q,§, P), assuming that {®;} are the Hermite poly-
nomials, the Cameron-Martin theorem guarantees that series (2) converges
in the L? sense [7]. However, in practice, optimal convergence is limited to
stochastic processes with Gaussian inputs &. Otherwise, numerical results
deteriorate even for early times [11].

On the account of this fact, Xiu and Karniadakis proposed gPC focusing
on the solution of random differential equations [26]. This work introduces
not only an extension of Wiener’s contribution but also a comprehensive
approach to set the optimal trial basis {®;}. This set {®;} constitutes a
complete orthogonal basis in L%(€, §, P) with the inner product

(®;, ®;) = (D7) 05, (3)

where §;; is the Kronecker delta and ( ) denotes the ensemble average defined
as follows

(9(€), h(€)) = / O fe€) a6 (4)

being f¢(€) the joint probability density function of £ and supp(&) its sup-
port. Notice that in (4) fe¢(€) plays the role of a weight function. Inde-
pendence between random variables &; is usually assumed in the previous
development. As a consequence f¢(§) factorizes as the product of probabil-
ity density functions f,(&;) associated to each random variable &;.

In order to keep the computations feasible in dealing with random dif-
ferential equations, each random model parameter ( as well as the solution
stochastic process are represented by truncated series of the form (2),

¢~ ZQ@(&(w)), y(t) = Z%(U@(E(W)), ()

where the number of components of random vector £(w) also needs to be trun-
cated at a number s called the order of chaos, £(w) = (§1(w), & (w), . .., E(w)).
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Note that at this point the set {®;, 0 <i < P} is not complete. The trun-
cation order P is made so that all expansion polynomials up to a certain
maximum degree, p, are included. This entails the following relationship
between the number of terms P + 1 in the series expansions, the maximum
degree p and the order of chaos s: P+ 1= (p+ s)!/(p!s!).

In this context, solving the random differential equation (1) consists
of computing coefficients y;(t) appearing in (5). From the functions y;(t)
one computes the expectation and the variance of the approximate solution
stochastic process y(t) as follows:

o) =Byl = po(t), oy = Var[y(t)] ~ Z (4:(1))” E [(®:(6))°] -

i=1
(6)
To achieve this goal, first the expansion of y(t) given by (5) is substituted
into the random differential equation (1). Second, a Galerkin projection is
done by multiplying the random differential equation by every polynomial
of the expansion basis {®;} and then, the ensemble average is taken. This
leads to

that corresponds to a deterministic system of P+ 1 coupled differential equa-
tions whose unknowns are the node functions y;(¢). These unknowns can be
computed by standard numerical techniques such as Runge-Kutta schemes.

In [26] authors show through a simple but still illustrative example in-
volving only one single random input ¢ that exponential convergence for the
mean and the variance of the solution stochastic process is retained when the
orthogonal polynomial basis {®;} is chosen in accordance with the probabil-
ity distribution of (. Namely, if ( has a uniform, Gaussian, beta, gamma,
etc. distribution, then {®;} should be chosen as Legendre, Hermite, Jacobi,
Laguerre, etc., respectively. This proposal is based on the following key fact:
the weighting functions associated to the so-called Wiener-Askey scheme,
that correspond to classical families of orthogonal polynomials, are identi-
cal to the probability density functions of some standard random variables.
Recently, in [10] authors provide conditions under which gPC expansions
converge in the mean-square sense to the correct limit, which constitutes an
extension of paper of Cameron and Martin [7] where mean-square conver-
gence of homogeneous chaos was established.



3. An adaptive generalized Polynomial Chaos method

As we have indicated in previous sections, gPC method provides a com-
prehensive way to chose the optimal trial basis {®;} when random model pa-
rameters belong to the standard probabilistic distributions. However clearly
other distributions are also possible in practice, thus further study is de-
manded. The success of gPC also relies on solving the deterministic system of
differential equations obtained after considering a Galerkin projection. Then
it would be desirable to keep such a system as simple as possible. Bearing in
mind both challenges, in the following we present a variation of gPC, referred
to as adaptive gPC.

In the following, we focus on continuous mathematical models containing
uncertainty into their formulation. Hereinafter, we specifically will consider
models based on systems of random differential equations, which for the
sake of clarity, we will denote directly without using the previous operator
notation, as

F(ta va) = 07 Y(to) = §0a (8)

where t is the independent variable, F' : Rt — R? is a map, y =
y(t) = (y*(#),y%(t),...,y9(t))" is the vector of unknown functions, yo =
(y'(to), y*(to), - . ., y%(to)) " is the vector of initial conditions and 0 = (0,0,...,0)"
denotes the null vector of size q. Here, T denotes the transpose operator for
vectors and matrices. {(y,..., (s} are assumed to be the independent random
input parameters in the initial value problem (i.v.p.) (8). These parameters
include both the coefficients and the initial conditions. Notice that according

to gPC nomenclature, in this case s is also the order of the chaos.

3.1. Fourier expansion of the model parameters

For each probability density function f¢,(¢(;) associated to the random
variable (;, we define the following inner product whose weighting function

1s jU-St sz(C@)
WM = [ OO G 1igs 0

being g, h deterministic functions such that the above integral exists.

In contrast to Wiener-Askey gPC, we are going to represent both random
model parameters (;, 1 < i < s, and the solution stochastic process y(¢) in
terms of a complete orthonormal polynomial basis constructed directly in



terms of (;, 1 < i < s. This construction is done by applying the Gram-
Schmidt method with the previous inner product ( ). to the canonical basis
of each random model parameter ¢; truncated at a common degree p: C’ =
{1,6,(G)%, ..., (G)PY, 1 < i < s. For each i, this procedure allows us to
construct the set of orthonormal polynomials

where ¢{(¢;) =1, 1 <14 < s. Thus each random model parameter (; can be
expanded in a Fourier series, i.e.,

G = apdp(G) + A (G) + -+ o (¢), 1<i<s, (11)

In order to calculate the Fourier coefficients oz;-, 1<i<s, 0L 5 <p, we
should take into account that

e (; has a non-orthonormal natural expansion as itself,
o ¢1(G) = ai +biG, by # 0.

Therefore, substituting this latter expression into (11) and comparing coeffi-
cients in both sides, one gets that the Fourier expansion of the random model
parameter (; is

G = a6¢6(CZ) + azlqbll(Cl)v af) = __'7 O‘Zi =7 I<i<s. (12)

At this point several remarks can be quoted:

e To represent each random model parameter (; we only have needed
as starting canonical basis C} = {1,¢;}, 1 < i < s, which truncation
order is p = 1. However, in applications higher values of p should be
considered in order to represent more accurately the solution stochastic
process y(t) to random differential equation (8).

e For the sake of clarity, we have assumed that the canonical bases C/
considered to represent each random model parameter (;, 1 < i <
s, have the same truncation order. Notice that its generalization to
different values, say p;, would follow immediately from the subsequent
developments.



e In many practical situations the random model parameters (; do not ap-
pear directly but as arguments of non-polynomial functions, say (),
involved into the random differential equation under study. This hin-
ders the application of gPC method since it needs to approximate r((;)
by an appropriate polynomial, which implies a loss in the approxima-
tion that could be unaffordable. Assuming that probability density
function of the random variable (; is known, the application of the
Transformation Technique provides, under quite general conditions, a
powerful method to compute, in closed form, the probability density
function of r(¢;) in terms of the probability density function of random
variable (; [22]. As we shall see, this allows us to consider r({;) as a
random model parameter itself rather than ;.

3.2. Bwilding the solution by adaptive polynomial chaos expansion
In Table 1 we summarize the elements as well as the notation that we
have introduced at this point.

Table 1: Notation introduced for parameters, probability density functions (p.d.f.’s), in-
ner products and orthogonal bases in order to represent the random model parameter
expansions.

Parameters p.d.f.’s Inner products Orthonormal bases
Gi fa(G) < > Bl =A{¢, -, 0}
Cs sz(CS) < >¢ Eg = {¢(S)’ S 7¢;S)}

In our case, the random model parameter expansions correspond to p = 1
and they are given by:

G = aep(Gr) +ajei(Gr),
b : (13)
G = aptp(Cs) + aipi((s)-

Now, we will represent the solution stochastic process y(¢) and the initial
condition yy in terms of a basis = = {®;} constructed from =, 1 <7 <'s.
The elements of this basis represent multidimensional expansion polynomials

and, taking into account independence between random model parameters
(1, ...,Cs, they are built from the simple tensor product

(I)](C) = 11)1(C1) X X gbzs(gs)v (14)
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for some mapping (p1,...,ps) — j starting from (0, ...,0) that corresponds
to 7 = 0. In the particular case that p =1, 0 < p;, < 1,1 < < s. The
tensor product above is done up to a degree r. When p = 1, r < s. This
leads to the following representations of the solution stochastic process and
its derivative

as well as the initial condition
P
Yo =) vo,(to)®;(Q). (16)
j=0

In general, if we want that these expansions contain all the products of the
form (14) with degree less or equal than 7 with 0 < r < p X s, then the
truncation order P is completely determined.

Following gPC development, now we substitute expansions (15)—(16) into
the i.v.p. (8) and we obtain:

P P P
F (t, > yi()2;(0), ZS’j(WE(C)) =0, Vo= ¥o,(to)®;(C),
J=0 J= j=
0 0 an
which involves random variables (i, ..., (.

3.3. Building the auziliary system of deterministic differential equations

The goal of this section is to obtain the deterministic coefficients y;(¢),
0 < j < P. To achieve this goal, we first need to consider the inner product

(9(C), h(O)), = /

9RO fe(€)de,  fe(€) =[] fe(G). ¢ = (G- G,
supp(¢) i=1
(18)
where, by independence of random variables (;, the weighting function f¢(¢)
has been factorized through the probability density functions of each (;,
Now we establish a deterministic i.v.p. based on a system of P+1 differen-
tial equations whose unknowns are the nodes y;(t), 0 < j < P. Hereinafter,



this system will be referred to as the auxiliary system. This system is built
by multiplying each equation of the random differential system (17) by all
the elements of the orthonormal basis = = {®;}, previously constructed and,
then, taking the ensemble average (). defined in (18). This allows us to
take advantage of orthogonality in order to simplify the deterministic sys-
tem of differential equations obtained in this way. This system has as initial
conditions the ones obtained by multiplying (17) by {®;} and then, taking
again the ensemble average ( ) ¢- This permits us to compute the coefficients
¥o,;(to) as follows

Yo,i(to) = (Yo, ©;(¢))¢, 0<j<P. (19)

3.4. Solving the auxiliary system and computing the mean and the standard
deviation of the solution

In the previous subsection, we have constructed a deterministic i.v.p.
whose unknowns are y;(t) , 0 < j < P. These functions can be computed
by applying a numerical scheme such as Runge-Kutta. Once they have been
obtained, approximations for the mean and the variance can be computed
taking into account the following relationships:

(y(@))e =yo(t), Ty = Zyi(t)(yi(t))T ((2:(€)*), - (20)

In (20), the first expression is just the expectation of the solution stochastic
process y(t), while the second one is the variance-covariance matrix whose
diagonal represents the variance of each component y*(t), 1 < i < g of y(t).

4. Adaptive polynomial chaos algorithm

In this section we develop a pseudo-code algorithm to compute the mean
and the standard deviation of the solution stochastic process of a random
i.v.p. of the form (8).

The inputs of the algorithm are:

e The system of random differential equations (model): F(t,y,y) = 0,
with random initial condition: y () = yo.

e The random model parameters including the initial conditions: (3, (s, . . .

10



Now,

The probability density functions of the random model parameters:

fC1(C1)7 fCQ(CQ)a cee 7sz(Cs)'

The (common) truncation order of the polynomial expansion of each
random model parameter p.

we describe the algorithm:

STEP 1. For i = 1,...,s, compute the orthonormal basis = =
{66(G), ..., 0,(¢:)} associated to ¢; applying the Gram-Schmidt or-
thonormalization method and considering the scalar product ( ). de-

fined in (9) to the canonical basis C¥ = {1,(;, (), ..., (G)P}-

STEP 2. Fori = 1,...,s, we have that ¢,(¢;) = 1 and ¢! ((;) = a;+b;G.
Thus, we compute the Fourier expansion of ¢; = af¢i() + aid! (&)
using expression (12).

STEP 3. Build the set of polynomials = = {®;} defined by (14).
STEP 4. Define the scalar product ( ), given by (18).

STEP 5. Consider the truncated orthonormal expansions for the ran-
dom model parameters, the solution stochastic process and its deriva-
tive and the random initial condition given by (15) and (16), respec-
tively.

STEP 6. Substitute the above expansions into the model to obtain the
random i.v.p. (17).

STEP 7. Obtain the auxiliary system in two phases: first, multiplying
each equation of the random i.v.p. (17) by orthonormal polynomials of
the basis = = {®;} and, second taking the ensemble average inferred
by the inner product ( ). constructed in STEP 4.

STEP 8. Solve numerically the auxiliary system.

STEP 9. Compute the mean and the standard deviation of the solution
stochastic process y(t) taking into account expressions in (20).

We have implemented this algorithm in Mathematica [1].

11



4.1. Some computational aspects

During the implementation and when performing some tests, we realised
that it is very important to calculate the Fourier expansion of the parameters
as accurately as possible. In fact, in our case as the code has been imple-
mented in Mathematica, we have computed these coefficients symbolically.
Otherwise, we noticed that the number of coefficients of the auxiliary system
increases rapidly, with most of them being very small (0 when computa-
tions were carried out symbolically), and consequently, solving the auxiliary
system produces dramatic numerical errors.

Moreover, the bottleneck of this algorithm is the building of the auxil-
iary system (STEP 7) because we have to evaluate many inner products that
may involve unbounded integrals with transcendent functions. In order to
improve these computations we have considered that when multiplying each
polynomial from the set = = {®;} by each equation of the random i.v.p.
(17), these inner products are carried out monomial by monomial, and then,
reduced to computations of the form ((¢1)™---(¢s)*,1),. These computa-
tions, in some cases, can be pre-calculated with Mathematica in order to
obtain a closed formula that allows to reduce drastically the time to build
the auxiliary system.

5. Examples: a comparative case-study

In this section, we present five illustrative examples where adaptive poly-
nomial chaos is applied. Examples 1-3 have exact solutions. They have been
included to show that the proposed method is as good as Hermite-PC. More
specifically, in Example 1 we consider a linear random differential equation
with two random parameters and show in detail all the involved computations
in order to show how the proposed method works. In Example 2, we keep
studying a random linear differential equation but increased the number of
random parameters. Example 3 illustrates that the method also works when
dealing with random nonlinear differential equations. In Examples 1-3 we
compare numerical results for the mean and variance obtained by adaptive
gPC with those ones computed by other approaches, namely:

e Exact. The examples have been chosen such that exact solution for the
mean and the variance are available. Thus, they act as test examples.

e Hermite-PC. It consists of obtaining the mean and the variance by ap-
plying homogeneous PC where both the random model parameters and

12



the solution stochastic process are represented in terms of the Hermite
orthogonal polynomial basis. This approach is extensively accepted in
dealing with random differential equations.

The random parameters of Examples 1-3 have standard distributions
whereas the Example 4 involves a random input whose probability density
function is constructed from sampled data. We show that the obtained prob-
ability density function does not follow any standard distribution, so the
adaptive gPC turns out particularly useful. In this example, the numerical
results provided by adaptive gPC are compared with measured data. As in
practice gPC technique has interest when there is not an available solution,
we end this section with Example 5. In this example, we study an epi-
demiological model based on a random system of differential equations with
four random parameters whose exact solution is not available. Numerical
comparisons against Monte Carlo sampling are carried out.

Example 1. We deal with the random i.v.p.
y(t) +by(t) =0, y(0) = wo, (21)
and we will assume that
e b is a beta random variable of parameters o = B =2, i.e., b ~ B(2;2),
e o~ B(2;5).

For the sake of clarity, in this first example we will show in detail each step of
our previous development. According to previous notation random variables
b and Yo correspond to ¢, and (s, respectively, and their probability density
functions are

fa(G) =6(1 = )G, foo(G) =30(1 —G)'Ge, 0< (o<1 (22)

We take p = 3 as the common degree for the two polynomial bases =3 =

{00, b1, 04, 3} and =3 = {2, 2, 3, p3} (see STEP 1). These bases are
defined in terms of the random model parameters (4 and (5, respectively.
We take r = 3 as the maximum degree of the multivariate polynomials
E = {Qy,Py,..., P9} (see STEP 3) defining the basis where the solution

stochastic process y(t) is going to be represented.
Now, we follow the algorithm developed in Section 4, step by step:

13



e STEP 1. Taking the canonical basis C3 = {1,(1, ((1)?, (¢1)?}, the inner
product

(9(C)h(C))e, = / G(COM(C) for(C) AC,

and using Gram-Schmidt orthonormalization method, we obtain the fol-
lowing orthonormal basis for parameter b = (y,

o(C1)
= d5(C1) = \/_ 5\/_C1+5\/_(C1)7
= ¢5(¢1) = —V/30 4+ 9v/30¢1 — 21v/30(¢1)? + 144/30(G1)°.

Analogously, for parameter yy = (5 and the inner product

1

(9(G), h(G))e, = / 9(CM(C2) fer(G2) A,

its orthonormal basis is

¢o %(Cz)—l

$(C)
=¢§( C2)
= ¢3(G2)

2

s|~>

TCZ?
VT = 8VTG + 12V7(G)°,
—3 1+ 198, — 72V/5(G)? + 66V/5 ().

e STEP 2. Looking at ¢1((y), its coefficients are a; = —/5 and by =

2v/5. Then, ay = %, o) = 2\1/5 and the Fourier expansion of parameter
b= Cl 18
b= 208(0) + =t () = 5 + o= (~VE+2vE ()
2 2\/— 1\61 2\/5 1) -
Analogously, the coefficients of ¢2((2) are ay = —iS and by = \%,
of =2 0f = % and the expansion of parameter 7o = o is

2@ + 13 VBG) = 2+ VB (- + 2aa)

14



e STEP 3. The set = = {CI)() = (I)()(gl,gg), ce ,(I)Q = (I)9<C17€2)} 18 given

by
= ¢é¢(2)7 ¢O¢ 15
= q%cb%, ¢0¢3a
= (b%gb%, (bl 1)

= $103, ‘137 = 0305,
= ¢% %7 Dy = ¢:13¢(2)

Note that we only use the products of polynomials whose total degree is
less or equal than r = 3.

e STEP J. Define the new inner product

<9(C17C2),h(C1,C2)>¢ = /01/Olg(ChC2)h(C1,CQ)fQ(Cl)fcz(Cz)dCld@-

e STEP 5. The expansions of the solution y(t) and its derivative §(t) are
y(t, C1, G2) = Zy_] (t, G, C2)P;(C1, G2),

Gt ¢, G) = Z% (£, G )¢, Ga).

o STEP 6. We substitute the random parameter models and unknown
function expansions into the i.v.p. y(t) + by(t) = 0, y(0) = yo. The
resulting equation s

Zyj (t.C1, &) ®5(Grs G2)

. (% b e (V5 2\/3@)) Z% (1,1 )5 (G1, o) =

Zyjocl,@ (@G =2+ f( . ;{)

e STEP 7. Now, using the inner product defined in STEP 4, we multiply
each polynomial ®;(¢1,¢2), j =0,...,9, for each one of the equations
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obtained in STEP 6. This leads to the auziliary system of deterministic
equations given by
Syo(t) + ﬁgyl (t) +90(t) =0,
2\[90(75) + ;yl(t) + \/ 2552(t) + 51(t) = 0,
v/ 2 (t) + 5u2(t) + 51/ 2xys(t) + 1a(t) = 0,
31/ ﬁy2(t) + 5?/3(75) +y3(t) =0,
Sualt) + ﬁgys( ) +9a(t) =0,
ﬁg%(t) + 3ys(t) + \/ 2ys(t) + ys(t) =0,
\ 39s(t) + 396(t) + gs(t) = 0,
S0r(0) + Z20e(t) + (1) =
e(t) + Ly () + s(8) = 0.
2y9( ) + yg( ) 0

yo(0) = 2, 41(0) =0, ya = Y
ys(0) = 0, ys(0) =0, y7(0) = 0 y3(0) =0, yo(0) = 0.
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o STEPS § and 9. Then, we solve the auxiliary system and compute the
mean and the variance.

In Tables 2 and 3, we compare the exact values of the mean and the
variance of the solution stochastic process to random i.v.p. (21) with respect
to the numerical values obtained by adaptive gPC (columns p adaptive gPC
and o2 adaptive gPC, respectively) and PC using the Hermite polynomials
as the trial basis (columns u Hermite-PC, and o Hermite-PC, respectively).
We observe that the results provided by adaptive gPC method are as good as
the ones obtained by Hermite-PC.

Example 2. We deal with the random linear differential equation:
g@t) +by(t) =c, y(0) =7, (23)

whose exact values for the average and the variance are also available. We
will assume that

e b~ B(2;2),

e ¢ has a uniform distribution on the interval [2/3,3/4], i.e., ¢ ~ U([2/3,3/4]),
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Table 2: Comparison of the exact mean of the solution stochastic process to random i.v.p.
(21) (Example 1) to the numerical values computed by adaptive gPC and Hermite-PC

approaches.
t 1 exact u adaptive gPC 1 Hermite-PC
0. 0.2857142857 0.2857142857 0.2857142857
0.1 0.2718477865 0.2718477954 0.2718477413
0.2 0.2587835939 0.2587836030 0.2587834190
0.3 0.2464703217 0.2464703269 0.2464699379
0.4 0.2348601022 0.2348601060 0.2348594309
0.5 0.2239083330 0.2239083319 0.2239072925
0.6 0.2135734432 0.2135734447 0.2135719468
0.7 0.2038166775 0.2038166797 0.2038146312
0.8 0.1946018957 0.1946018979 0.1945991974
0.9 0.1858953868 0.1858953908 0.1858919258

1.

0.1776656974

0.1776657019

0.1776613545

Table 3: Comparison of the exact variance of the solution stochastic process to random
iv.p. (21) (Example 1) to the numerical values computed by adaptive gPC and Hermite-
PC approaches.

t o2 exact o? adaptive gPC 0% Hermite-PC
0. 0.0255102040 0.0255102040 0.0254933498
0.1 0.0231426286 0.0231426300 0.0231268735
0.2 0.0211035898 0.0211035910 0.0210879613
0.3 0.0193424216 0.0193424220 0.0193262025
0.4 0.0178164432 0.0178164425 0.0177991206
0.5 0.0164896949 0.0164896912 0.0164709188
0.6 0.0153318747 0.0153318648 0.0153114237
0.7 0.0143174431 0.0143174203 0.0142951969
0.8 0.0134248702 0.0134248238 0.0134007870
0.9 0.0126360020 0.0126359163 0.0126101002
1. 0.0119355267 0.0119353795 0.0119078703
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® Yo~ B(2;5).

Following the same presentation as in the previous example, in Tables 4 and
5, we compare the exact values of the mean and the variance, respectively.
Again, we observe that good results are achieved by adaptive gPC method.

Table 4: Comparison of the exact mean of the solution stochastic process to random i.v.p.
(23) (Example 2) to the numerical values computed by adaptive gPC and Hermite-PC
approaches.

t 1L exact i adaptive gPC 1 Hermite-PC
0. 0.2857142857 0.2857142857 0.2857142857
0.1 0.2027504518 0.2027504665 0.2027504104
0.2 0.1239261084 0.1239261194 0.1239259629
0.3 0.0489974095 0.0489974028 0.0489971227
0.4 -0.022263674 -0.022263687 -0.022264120
0.5 -0.090070451 -0.090070454 -0.090071055
0.6 -0.154622519 -0.154622519 -0.154623266
0.7 -0.216106707 -0.216106706 -0.216107567

-0.274698877
-0.330561029
-0.383847522

-0.274697949
-0.330560091
-0.383846665

0.8 -0.274697951
0.9 -0.330560102
1. -0.383846677

In this example, the approrimations for the mean and standard deviation
of the solution can be computed for longer times using adaptive gPC. In
Figure 1 (left), we show these approzimations on the interval [0,100]. On
the right side, the exact mean and standard deviation are plotted on the same
time interval.

In Figure 2 the relative error respect to the exact solution for the mean
(left) and standard deviation (right) computed by adaptive gPC are repre-
sented. We observe that relative error in the variance increases over time.

Example 3. Next, we will consider a nonlinear i.v.p. based on the following
random Riccati differential equation:

§(t) +ay?(t) + by(t) + ¢ =0, y(0) = Go. (24)

We will suppose that random model parameters have the following probability
distributions:
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Table 5: Comparison of the exact variance of the solution stochastic process to random
i.v.p. (23) (Example 2) to the numerical values computed by adaptive gPC and Hermite-
PC approaches.

2

t o2 exact o? adaptive gPC 0% Hermite-PC
0. 0.0255102040 0.0255102040 0.0254933498
0.1 0.0231394091 0.0231394095 0.0231236307
0.2 0.0210647289 0.0210647291 0.0210490321
0.3 0.0192155763 0.0192155761 0.0191992547
0.4 0.0175493194 0.0175493182 0.0175319036
0.5 0.0160443982 0.0160443945 0.0160256150
0.6 0.0146948275 0.0146948175 0.0146745624
0.7 0.0135058305 0.0135058076 0.0134840899
0.8 0.0124903952 0.0124903490 0.0124672668
0.9 0.0116665809 0.0116664960 0.0116421906
1. 0.0110554315 0.0110552863 0.0110298983

o an~ U([1/2,2/3]),
o ¢~ U([2/3,3/4]),
® o~ B(2;5).

In Tables 6 and 7, we compare the exact values of the average and the vari-
ance, respectively. Once more, we observe that adaptive gPC method provides
good approximations.

In the previous examples we have assumed each random input (; fol-
lows a standard distribution, hence we have applied adaptive gPC taking
as weight function into the inner product (9) the corresponding probability
density function f,(¢;) whose analytic representation is well-known. This
allowed us to compute successfully the expectation and variance of the so-
lution. However, random parameters that do not belong to any standard
statistical distributions often appear in practice, then adaptive gPC turns
out particularly fruitful.
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Table 6: Comparison of the exact average of the solution stochastic process to random
i.v.p. (24) (Example 3) to the numerical values computed by adaptive gPC and Hermite-
PC approaches.

t 1 exact u adaptive gPC 1 Hermite-PC
0. 0.2857142857 0.2857142857 0.2857142857
0.1 0.1980759440 0.1980759539 0.1980766519
0.2 0.1168994626 0.1168994605 0.1169005076
0.3 0.0409170822 0.0409170917 0.0409182898
0.4 -0.030899721 -0.030899714 -0.030898392
0.5 -0.099405455 -0.099405446 -0.099403949
0.6 -0.165327740 -0.165327721 -0.165325922
0.7 -0.229302586 -0.229302549 -0.229300249
0.8 -0.291901881 -0.291901818 -0.291898736
0.9 -0.353655864 -0.353655733 -0.353651529

1.

-0.415072650

-0.415072393

-0.415066619

Table 7: Comparison of the exact variance of the solution stochastic process to random
iv.p. (24) (Example 3) to the numerical values computed by adaptive gPC and Hermite-
PC approaches.

t o2 exact o? adaptive gPC 0% Hermite-PC
0. 0.0255102040 0.0255102040 0.0254933498
0.1 0.0216489702 0.0216489712 0.0216382260
0.2 0.0188292728 0.0188292705 0.0188222912
0.3 0.0167281955 0.0167281900 0.0167232872
0.4 0.0151469745 0.0151469535 0.0151428818
0.5 0.0139655414 0.0139654797 0.0139612695
0.6 0.0131167575 0.0131166236 0.0131114709
0.7 0.0125721264 0.0125718420 0.0125650291
0.8 0.0123345580 0.0123339882 0.0123248301
0.9 0.0124362245 0.0124351284 0.0124229264

1.

0.0129405475

0.0129385258

0.0129225503
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Figure 1: Mean (center line) and mean plus standard deviation (upper line) and mean
minus standard deviation (lower line) on the interval [0,100] in the Example 2. Adaptive
gPC approximation (left) and exact solution (right).

Example 4. Let us consider a real problem based on the Newton’s cooling law
to illustrate this situation [2]. According to this thermodynamic law, when a
body is heated up to the temperature Ty and then, it is exposed to the medium
temperature T,,, its temperature T'(t) in the instant t varies according to the
7.0.D.

T(t) = K(T(t) — Ty), T(0)=T,, (25)

where K denotes the cooling constant. When this model is applied in practical
situations, the calibration of K is required. This calibration is performed after
careful measurements which depend on the body composition as well as the
accuracy of the measuring instruments. So, it is more realistic to assume
that K s a random wvariable rather than a deterministic constant. Table §
shows the values of K in a particular case.

In order to apply adaptive gPC, we first need to assign a statistical dis-
tribution to K. Kernel methods constitute a family of powerful techniques to
approzimate the probability density function of a random variable from sam-
pled data that result very useful when standard distributions fail [16, 19, 23].
Many of these methods are implemented in software packages. Figure 3 shows
the distribution function (left) and the probability density function (right) of
the cooling random parameter K obtained from the sample collected in Ta-
ble 8 by using the command “SmoothKernelDistribution” of Mathematica.
We can see that the obtained probability density function does not seem to be
any standard distribution.

Now, following the same development as in the previous examples we
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Figure 2: Relative error respect to the exact solution for the mean (left) and standard
deviation (right) computed by adaptive gPC on the interval [0,100] in the Example 2.
Note that scale in the vertical axis is different for each plot.

Table 8: Values of the cooling constant K in Example 4.

-0.0610092  -0.060129 -0.0565267  -0.0565262  -0.0547071  -0.0533779  -0.0523492
-0.0505862  -0.0500046  -0.0487714  -0.0484111 -0.0481034 -0.0472823 -0.0465562
-0.045926 -0.0458568  -0.0458198  -0.0453695 -0.0441748 -0.0438579  -0.0435833
-0.0433647  -0.0431569  -0.0423424  -0.0422292  -0.0418355 -0.0417759 -0.0411636
-0.0408778  -0.0413735 -0.0409582  -0.0407478 -0.0405775 -0.0406751 -0.0402963
-0.0399196  -0.0398389  -0.0397901  -0.0397549  -0.0394868 -0.0392476 -0.0392629
-0.0390598  -0.0388823  -0.0387293 -0.0388298 -0.0387068 -0.0388397 -0.0387445
-0.0386894 -0.0383818 -0.0383492 -0.0383374 -0.0383277 -0.0381127 -0.0381412
-0.0381901  -0.0382597  -0.0383306  -0.0381828 -0.0382918 -0.0381769 -0.038325

-0.0382222  -0.0384107 -0.0386236 -0.0383079  -0.038536 -0.0387903  -0.0385109
-0.0388053  -0.0385498  -0.038887 -0.038954 -0.0390134  -0.0391166  -0.0392393
-0.0400254 -0.0398597  -0.0400265 -0.0402468 -0.04009 -0.0403515  -0.0406095
-0.0408971  -0.0412168  -0.0415716  -0.0415449  -0.0424427 -0.042422 -0.0429344
-0.0429996  -0.0436032  -0.0442786 -0.0450384  -0.0458985  -0.0454253 -0.0456316

have computed approximations of the mean and standard deviation to the
temperature T(t) (in degrees Fahrenheit) for 0 < t < 73.5 (in seconds).
Figure 4 shows the corresponding results. In order to check the accuracy
of the approximations provided by adaptive gPC, in this plot we have also
represented by points the real sampled temperatures (see [2]). We observe
adaptive gPC' provides very good approximations.

Example 5. We will consider the SIRS (Susceptible-Infectious-Recovered-
Susceptible) model for the transmission dynamics of Respiratory Syncitial
Virus (RSV) proposed by Weber et al. in [24]. This model is based on the
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Figure 3: Distribution function (left) and probability density function (right) of the cooling
random parameter K obtained with Mathematica using ”SmoothKernelDistribution”
command in the Example 4.

following non-autonomous system of differential equations

S(t) = p—pS{t) = BE)SOIE) +vR(t),

I(t) = BWSOIE) —vi(t) — pl(t),

RU) = vI(0) - uR(E) ~ R0, -
S(to) - So,

I(to) = I,

R(ty) = Ry,

where S(t), I(t) and R(t) are the population of susceptible, infectious and
recovered, o 1s the birth rate and it is supposed to be equal to the mortality
rate, v s the rate of loss of immunity, v is the rate of loss of infectiousness,
B(t) = bo(1 + by cos(2nt + ¢)) is the infection transmission rate, being by the
average of transmission, by the amplitude of the seasonal fluctuation and ¢
the seasonal phase, and t is the time in years.

In [24], the authors study the spread of RSV in Finland, obtaining the
following parameter values: p = 0.013; v = 360/200 = 1.8; v = 36; by = 44;
by = 0.36; ¢ = 0.6.

For this example, in order to apply adaptive gPC, let us assume that some
of the previous parameters are random variables. Notice that this assumption
is realistic since in practice these values are set from sampled data. Specifi-
cally we will assume that:

o v ~ U([360,/210,360/190]),
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Figure 4: Approximation of the expectation (central line) and, expectation plus/minus
standard deviation (upper/lower line), respectively of the temperature T'(t) (in degrees
Fahrenheit) on the time-interval [0, 73.5] (in seconds) in the Example 4. The points cor-
respond to the real sampled temperature (see [2]).

e v follows a Gaussian distribution of mean 36 and variance 2, i.e., v ~
N(36;2),

o by ~ U([42,46)),
o by ~ U([0.31,0.41]).

Notice that in this way, all the above random variables have as average the
deterministic values given in [24).

Now, we will assume that 1% of total population is infectious, so initial
conditions are given by Sy = 0.99, Iy = 0.01 and Ry = 0. For our com-
putations we have taken p = r = 2 and [0,5] as the time interval where
the study was performed. In Figure 5 the mean of each component of the
solution stochastic process together with itself minus/plus their standard de-
viation functions are represented. This provides us an idea of the variability
of the average behaviour of each population for 0 < t < 5. In Figure 6
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the deterministic solution to the mean of the solution stochastic process are
compared. We see that, in this case, both are similar.

Susceptible Infectious Recovered

Figure 5: Mean percentage (center line), mean plus standard deviation percentage (upper
line) and mean minus standard deviation percentage (lower line) functions on the time-
interval [0, 5] of Susceptible (left), Infectious (center) and Recovered (right) subpopulations
obtained applying the adaptive gPC to the RSV model (26).
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Figure 6: Comparison of the deterministic solution (dashed line) and the mean of the
solution stochastic process (continuous line) on the interval [0, 5] of Susceptible (left), In-
fectious (center) and Recovered (right) subpopulations obtained after solving the auxiliary
system of differential equations associated to the RSV model (26).

In order to assess the quality of the approximations provided by adaptive
gPC, the absolute error for both, the mean and the standard deviation of
the solution, have been compared against Monte Carlo method using 100 000
stmulations. The results are plotted in Figures 7 and 8.

All the above examples illustrate the ability of the proposed adaptive
gPC method to handle models described by different types of differential
equations containing randomness in several parameters with different prob-
ability distributions.

6. Conclusions

In this paper we have studied a variation of gPC method, refereed to as
adaptive gPC. This method is able to handle random inputs following both
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Figure 7: Absolute error of the mean of the solution to the RSV model (26) computed by
adaptive gPC and Monte Carlo method using 100000 simulations on the interval [0, 5].

Susceptible Infectious Recovered
Absolute error Absolute error Absolute error
0.008 0.0020 0.008
0.006 0.0015 0.006
0.004 0.0010 0.004
0.002 0.0005 0.002
t t
1 2 3 4 5 1 2 3 4 5 1 2 3

Figure 8: Absolute error of the standard deviation of the solution to the RSV model (26)
computed by adaptive gPC and Monte Carlo method using 100000 simulations on the
interval [0, 5].

standard and non-standard probability distributions. Under this approach,
the random inputs are represented by Fourier expansion series of orthonor-
mal polynomials built using an inner product where the weight function is
precisely the probability density function of the corresponding input. This
expansion only requires two terms, which facilitates solving the auxiliary sys-
tem of differential equations and better numerical accuracy can be achieved.
The proposed technique has been illustrated through a wide range of exam-
ples.

Finally, we want to point out that the aim of the paper is to present a
method that provides researchers that do not know the foundations of gPC,
a step-by-step computational approach method to implement an adaptive
gPC method to be used in random continuous models.
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