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Abstract

In this paper, a closed form path-independent approximation of the fair variance strike for a variance

swap under the constant elasticity of variance (CEV) model is obtained by applying the small disturbance

asymptotic expansion. The realized variance is sampled continuously in a risk-neutral market environ-

ment. With the application of a Brownian bridge, we derive a theorem for the conditionally expected

product of a Brownian motion at two different times for arbitrary powers. This theorem enables us to

provide a conditional Monte-Carlo scheme for simulating the fair variance strike. Compared with results

in the recent literature, the method outlined in our paper leads to a simplified approach for pricing

variance swaps. The method may also be applied to other more sophisticated volatility derivatives.
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1 Introduction

There has been significant interest in the valuation of variance swaps both from the academic and

practitioner communities. The value of a variance swap depends on the realized variance of the underlying

asset over its lifetime. Zhu and Lian [19] presented a closed form formula for pricing a variance swap under

the Heston model [10] and they defined the realized variance with discrete sampling times. Demeterfi et

al. [9] argued that the fair variance strike (annualized variance of the underlying asset accumulated over

the lifetime of the contract) can be expressed in terms of a log-contract, maturity and risk free interest

rate if the realized variance is sampled continuously in a risk-neutral market environment. The value

of a log-contract is the discounted expectation of the underlying’s log-return (continuously compounded

rate of return) over the lifetime of the contract. It can be obtained by applying Monte-Carlo simulation
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to the distribution of the underlying at maturity. The log-contract made the fair variance strike path-

independent and simplifies the pricing of variance swaps whose underlying is strictly non-zero. However,

for those variance swaps whose underlying may possibly reach zero, the value of a log-contract is difficult

to compute by standard Monte-Carlo simulation because the natural logarithm of zero is negative infinity.

As discussed by Davydov and Linetsky [8], the CEV model allows the underlying asset to reach zero

when model parameters fall in a certain range. Jordan and Tier [11] used asymptotic methods to expand

the probability of the underlying asset attaining zero and obtained an approximation of a log-contract

under the CEV model. In this paper, the realized variance is defined as a integral of the instantaneous

variance of the CEV process. We determine a closed-form approximation of the fair variance strike in

terms of the initial variance, time to maturity, risk free interest rate and model parameters under the

CEV model by applying the small disturbance asymptotic expansion, of Kunitomo and Takahashi [13],

to the instantaneous variance. Our method overcomes the computation difficulties associated with the

underlying having value zero. We show that the approximation is very accurate using numerical meth-

ods. In addition, corollary 4.4 provides a conditional Monte-Carlo simulation scheme for computing fair

variance strike of a variance swap by applying theorem 4.2. Compared with other simulation methods

which need to generate the entire path of the underlying asset to compute the realized variance, our ap-

proach automatically simulates the distribution of the realized variance at maturity. This new simulation

method is more time efficient and also generates less bias during the simulation procedure.

The paper is structured as follows. In section 2, we give a stochastic differential equation for instantaneous

variance of a CEV process by applying Itô’s lemma. In section 3, we derive the small disturbance

asymptotic expansion of the instantaneous variance and provide a closed form approximation of the fair

variance strike. In section 4, we give the closed form approximation of conditionally expected realized

variance by using a Brownian bridge and this approximation can be implemented by a conditional

Monte Carlo simulation. Finally in section 5, the fair variance strike of a variance swap is computed to

demonstrate the correctness our methods. Comparison with a log-Euler Monte-Carlo simulation are also

carried out to indicate that our methods are more efficient for computing the fair variance strike.

2 CEV variance process

In this section we concentrate on the CEV process introduced by Cox and Ross [7]

dSt = rSt dt+ δSβ+1
t dWt, t ∈ [0, T ]. (1)

Equation (1) gives the dynamics of the underlying asset. In the above, St denotes the asset price at time

t ∈ [0, T ] and S0 > 0, δ is a positive constant and β is in the range [−1, 0), r is the constant riskless

interest rate, and Wt is a standard Brownian motion under the risk-neutral measure Q.

We chose the CEV process for three reasons. First, the process is consistent with one of well-known

stylized facts that volatility changes are negatively correlated with asset returns in stock markets for

negative β, i.e., local volatility δSβt is a decreasing function of St for β < 0 and δ > 0. Second, as

shown by Davydov and Linetsky [8], the process is able to capture the observed volatility skew for both

equity and index options. Third, the process can be readily calibrated to the market prices of European

options using closed form option formulas provided in the papers of Schroder [16] as well as Davydov

and Linetsky [8].

Cox and Ross [7] restricted β in the region β ∈ [−1, 0] whilst Schroder [16] relaxed the range of β to
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β ≤ 0. In this paper, the range of β will be restricted in [−1, 0) for three reasons. First, β > 0 does not

guarantee the model to obey the stylized fact as indicated in the previous paragraph. Second, the CEV

model recovers the Black Scholes model [2] for β = 0, which will not be concentrated on in this paper.

Third, as suggested by Lindsay and Brecher [14], the CEV process admits three distinct types of solution

with respect to β < −0.5, −0.5 ≤ β < 0 and β ≥ 0. We let β ∈ [−1, 0) because this restriction allows

two types of solution with respect to β < −0.5, −0.5 ≤ β < 0 and more importantly, it simplifies our

numerical experiments in section 5 without loss of generality of the CEV model. In addition, research

based on the CEV process with β in the Cox and Ross [7] range can also be found in papers such as

[1, 6, 18]

When −0.5 ≤ β < 0, boundary value St = 0 is attainable and absorbing1. When −1 ≤ β < −0.5, the

boundary St = 0 is attainable, and can be absorbing or reflecting2. Introducing an absorbing boundary

is an appropriate choice because it excludes any arbitrage opportunity after St attains 0. If a reflecting

boundary is chosen for −1 ≤ β < −0.5, an investor purchasing the asset when St hits 0 would never lose

money, since the asset price will always be positive.

By taking r > 0, −1 ≤ β < 0 and δ > 0 with an absorbing boundary we have the instantaneous variance

of St given by Davydov and Linetsky [8] as

Vt = δ2S2β
t , t ∈ [0, T ], V0 > 0. (2)

By Itô’s lemma [17], we obtain a stochastic differential equation for Vt

dVt = β
[
(2β − 1)V 2

t + 2rVt
]

dt+ 2βV
3
2
t dWt, (3)

where its parameters are defined as in equation (1). From Davydov and Linetsky [8], we also have the

probability of Vt →∞ given by

Q(Vt →∞) = Γ(− 1

2β
, ζ), (4)

where Γ(x, y) is the complementary Gamma distribution function and ζ = r
[
βV0(1− e−2βrt)

]−1
.

3 Small disturbance asymptotic expansion of CEV variance pro-

cess

In this section, we apply the small disturbance asymptotic expansion first proposed by Kunitomo and

Takahashi [13] for the CEV Variance process (3).

The small disturbance asymptotic expansion is closely related to the Taylor expansion. In order to

implement this technique, we introduce a small parameter 0 < ε� 1 and a negative variable β̄ such that

β = εβ̄. From equation (3), we have

Vt = V0 + εβ̄

∫ t

0

[
(2εβ̄ − 1)V 2

u + 2rVu
]

du+ 2εβ̄

∫ t

0

V
3
2
u dWu, (5)

and Vt|ε=0 = V0. The small disturbance asymptotic expansion requires us to construct a Taylor expansion

1Here absorbing means that St remains at 0 if it hits 0.
2Here reflecting means that values of St may increase after it hits 0.
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of Vt about the point ε = 0:

Vt = V0 + ε
∂Vt
∂ε

∣∣∣∣
ε=0

+
ε2

2!

∂2Vt
∂ε2

∣∣∣∣
ε=0

+
ε3

3!

∂3Vt
∂ε3

∣∣∣∣
ε=0

+
ε4

4!

∂4Vt
∂ε4

∣∣∣∣
ε=0

+O(ε5). (6)

From equation (5), Vt depends on Vt, V
2
t and V

3
2
t . Equation (6) requires us to compute the derivative of

Vt with respect to ε up to the fourth order, which means we also require higher order derivatives of V 2
t

and V
3
2
t . The following lemma provides a general iteration formula for the nth order derivative of V mt .

Lemma 3.1. The nth order derivative of V mt is given by

∂n(V mt )

∂εn
= mnβ̄

∫ t

0

[
2m(n− 1)β̄

∂n−2(V m+1
u )

∂εn−2
+ (2mεβ̄ − 1)

∂n−1(V m+1
u )

∂εn−1
+ 2r

∂n−1(V mu )

∂εn−1

]
du

+mεβ̄

∫ t

0

[
2mnβ̄

∂n−1(V m+1
u )

∂εn−1
+ (2mεβ̄ − 1)

∂n(V m+1
u )

∂εn
+ 2r

∂n(V mu )

∂εn

]
du

+ 2mnβ̄

∫ t

0

∂n−1(V
m+ 1

2
u )

∂εn−1
dWu + 2mεβ̄

∫ t

0

∂n(V
m+ 1

2
u )

∂εn
dWu, (7)

with m ≥ 0 and n ∈ N.

Proof. By Itô’s lemma, we obtain a stochastic differential equation for V mt given by

V mt = V m0 +mβ

∫ t

0

[
(2mβ − 1)V m+1

u + 2rV mu
]

du+ 2mβ

∫ t

0

V
m+ 1

2
u dWu.

Since β = εβ̄ for 0 < ε� 1, we have

V mt = V m0 +mεβ̄

∫ t

0

[
(2mεβ̄ − 1)V m+1

u + 2rV mu
]

du+ 2mεβ̄

∫ t

0

V
m+ 1

2
u dWu. (8)

Lemma 3.1 is proved by induction. We see the result follows in the case n = 1, since

∂V mt
∂ε

= mβ̄

∫ t

0

[
(2mεβ̄ − 1)V m+1

u + 2rV mu
]

du+mεβ̄

∫ t

0

[
2mβ̄V m+1

u + (2mεβ̄ − 1)
∂V m+1

u

∂ε
+ 2r

∂V mu
∂ε

]
du

+ 2mβ̄

∫ t

0

V
m+ 1

2
u dWu + 2mεβ̄

∫ t

0

∂V
m+ 1

2
u

∂ε
dWu.

Suppose that equation (7) holds for n = l. Then the derivative of V mt with respect to ε of order l + 1 is

given by

∂

∂ε

(
∂l(V mt )

∂εl

)
= m(l + 1)β̄

∫ t

0

[
2mlβ̄

∂l−1(V m+1
u )

∂εl−1
+ (2mεβ̄ − 1)

∂l(V m+1
u )

∂εl
+ 2r

∂l(V mu )

∂εl

]
du

+mεβ̄

∫ t

0

[
2m(l + 1)β̄

∂l(V m+1
u )

∂εl
+ (2mεβ̄ − 1)

∂l+1(V m+1
u )

∂εl+1
+ 2r

∂l+1(V mu )

∂εl+1

]
du

+ 2m(l + 1)β̄

∫ t

0

∂l(V
m+ 1

2
u )

∂εl
dWu + 2mεβ̄

∫ t

0

∂l+1(V
m+ 1

2
u )

∂εl+1
dWu,

hence equation (7) also holds for n = l + 1.

Remark 3.2. When n = 1, the derivative of the function V mu , V
m+ 1

2
u and V m+1

u to the order n − 1 in

equation (7) are actually the functions themselves.

Then by applying lemma 3.1 to equation (6), we have the small disturbance asymptotic expansion of Vt.
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Lemma 3.3. The small disturbance asymptotic expansion of Vt up to fourth order is

Vt = V0 + βG+ β2H + β3L+ β4M +O(ε5), (9)

where

G = V0

[
(2r − V0)t+ 2V

1
2

0 Wt

]
,

H = V0

[
(V 2

0 − 3rV0 + 2r2)t2 − V0t+ 3V
1
2

0 (2r − V0)tWt + 3V0W
2
t

− V
1
2

0 (2r + V0)

∫ t

0

Wudu

]
,

L = V0

[
(−V 3

0 + 4rV 2
0 −

14

3
r2V0 +

4

3
r3)t3 + 3V

1
2

0 (
5

4
V 2

0 − 4rV0 + 3r2)t2Wt

− V0(3r − 2V0)t2 + 6V0(2r − V0)tW 2
t − 3V

3
2

0 tWt + 4V
3
2

0 W
3
t + 2V0(3r + V0)

∫ t

0

W 2
udu

− 3V0(2r + V0)Wt

∫ t

0

Wudu+ V
1
2

0 (
5

2
V 2

0 − 2rV0 − 6r2)

∫ t

0

uWudu

+ 2V
1
2

0 (V 2
0 + rV0 − 2r2)

∫ t

0

∫ u

0

Wsdsdu− V
3
2

0

∫ t

0

Wudu

]
,

M = V0

[
(V 4

0 − 5rV 3
0 +

25

3
r2V 2

0 − 5r3V0 +
2

3
r4)t4 − V0(3V 2

0 − 8rV0 −
14

3
r2)t3

− V
1
2

0 (
35

8
V 3

0 −
75

4
rV 2

0 +
49

2
r2V0 − 9r3)t3Wt + 6V0(

3

2
V 2

0 − 5rV0 + 4r2)t2W 2
t

− 3V
3
2

0 (4r − 5

2
V0)t2Wt + V 2

0 t
2 + 10V

3
2

0 (2r − V0)tW 3
t − 6V 2

0 tW
2
t + 5V 2

0 W
4
t

+ V
3
2

0 (5V0 − 2r)

∫ t

0

uWudu− V 2
0

∫ t

0

W 2
udu+ 2V

3
2

0 (r + 2V0)

∫ t

0

∫ u

0

Wsdsdu

− V
1
2

0 (
35

8
V 3

0 −
45

4
rV 2

0 +
1

2
r2V0 + 9r3)

∫ t

0

u2Wudu+ 3V 2
0 (V0 − 2r)

∫ t

0

uW 2
udu

+ 3V0(3V 2
0 − 2rV0 − 8r2)Wt

∫ t

0

uWudu− 4V0(2V 2
0 + 4rV0 − 3r2)

∫ t

0

∫ u

0

W 2
s dsdu

+ 3V
3
2

0 (8r + 3V0)Wt

∫ t

0

W 2
udu+ 3V0(

5

2
V 2

0 − 4rV0 + 6r2)Wt

∫ t

0

∫ u

0

Wsdsdu

+ V0(
5

2
V 2

0 + 26rV0 − 30r2)

∫ t

0

Wu

∫ u

0

Wsdsdu− V
3
2

0 (24r + 13V0)

∫ t

0

W 3
udu

− V
1
2

0 (7V 3
0 − 9rV 2

0 − 16r2V0 + 12r3)

∫ t

0

∫ u

0

sWsdsdu− 6V
3
2

0 (2r + V0)W 2
t

∫ t

0

Wudu

− 2V
1
2

0 (3V 3
0 − 10r2V0 + 4r3)

∫ t

0

∫ u

0

∫ s

0

Wadadsdu− 3V 2
0 Wt

∫ t

0

Wudu

]
.

Proof. From lemma 3.1, we have

∂Vt
∂ε

= β̄

∫ t

0

[
(2εβ̄ − 1)V 2

u + 2rVu
]

du+ εβ̄

∫ t

0

[
2β̄V 2

u + (2εβ̄ − 1)
∂V 2

u

∂ε
+ 2r

∂Vu)

∂ε

]
du

+ 2β̄

∫ t

0

V
3
2
u dWu + 2εβ̄

∫ t

0

∂V
3
2
u

∂ε
dWu (10)

by taking m = n = 1. The second and the last terms on the right hand side of equation (10) can be
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ignored since 0 < ε� 1, and from equation (6), we have Vt → V0 when ε→ 0. So we have

∂Vt
∂ε

∣∣∣∣
ε=0

= β̄

∫ t

0

[
−V 2

0 + 2rV0

]
du+ 2β̄

∫ t

0

V
3
2

0 dWu

= β̄V0

[
(2r − V0)t+ 2V

1
2

0 Wt

]
. (11)

Defining G = V0

[
(2r − V0)t+ 2V

1
2

0 Wt

]
, we have ε ∂Vt

∂ε

∣∣
ε=0

= βG. By by repeating this procedure we

can obtain the other terms with higher order derivatives in equation (6). See appendix A for a detailed

proof.

The value of a volatility derivative depends on its underlying’s annualized realized variance over its

lifetime. For example, the value of a fair variance strike of a variance swap, P , at time t = 0 is defined

as

P := EQ [V(0,T )

]
, (12)

where V(0,T ) := 1
T

∫ T
0
Vtdt, T is the maturity, Vt is the instantaneous variance of the underlying asset

and EQ[·] represents expectation under risk-neutral measure Q. V(0,T ) depends on the value of Vt for

t ∈ [0, T ] and hence it is a path-dependent random variable, which makes it computationally expensive

to evaluate by Monte-Carlo simulation, since the value of Vt requires to be computed for every element

in a discrete time interval from time 0 to T . However, lemma 3.3 enables us to obtain a closed form

approximation for the fair variance strike, which is path-independent, by substituting equation (9) into

(12).

Lemma 3.4. The fair variance strike of a variance swap is given by

EQ[V(0,T )] = V0 + βG
′
+ β2H

′
+ β3L

′
+ β4M

′
+O(ε5), (13)

where

G
′

=
1

T
EQ

[∫ T

0

Gdt

]
=

1

2
V0(2r − V0)T,

H
′

=
1

T
EQ

[∫ T

0

Hdt

]
=

1

3
V0(V 2

0 − 3rV0 + 2r2)T 2 + V 2
0 T,

L
′

=
1

T
EQ

[∫ T

0

Ldt

]
= V0

[
1

4
(−V 3

0 + 4rV 2
0 −

14

3
r2V0 +

4

3
r3)T 3 + V0(3r − 3

2
V0)T 2

]
,

M
′

=
1

T
EQ

[∫ T

0

Mdt

]
= V0

[
1

5
(V 4

0 − 5rV 3
0 +

25

3
r2V 2

0 − 5r3V0 +
2

3
r4)T 4 + V0(

31

12
V 2

0 −
79

12
rV0 +

31

6
r2)T 3

+
8

3
V 2

0 T
2

]
.

Proof. Substituting equation (9) into (12) gives

EQ [V(0,T )

]
=

1

T
EQ

[∫ T

0

(
V0 + βG+ β2H + β3L+ β4M +O(ε5)

)
dt

]

= V0 +
β

T
EQ

[∫ T

0

Gdt

]
+
β2

T
EQ

[∫ T

0

Hdt

]
+
β3

T
EQ

[∫ T

0

Ldt

]

+
β4

T
EQ

[∫ T

0

Mdt

]
+O(ε5).

6



Then the lemma is proved by substituting G, H, L and M of equation (9) into the above formula.

4 Expectation of annualized integrated variance

In this section we apply the results from section 3 to obtain an efficient Monte-Carlo method to compute

the fair variance strike by transforming the value of V(0,T ) to a path-independent random variable. This

method allows us to simulate the conditional distribution of the realized variance. In essence, the fair

variance may be calculated by the methods outlined in section 3, however, for those more sophisticated

volatility derivatives whose payoff is not linear on the realized variance, for example, options on realized

variance, a closed-form solution may be difficult to be obtained. Using an appropriate adjustment, the

Monte-Carlo method provided in this section is able to simulate the distribution of the realized variance

and hence can be applied to evaluate other more sophisticated volatility derivatives.

It is well known that

E[V(0,T )] = E[E[V(0,T )|F ]] (14)

and by Jensen’s inequality we have

V ar[E[V(0,T )|F ]] ≤ V ar[V(0,T )]

holding for any condition F . This implies that simulating the conditional expectation EQ[V(0,T )|F ] is

more efficient than simulating V(0,T ) itself. So in this section we provide a framework to compute the

conditional expectation of the annualized integrated variance given a Brownian motion with fixed end

point at time T , such that WT = b. The path dependent random variable V(0,T ) is transformed to a path

independent random variable EQ[V(0,T )|WT = b], via a Brownian bridge. This is one of the key results

of our paper.

A Brownian bridge is a continuous stochastic process whose probability distribution is the distribution

of a Brownian motion with a fixed initial and end point. Next we give one of its propositions.

Proposition 4.1. (See Karatzas and Sherve[12]) Let Wt, 0 ≤ t ≤ T be a Brownian motion, then a

Brownian bridge

Xt =

 b
T t+ (T − t)

∫ t
0

dWu

T−u ; for 0 ≤ t < T,

b; for t = T,
(15)

is Gaussian with almost surely continuous paths, with mean µ = E[Xt] = b
T t and variance σ2 =

V ar[Xt] = t− t2

T for a constant b.

Lemma 3.3 expanded Vt into a function of Brownian motion. So with this lemma, the calculation of

EQ[V(0,T )|WT = b] involves the computation of some conditional expectation such as EQ[Wt|WT = b],

EQ[WuWt|WT = b], EQ[WuW
2
t |WT = b] and so on. We provide a theorem to compute these conditional

expectations in a more general form, EQ [Wm
u W

n
t |WT = b], for 0 ≤ u ≤ t ≤ T . For simplicity, EQ[ ·|WT =

b] is denoted by EQ
b [·].

Theorem 4.2. Let Wt for t ∈ [0, T ] be a Brownian motion. Then we have the conditional expectation

EQ
b [Wm

u W
n
t ] = m!n!

∑
0≤j≤m

0≤l≤k≤n

[
δν × 2−

k+j
2

(
l + j

j

)
(T − u)

j−k
2 (T − t) k+l

2 (t− u)
k−l
2 tn−k bm+n−j−k

(m− j)!(n− k)!(k−l2 )!( l+j2 )! u−m+ j−l
2 Tm+n−k− j−l

2

]
,

(16)
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where m, n are non-negative integers, 0 ≤ u < t ≤ T , and δν is a Kronecker delta function such that

δν =

{
0, if ν 6= 0

1, if ν = 0
for ν =

k + j

2
−
⌊
l + j

2

⌋
−
⌊
k − l

2

⌋
,

and the floor function bxc = max{p ≤ x|p ∈ N} for any x ≥ 0.

Proof. Since Wt for t ∈ [0, T ] is a Brownian motion,

EQ
b [Wm

u W
n
t ] = EQ [Xm

u X
n
t ] .

Take Yu,t =
∫ t
u

dWs

T−s for 0 ≤ u ≤ t ≤ T . Then Yu,t is a Gaussian random variable with mean µ =

EQ [Yu,t] = 0, and variance σ2
u,t = EQ

[(∫ t
u

dWs

T−s

)2
]

= EQ
[∫ t
u

(
1

T−s

)2

ds

]
= t−u

(T−t)(T−u) . From equation

(15), we have

EQ [Xm
u X

n
t ] = EQ

[(
b

T
u+ (T − u)Y0,u

)m(
b

T
t+ (T − t)Y0,t

)n]
= m!n!

∑
0≤j≤m
0≤k≤n

(T − u)j(T − t)kum−jtn−k

j!k!(m− j)!(n− k)!

(
b

T

)m+n−j−k

EQ
[
Y j0,u(Y0,u + Yu,t)

k
]

= m!n!
∑

0≤j≤m
0≤k≤n

(T − u)j(T − t)kum−jtn−k

j!k!(m− j)!(n− k)!

(
b

T

)m+n−j−k

EQ

Y j0,u ∑
0≤l≤k

k!

l!(k − l)!
Y l0,uY

k−l
u,t


= m!n!

∑
0≤j≤m

0≤l≤k≤n

(T − u)j(T − t)kum−jtn−k

j!l!(m− j)!(n− k)!(k − l)!

(
b

T

)m+n−j−k

EQ
[
Y l+j0,u Y

k−l
u,t

]

= m!n!
∑

0≤j≤m
0≤l≤k≤n

(T − u)j(T − t)kum−jtn−k

j!l!(m− j)!(n− k)!(k − l)!

(
b

T

)m+n−j−k

EQ
[
Y l+j0,u

]
EQ [Y k−lu,t

]
. (17)

According to Miller and Childers [15], we have

EQ [Y k−lu,t

]
= δi2

− k−l
2

(k − l)!
(k−l2 )!

(
t− u

(T − t)(T − u)

) k−l
2

, (18)

EQ
[
Y l+j0,u

]
= δh2−

l+j
2

(l + j)!

( l+j2 )!

(
u

T (T − u)

) l+j
2

, (19)

for i = k−l
2 − b

k−l
2 c, h = l+j

2 − b
l+j
2 c. δ∆ is a Kronecker delta function, where ∆ ∈ {i, h, ν} and

ν = i+ h, such that

δ∆ =

{
0, if ∆ 6= 0

1, if ∆ = 0
.

Then we have δi · δh = δi+h = δν and the theorem is proved by substituting equations (18) and (19) into

equation (17).

8



Corollary 4.3. Theorem 4.2 holds for some special values of m and n, such as when m = n = 1,

EQ
b [WuWt] =

b2

T 2
ut+ u− ut

T
, (20)

or when n = 0,

EQ
b [Wm

u ] = m!
∑

0≤j≤m

δν × 2−
j
2
bm+j(T − u)

j
2

(m− j)!( j2 )!

um−
j
2

Tm−
j
2

, (21)

where ν = j
2 −

⌊
j
2

⌋
.

Theorem 4.2 allows us to compute the value of EQ
b [V(0,T )], given by the following corollary.

Corollary 4.4. The conditional expectation of the annualized realized variance over the lifetime of a

variance swap is given by

EQ
b [V(0,T )] = V0 + βG

′

b + β2H
′

b + β3L
′

b + β4M
′

b +O(ε5), (22)

where

G
′

b = V0

[1

2
(2r − V0)T + V

1
2

0 b
]
,

H
′

b = V0

[1

3
(V 2

0 − 3rV0 + 2r2)T 2 +
1

6
V

1
2

0 (10r − 7V0)bT + V0b
2
]
,

L
′

b = V0

[1

4
(−V 3

0 + 4rV 2
0 −

14

3
r2V0 +

4

3
r3)T 3 + V

1
2

0 (
59

48
V 2

0 −
37

12
rV0 +

19

12
r2)bT 2 +

1

4
V0(r +

5

6
V0)T 2

+ V0(
11

4
r − 41

24
V0)b2T − 1

6
V

3
2

0 bT + V
3
2

0 b
3
]
,

M
′

b = V0

[1

5
(V 4

0 − 5rV 3
0 +

25

3
r2V 2

0 − 5r3V0 +
2

3
r4)T 4 + V

1
2

0 (−121

96
V 3

0 +
357

80
rV 2

0 −
183

40
r2V0 +

13

12
r3)bT 3

+ V0(− 7

48
V 2

0 +
2

15
rV0 +

23

12
r2)T 3 + V0(

131

48
V 2

0 −
403

60
rV0 +

13

4
r2)b2T 2 + V

3
2

0 (
1

30
V0 −

71

60
r)bT 2

+
1

8
V 2

0 T
2 + V

3
2

0 (
16

5
r − 53

20
V0)b3T − 11

24
V 2

0 b
2T + V 2

0 b
4
]
.

Proof. See Appendix B.

Remark 4.5. Given equation (14), we have EQ[V(0,T )] = EQ
[
EQ
b [V(0,T )]

]
. Then lemma 3.4 may also

be proved using corollary 4.4 combined with the fact that EQ[WT ] = EQ[W 3
T ] = 0, EQ[W 2

T ] = T and

EQ[W 4
T ] = 3T 2. Substituting these values into equation (22) gives the value of EQ[V(0,T )] directly.

5 Numerical experiments

In this section we will perform a numerical study of the approximation given by the corollary 4.4 and

lemma 3.4. Section 5.1 gives the log-Euler Monte Carlo scheme to simulate the instantaneous variance and

compute EQ[V(0,T )]. We also illustrate why this method may not be suitable for some model parameters.

Section 5.2 computes EQ[V(0,T )] by the small disturbance asymptotic expansion as described in lemma

3.4 and corollary 4.4.
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5.1 Log-Euler Monte-Carlo scheme for the CEV variance process

In the literature, some methods are used to simulate the underlying price, St, of the CEV process (1).

For example, Lindsay and Brecher [14] provided a quasi Monte-Carlo method to simulate the underlying

price from a non-central Chi square distribution. Chen et.al. [5] also suggested using a moment-matched

quadratic Gaussian approximation method and a direct inversion scheme to simulate the underlying price

St. However, since our aim is primarily to obtain some benchmark values of the fair variance strike, we

will not focus our attention on the use of these techniques. In our Monte-Carlo simulations, we have

employed the standard log-Euler scheme for the CEV variance process (3).

Given equation (3), we have a stochastic differential equation of lnVt by Itô’s lemma, such that

d lnVt = β(2r − Vt)dt+ 2β
√
VtdWt,

for β < 0 and t ∈ [0, T ]. Then applying the first-order Taylor approximation scheme for lnVt gives:

lnVtn+1
= lnVtn + β(2r − Vtn)h+ 2β

√
VtnZ

√
h+O(h2),

with Z a standard normal random variable, tn = n
N T for n = 0, 1, 2, · · · , N and h = T

N . By taking

exponentials on both side, we have

Vtn+1 = Vtn · exp
[
β(2r − Vtn)h+ 2β

√
Vtn · hZ

]
+O(h2), (23)

and Vtn+1
> 0 for all Vtn > 0, i.e., Vtn > 0 if V0 > 0. However, this numerical scheme becomes unstable,

i.e., Vtn = δ2S2β
tn →∞ when Stn → 0 for some model parameters.

Figure 1: Sample paths of Vt by the log-Euler Monte-Carlo simulation for different values of β and initial
volatilities σ0 =

√
V0. r = 0.1, T = 1. Model parameters are shown on the top of each plot. The value of

Q(Vt →∞) represents the probability of instantaneous variance Vt reaching infinity with corresponding
model parameters.
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Figure (1) shows sample paths of {Vt}t∈[0,T ] generated by equation (23) with different initial volatilities

and value of β. Each subplot contains 100 sample paths and those in the left column shows paths with

initial volatility σ0 =
√
V0 = 25%, β = −0.3 and β = −0.9 from top to the bottom respectively. Plots in

the right column also indicates paths with initial volatility σ0 = 50%, β = −0.3 and β = −0.9 from top

to the bottom respectively. It is observed that the number of unstable paths increases with |β| for both

high and low initial volatilities σ0.

By applying the log-Euler scheme, we obtain the square root of the fair variance strikes and the standard

deviations of this numerical scheme shown in table 1. The square root of the fair variance strike is

computed for different initial volatilities and values of β. We choose nine values of initial volatility

equally spaced in interval [10%, 50%] and ten values of β equally spaced in interval [−1,−0.1]3. We set

time steps at 252 and generate 216 − 1 sample paths by using a Sobol sequence. It is clear that there

are several infinity at the upper right corner of the table. This is due to the result shown by equation

(4) that the probability of Vt →∞ increases with initial variance V0. This behaviour could also be seen

in table 2, which gives the probabilities of Vt → ∞ before maturity for different values of the initial

volatility and β. When this probability is large enough to ensure one sample path can reach infinity, the

average realized variance will be infinity. For example, with β = −0.9 and initial volatility increasing

from 25% to 30%, the probability of Vt →∞ increased from 0.0004% to 0.0135%. When initial volatility

is 25%, there might be 0.0004% × (216 − 1), i.e., 0.26 paths reaching infinity before T . In other words,

the realized variance for every sample path does not reach infinity since the instantaneous variance at

every step before maturity is less than infinity, so does the expected realized variance. But when the

initial volatility increase to 30% with the same value of β, the increasing probability of Vt → ∞ makes

0.0135% × (216 − 1), approximately 9 sample paths to reach infinity. As a result, the expected realized

variance diverges. It follows that the log-Euler scheme is not always stable when computing the fair

variance strike of a variance swap under the CEV model.

Standard deviations are shown in the brackets as percentage numbers. We can see that this value

increases with initial volatility σ0 and |β|. There are 216 − 1 sample paths generated by the Sobol

sequence ensuring the standard deviation less than 0.03%. Using a computer with a 3.33GHz Intel Core

Duo CPU and 4GB memory, it takes 250.3495 seconds to compute all the values in this table, 2.7817

seconds for each value.

5.2 Small disturbance asymptotic expansion of the CEV variance process

As indicated in section 4, small disturbance asymptotic expansion of the CEV variance process gives us

two distinct methods to price the fair variance strike of a variance swap. By applying lemma 3.4, the fair

variance strike is obtained explicitly as a deterministic function of the initial volatility, interest rate and

maturity. Table 3 shows the square roots of fair variance strikes, as percentages, with different values

of parameters. Initial volatility σ0 and β are sampled in a similar way as in the log-Euler simulation.

The values shown in the brackets are the absolute value of relative difference between the square roots

of the fair variance strike calculated by the log-Euler simulation of equation (23) and the closed form

approximation of lemma13 respectively. These values are also expressed in percentage.

It is interesting to point out that by using the small disturbance asymptotic expansion we solve the

problem of the aberration of infinities for the fair variance strike in our calculation, when the probability

of Vt → ∞ increases. Although these differences increase with the initial volatility σ0 and |β|, they are

3As mentioned in section 2, the CEV model recovers the Black Scholes model when β = 0. We ignore this well known
problem in this paper.
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β
Initial Volatilities (%)

10 15 20 25 30 35 40 45 50

-1 9.6052 14.5400 19.6604 25.1258 ∞ ∞ ∞ ∞ ∞
(4.1) (14.6) (38.6) (119.9) ∞ ∞ ∞ ∞ ∞

-0.9 9.6415 14.5731 19.6553 24.9836 ∞ ∞ ∞ ∞ ∞
(3.7) (13.1) (33.7) (76.9) ∞ ∞ ∞ ∞ ∞

-0.8 9.6789 14.6098 19.6619 24.9006 30.4572 ∞ ∞ ∞ ∞
(3.3) (11.6) (29.3) (63.4) (161.9) ∞ ∞ ∞ ∞

-0.7 9.7174 14.6501 19.6787 24.8493 30.2300 ∞ ∞ ∞ ∞
(2.9) (10.1) (25.2) (53.0) (102.8) ∞ ∞ ∞ ∞

-0.6 9.7570 14.6939 19.7050 24.8228 30.0899 35.5695 ∞ ∞ ∞
(2.5) (8.7) (21.4) (44.0) (81.8) (145.7) ∞ ∞ ∞

-0.5 9.7978 14.7412 19.7402 24.8174 30.0001 35.3230 40.8357 ∞ ∞
(2.1) (7.3) (17.7) (35.9) (65.0) (110.2) (180.7) ∞ ∞

-0.4 9.8397 14.7919 19.7838 24.8308 29.9500 35.1615 40.4901 45.9676 51.6406
(1.7) (5.8) (14.1) (28.3) (50.4) (83.3) (130.7) (198.8) (299.5)

-0.3 9.8829 14.8460 19.8357 24.8615 29.9338 35.0640 40.2650 45.5516 50.9414
(1.3) (4.4) (10.6) (21.0) (37.0) (60.1) (92.4) (136.1) (194.6)

-0.2 9.9273 14.9037 19.8956 24.9085 29.9479 35.0198 40.1304 45.2866 50.4958
(0.9) (3.0) (7.1) (13.9) (24.3) (39.2) (59.3) (85.9) (120.2)

-0.1 9.9729 14.9649 19.9636 24.9713 29.9902 35.0227 40.0713 45.1383 50.2264
(0.4) (1.5) (3.6) (7.0) (12.1) (19.3) (29.0) (41.6) (57.5)

Table 1: Square root of fair variance strikes (%) obtained by log-Euler Monte Carlo scheme of equation
(23) with β ∈ [−1,−0.1], initial volatilities σ0 ∈ [0.1, 0.5], r = 10% and T = 1. Values shown in brackets
are the standard deviations (×10−6) of this scheme with respect to the corresponding model parameters.

β
Initial Volatilities (%)

10 15 20 25 30 35 40 45 50

-1 0 3×10−10 2×10−05 0.0027 0.0463 0.2690 0.8640 1.9585 3.5659
-0.9 0 1×10−12 8×10−07 0.0004 0.0135 0.1111 0.4469 1.1806 2.3960
-0.8 0 0 1×10−08 3×10−05 0.0024 0.0324 0.1785 0.5833 1.3763
-0.7 0 0 4×10−11 9×10−07 0.0002 0.0054 0.0470 0.2091 0.6140
-0.6 0 0 0 3×10−09 4×10−06 0.0003 0.0060 0.0430 0.1770
-0.5 0 0 0 2×10−13 7×10−09 4×10−06 0.0002 0.0031 0.0223
-0.4 0 0 0 0 6×10−14 7×10−10 4×10−07 2×10−05 0.0005
-0.3 0 0 0 0 0 0 4×10−13 6×10−10 1×10−07

-0.2 0 0 0 0 0 0 0 0 0
-0.1 0 0 0 0 0 0 0 0 0

Table 2: Probability (%) of Vt → ∞ with β ∈ [−1,−0.1], initial volatilities σ0 ∈ [0.1, 0.5], r = 10% and
T = 1.
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β
Initial Volatilities (%)

10 15 20 25 30 35 40 45 50

-1.0 9.5831 14.4999 19.5860 24.9292 30.6442 36.8781 43.8153 51.6789 60.7313
(0.2301) (0.2758) (0.3784) (0.7825) – – – – –

-0.9 9.6200 14.5358 19.5914 24.8554 30.4155 36.3828 42.8962 50.1250 58.2708
(0.2230) (0.2560) (0.3251) (0.5131) – – – – –

-0.8 9.6580 14.5748 19.6057 24.8033 30.2333 35.9777 42.1379 48.8380 56.2265
(0.2159) (0.2396) (0.2858) (0.3908) (0.7351) – – – –

-0.7 9.6970 14.6170 19.6283 24.7709 30.0927 35.6527 41.5227 47.7899 54.5590
(0.2099) (0.2259) (0.2561) (0.3155) (0.4542) – – – –

-0.6 9.7369 14.6622 19.6589 24.7565 29.9895 35.3988 41.0335 46.9524 53.2254
(0.2060) (0.2157) (0.2340) (0.2671) (0.3337) (0.4799) – – –

-0.5 9.7780 14.7105 19.6971 24.7589 29.9200 35.2078 40.6545 46.2977 52.1818
(0.2021) (0.2083) (0.2183) (0.2357) (0.2670) (0.3261) (0.4437) – –

-0.4 9.8200 14.7619 19.7427 24.7772 29.8812 35.0726 40.3714 45.8004 51.3856
(0.2002) (0.2028) (0.2077) (0.2159) (0.2297) (0.2528) (0.2932) (0.3637) (0.4938)

-0.3 9.8632 14.8164 19.7957 24.8106 29.8710 34.9877 40.1724 45.4378 50.7983
(0.1993) (0.1994) (0.2017) (0.2047) (0.2098) (0.2176) (0.2300) (0.2498) (0.2809)

-0.2 9.9076 14.8741 19.8561 24.8588 29.8878 34.9488 40.0480 45.1918 50.3870
(0.1984) (0.1986) (0.1985) (0.1995) (0.2007) (0.2027) (0.2053) (0.2093) (0.2155)

-0.1 9.9532 14.9353 19.9241 24.9218 29.9308 34.9533 39.9918 45.0486 50.1264
(0.1975) (0.1978) (0.1979) (0.1982) (0.1981) (0.1982) (0.1984) (0.1987) (0.1991)

Table 3: Square root of the fair variance strikes (%) obtained by the closed form approximation of
lemma 3.4, when initial volatilities σ0 ∈ [0.1, 0.5], β ∈ [−1,−0.1], r = 10% and T = 1. Values shown in
brackets are the relative differences (%) between the fair variance strikes obtained by this closed form
approximation and the log-Euler scheme with respect to the corresponding model parameters. Symbol
‘−’ is used for those variance swaps whose fair variance strike is ∞ in table 1.

β
Initial Volatilities (%)

10 15 20 25 30 35 40 45 50

-1.0 9.5831 14.5000 19.5862 24.9295 30.6447 36.8791 43.8167 51.6811 60.7345
(0.035) (0.124) (0.320) (0.704) (1.412) (2.677) (4.869) (8.562) (14.601)

-0.9 9.6201 14.5358 19.5915 24.8557 30.4160 36.3836 42.8973 50.1267 58.2733
(0.031) (0.111) (0.284) (0.611) (1.194) (2.201) (3.892) (6.666) (11.111)

-0.8 9.6580 14.5749 19.6058 24.8035 30.2337 35.9783 42.1388 48.8392 56.2284
(0.028) (0.099) (0.249) (0.526) (1.005) (1.802) (3.097) (5.158) (8.377)

-0.7 9.6970 14.6170 19.6284 24.7711 30.0930 35.6532 41.5234 47.7909 54.5604
(0.025) (0.087) (0.216) (0.449) (0.839) (1.466) (2.450) (3.965) (6.262)

-0.6 9.7370 14.6622 19.6590 24.7567 29.9897 35.3991 41.0340 46.9531 53.2264
(0.022) (0.075) (0.184) (0.377) (0.691) (1.181) (1.922) (3.024) (4.638)

-0.5 9.7780 14.7105 19.6972 24.7591 29.9201 35.2080 40.6548 46.2982 52.1824
(0.018) (0.063) (0.153) (0.309) (0.557) (0.934) (1.485) (2.276) (3.393)

-0.4 9.8201 14.7619 19.7428 24.7773 29.8814 35.0728 40.3716 45.8007 51.3861
(0.015) (0.051) (0.122) (0.244) (0.435) (0.716) (1.117) (1.673) (2.431)

-0.3 9.8633 14.8164 19.7957 24.8106 29.8711 34.9879 40.1726 45.4381 50.7986
(0.011) (0.038) (0.092) (0.182) (0.320) (0.521) (0.799) (1.174) (1.670)

-0.2 9.9076 14.8741 19.8561 24.8588 29.8878 34.9489 40.0481 45.1919 50.3871
(0.008) (0.026) (0.061) (0.121) (0.211) (0.340) (0.515) (0.746) (1.043)

-0.1 9.9532 14.9353 19.9241 24.9218 29.9308 34.9534 39.9918 45.0487 50.1265
(0.004) (0.013) (0.031) (0.061) (0.105) (0.168) (0.252) (0.361) (0.499)

Table 4: Square roots of the fair variance strikes (%) and their standard deviations obtained by the
conditional Monte-Carlo simulation of corollary 4.4, when initial volatilities σ0 ∈ [0.1, 0.5], β ∈ [−1,−0.1],
r = 10% and T = 1. Values shown in brackets are the standard deviations (×10−6) of this scheme with
respect to the corresponding model parameters.
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still in fairly low level, that all of them are less than 1%. We use the symbol ‘−’ to denote when a value

may not be returned, because the result of log-Euler scheme is infinity.

The alternative approach is to apply corollary 4.4 by implementing a conditional Monte-Carlo simulation.

The value of the conditional expected realized variance only depends on the initial volatility, interest

rate, maturity and a sample of Brownian motion WT , which is a path independent random variable and

is straightforwardly simulated by quasi-Monte Carlo method. The first step is to generate samples of a

Brownian motion WT via a Sobol sequence. Next, we compute the value of EQ
b [V(0,T )] by taking b as a

sample of WT and substitute b to equation (22). Then the value of fair variance strike is the mean of

EQ
b [V(0,T )] computed by repeating the second step for all samples of WT .

Table 4 shows the square root of fair variance strikes in percent by applying this conditional Monte-

Carlo simulation with different values of parameters. The model parameters σ0 and β are the same as

those used in table 1. We generate 216 − 1 elements in a Sobol sequence to simulate the distribution

of EQ
b [V(0,T )] for all the parameter values, and also compute its the standard deviations, which are

shown in the brackets as a percentage value. As is shown, the fair variance strikes in this table are vary

close to the values in table 3. The standard deviation also increases with initial volatility σ0 and |β|,
which agrees with the trend shown in table 1. However, the level of standard derivations generated by

the small disturbance asymptotic expansion is approximately 100 times smaller than by the log-Euler

simulation when they both use 216 − 1 paths. In addition, the conditional Monte-Carlo simulation with

small disturbance asymptotic expansion is shown to be very fast in our case. It takes 2.8105 seconds to

compute all the values in table 4, i.e., 0.0312 seconds for each of them, an approximate improvement

of a factor of 90. This method also has the potential to be applied to price more complicated volatility

derivatives, such as corridor variance swaps and option on realized variance. See Carr and Madan, Carr

and Lewis [3, 4] for a detailed discussion.

6 Conclusion

In this paper we apply the small disturbance asymptotic expansion to the CEV variance process and

compute the fair variance strike of a variance swap by giving a path-independent closed from approxima-

tion. A conditional Monte Carlo simulation is also applied to obtain the fair variance strike by deriving

a theorem for the conditionally expected product of a Brownian motion at two different times with ar-

bitrary powers. The results presented in the paper have three main advantages. First, the fair variance

strike is expressed as a deterministic function of interest rate, expiry time and initial volatility and can

be easily implemented numerically. Second, the conditional expectation of the realized variance only

depends on interest rate, expiry time, initial volatility and a Brownian motion at expiry, which can be

applied by a conditional Monte-Carlo simulation scheme. This method is compared with the first order

log-Euler scheme. The results demonstrate that the speed and accuracy of our conditional Monte-Carlo

simulation is improved significantly compared with the first order log-Euler scheme. Finally, ignoring

the pathological case when the variance goes to infinity, we gained reasonable and accurate results.
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Appendix A

Proof of lemma 3.3.

Proof. By lemma 3.1, we have

∂2Vt
∂ε2

= 2β̄

∫ t

0

[
2β̄V 2

u + (2εβ̄ − 1)
∂V 2

u

∂ε
+ 2r

∂Vu
∂ε

]
du+ 4β̄

∫ t

0

∂V
3
2
u

∂ε
dWu

+ εβ̄

∫ t

0

[
4β̄
∂V 2

u

∂ε
+ (2εβ̄ − 1)

∂2(V 2
u )

∂ε2
+ 2r

∂2Vu
∂ε2

]
du+ 2εβ̄

∫ t

0

∂2(V
3
2
u )

∂ε2
dWu;

∂3Vt
∂ε3

= 3β̄

∫ t

0

[
4β̄
∂V 2

u

∂ε
+ (2εβ̄ − 1)

∂2(V 2
u )

∂ε2
+ 2r

∂2Vu
∂ε2

]
du+ 6β̄

∫ t

0

∂2(V
3
2
u )

∂ε2
dWu

+ εβ̄

∫ t

0

[
6β̄
∂2(V 2

u )

∂ε2
+ (2εβ̄ − 1)

∂3(V 2
u )

∂ε3
+ 2r

∂3Vu
∂ε3

]
du+ 2εβ̄

∫ t

0

∂3(V
3
2
u )

∂ε3
dWu; and

∂4Vt
∂ε4

= 4β̄

∫ t

0

[
6β̄
∂2(V 2

u )

∂ε2
+ (2εβ̄ − 1)

∂3(V 2
u )

∂ε3
+ 2r

∂3Vu
∂ε3

]
du+ 8β̄

∫ t

0

∂3(V
3
2
u )

∂ε3
dWu

+ εβ̄

∫ t

0

[
8β̄
∂3(V 2

u )

∂ε3
+ (2εβ̄ − 1)

∂4(V 2
u )

∂ε4
+ 2r

∂4Vu
∂ε4

]
du+ 2εβ̄

∫ t

0

∂4(V
3
2
u )

∂ε4
dWu.

Taking ε→ 0 gives us the following expressions.

∂2Vt
∂ε2

∣∣∣∣
ε=0

= 2β̄

∫ t

0

[
2β̄V 2

0 −
∂V 2

u

∂ε

∣∣∣∣
ε=0

+ 2rG

]
du+ 4β̄

∫ t

0

∂V
3
2
u

∂ε

∣∣∣∣∣
ε=0

dWu, (24)

∂3Vt
∂ε3

∣∣∣∣
ε=0

= 3β̄

∫ t

0

[
4β̄

∂V 2
u

∂ε

∣∣∣∣
ε=0

− ∂2(V 2
u )

∂ε2

∣∣∣∣
ε=0

+ 2rH

]
du+ 6β̄

∫ t

0

∂2(V
3
2
u )

∂ε2

∣∣∣∣∣
ε=0

dWu, (25)

∂4Vt
∂ε4

∣∣∣∣
ε=0

= 4β̄

∫ t

0

[
6β̄

∂2(V 2
u )

∂ε2

∣∣∣∣
ε=0

− ∂3(V 2
u )

∂ε3

∣∣∣∣
ε=0

+ 2rL

]
du+ 8β̄

∫ t

0

∂3(V
3
2
u )

∂ε3

∣∣∣∣∣
ε=0

dWu. (26)

The derivatives of V
3
2
t and V 2

t needs to be computed up to the third order. They will be computed in three steps.

Step 1: the first derivative

∂V mt
∂ε

∣∣∣∣
ε=0

= mβ̄V m0

[
(2r − V0)t+ 2V

1
2

0 Wt

]
for m ≥ 0. (27)

Step 2: the second derivative

∂2(V
3
2
t )

∂ε2

∣∣∣∣∣
ε=0

= 6β̄

∫ t

0

[
3

2
β̄V

5
2

0 −
1

2

∂V
5
2
u

∂ε

∣∣∣∣∣
ε=0

+ r
∂V

3
2
u

∂ε

∣∣∣∣∣
ε=0

]
du+ 6β̄

∫ t

0

∂V 2
u

∂ε

∣∣∣∣
ε=0

dWu

= 6β̄2V
3
2

0

∫ t

0

[
3

2
V0 −

5

2
V0(r − 1

2
V0)u− 5

2
V

3
2

0 Wu + 3r

(
(r − 1

2
V0)u+ V

1
2

0 Wu

)]
du

+ 12β̄2V 2
0

∫ t

0

[
(2r − V0)u+ 2V

1
2

0 Wu

]
dWu. (28)

∂2(V 2
t )

∂ε2

∣∣∣∣
ε=0

= 4β̄

∫ t

0

[
4β̄V 3

0 −
∂V 3

u

∂ε

∣∣∣∣
ε=0

+ 2r
∂V 2

u

∂ε

∣∣∣∣
ε=0

]
du+ 8β̄

∫ t

0

∂V
5
2
u

∂ε

∣∣∣∣∣
ε=0

dWu

= 4β̄2V 2
0

∫ t

0

[
4V0 − 3V0(2r − V0)u− 6V

3
2

0 Wu + 4r
(

(2r − V0)u+ 2V
1
2

0 Wu

)]
du

+ 40β̄2V
5
2

0

∫ t

0

[
(r − 1

2
V0)u+ V

1
2

0 Wu

]
dWu. (29)

∂2(V
5
2
t )

∂ε2

∣∣∣∣∣
ε=0

= 10β̄

∫ t

0

[
5

2
β̄V

7
2

0 −
1

2

∂V
7
2
u

∂ε

∣∣∣∣∣
ε=0

+ r
∂V

5
2
u

∂ε

∣∣∣∣∣
ε=0

]
du+ 10β̄

∫ t

0

∂V 3
u

∂ε

∣∣∣∣
ε=0

dWu
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= 10β̄2V
5
2

0

∫ t

0

[
5

2
V0 −

7

2
V0(r − 1

2
V0)u− 7

2
V

3
2

0 Wt + 5r

(
(r − 1

2
V0)u+ V

1
2

0 Wu

)]
du

+ 30β̄2V 3
0

∫ t

0

[
(2r − V0)u+ 2V

1
2

0 Wu

]
dWu. (30)

∂2(V 3
t )

∂ε2

∣∣∣∣
ε=0

= 6β̄

∫ t

0

[
6β̄V 4

0 −
∂V 4

u

∂ε

∣∣∣∣
ε=0

+ 2r
∂V 3

u

∂ε

∣∣∣∣
ε=0

]
du+ 12β̄

∫ t

0

∂V
7
2
u

∂ε

∣∣∣∣∣
ε=0

dWu

= 12β̄2V 3
0

∫ t

0

[
3V0 − 2V0(2r − V0)u− 4V

3
2

0 Wu + 3r

(
(2r − V0)u+ 2V

1
2

0 Wu

)]
du

+ 84β̄2V
7
2

0

∫ t

0

[
(r − 1

2
V0)u+ V

1
2

0 Wu

]
dWu. (31)

By Itô’s lemma, we have W 2
t = 2

∫ t
0
WudWu + t and tWt =

∫ t
0
Wudu +

∫ t
0
udWu. So equation (28) to equation

(31) may be written as

∂2(V
3
2
t )

∂ε2

∣∣∣∣∣
ε=0

= 3β̄2V
3
2

0

[
(
5

4
V 2
0 − 4rV0 + 3r2)t2 − V0t+ 4V

1
2

0 (2r − V0)tWt

+ 4V0W
2
t − V

1
2

0 (2r + V0)

∫ t

0

Wudu

]
. (32)

∂2(V 2
t )

∂ε2

∣∣∣∣
ε=0

= 4β̄2V 2
0

[
(
3

2
V 2
0 − 5rV0 + 4r2)t2 − V0t+ 5V

1
2

0 (2r − V0)tWt

+ 5V0W
2
t − V

1
2

0 (2r + V0)

∫ t

0

Wudu

]
. (33)

∂2(V
5
2
t )

∂ε2

∣∣∣∣∣
ε=0

= 5β̄2V
5
2

0

[
(
7

4
V 2
0 − 6rV0 + 5r2)t2 − V0t+ 6V

1
2

0 (2r − V0)tWt

+ 6V0W
2
t − V

1
2

0 (2r + V0)

∫ t

0

Wudu

]
. (34)

∂2(V 3
t )

∂ε2

∣∣∣∣
ε=0

= 6β̄2V 3
0

[
(2V 2

0 − 7rV0 + 6r2)t2 − V0t+ 7V
1
2

0 (2r − V0)tWt

+ 7V0W
2
t − V

1
2

0 (2r + V0)

∫ t

0

Wudu

]
. (35)

Step 3: the third derivative

∂3(V
3
2
t )

∂ε3

∣∣∣∣∣
ε=0

= 9β̄

∫ t

0

[
3β̄

∂V
5
2
u

∂ε

∣∣∣∣∣
ε=0

− 1

2

∂2(V
5
2
u )

∂ε2

∣∣∣∣∣
ε=0

+ r
∂2(V

3
2
u )

∂ε2

∣∣∣∣∣
ε=0

]
du+ 9β̄

∫ t

0

∂2(V 2
u )

∂ε2

∣∣∣∣
ε=0

dWu

= 9β̄3V
3
2

0

∫ t

0

[
15

2
V0((2r − V0)u+ 2V

1
2

0 Wu)− 5

2
V0

(
(
7

4
V 2
0 − 6rV0 + 5r2)u2 − V0u

+ 6V
1
2

0 (2r − V0)uWu + 6V0W
2
u − V

1
2

0 (2r + V0)

∫ u

0

Wsds

)
+ 3r

(
(
5

4
V 2
0 − 4rV0 + 3r2)u2

− V0u+ 4V
1
2

0 (2r − V0)uWu + 4V0W
2
u − V

1
2

0 (2r + V0)

∫ u

0

Wsds

)]
du

+ 36β̄3V 2
0

∫ t

0

[
(
3

2
V 2
0 − 5rV0 + 4r2)u2 − V0u+ 5V

1
2

0 (2r − V0)uWu + 5V0W
2
u

− V
1
2

0 (2r + V0)

∫ u

0

Wsds

]
dWu. (36)

∂3(V 2
t )

∂ε3

∣∣∣∣
ε=0

= 6β̄

∫ t

0

[
8β̄

∂V 3
u

∂ε

∣∣∣∣
ε=0

− ∂2(V 3
u )

∂ε2

∣∣∣∣
ε=0

+ 2r
∂2(V 2

u )

∂ε2

∣∣∣∣
ε=0

]
du+ 12β̄

∫ t

0

∂2(V
5
2
u )

∂ε2

∣∣∣∣∣
ε=0

dWu

= 12β̄3V 2
0

∫ t

0

[
12V0

(
(2r − V0)u+ 2V

1
2

0 Wu

)
− 3V0

(
(2V 2

0 − 7rV0 + 6r2)u2 − V0u

+ 7V
1
2

0 (2r − V0)uWu + 7V0W
2
u − V

1
2

0 (2r + V0)

∫ u

0

Wsds

)
+ 4r

(
(
3

2
V 2
0 − 5rV0 + 4r2)u2

− V0u+ 5V
1
2

0 (2r − V0)uWu + 5V0W
2
u − V

1
2

0 (2r + V0)

∫ u

0

Wsds

)]
du

17



+ 60β̄3V
5
2

0

∫ t

0

[
(
7

4
V 2
0 − 6rV0 + 5r2)u2 − V0u+ 6V

1
2

0 (2r − V0)uWu + 6V0W
2
u

− V
1
2

0 (2r + V0)

∫ u

0

Wsds

]
dWu. (37)

Again, by Itô’s lemma, we have W 3
t = 3

∫ t
0
W 2
udWu + 3

∫ t
0
Wudu, tW 2

t =
∫ t
0
W 2
udu + 2

∫ t
0
uWudWu + 1

2
t2,

t2Wt = 2
∫ t
0
uWudu +

∫ t
0
u2dWu and

∫ t
0

∫ s
0
WsdsdWu = Wt

∫ t
0
Wudu − 2

∫ t
0
W 2
udu. After substituting these

equations to equation (36) and (37), we derive that

∂3(V
3
2
t )

∂ε3

∣∣∣∣∣
ε=0

= 9β̄3V
3
2

0

[
(−35

24
V 3
0 +

25

4
rV 2

0 −
49

6
r2V0 + 3r3)t3 + 4V

1
2

0 (
3

2
V 2
0 − 5rV0 + 4r2)t2Wt

− V0(4r − 5

2
V0)t2 + 10V0(2r − V0)tW 2

t − 4V
3
2

0 tWt +
20

3
V

3
2

0 W 3
t + V0(8r + 3V0)

∫ t

0

W 2
udu

+ V
1
2

0 (3V 2
0 − 2rV0 − 8r2)

∫ t

0

uWudu− 4V0(2r + V0)Wt

∫ t

0

Wudu

+ V
1
2

0 (
5

2
V 2
0 + 2rV0 − 6r2)

∫ t

0

∫ u

0

Wsdsdu− V
3
2

0

∫ t

0

Wudu

]
. (38)

∂3(V 2
t )

∂ε3

∣∣∣∣
ε=0

= 12β̄3V 2
0

[
(−2V 3

0 + 9rV 2
0 −

38

3
r2V0 +

16

3
r3)t3 + 5V

1
2

0 (
7

4
V 2
0 − 6rV0 + 5r2)t2Wt

− V0(5r − 3V0)t2 + 15V0(2r − V0)tW 2
t − 5V

3
2

0 tWt + 10V
3
2

0 W 3
t + 2V0(5r + 2V0)

∫ t

0

W 2
udu

+ 2V
1
2

0 (
7

4
V 2
0 − rV0 − 5r2)

∫ t

0

uWudu− 5V0(2r + V0)Wt

∫ t

0

Wudu

+ V
1
2

0 (3V 2
0 + 2rV0 − 8r2)

∫ t

0

∫ u

0

Wsdsdu− V
3
2

0

∫ t

0

Wudu

]
. (39)

Now, we are able to derive H, L and M from equations (24) to (26). First, substituting equation (11) and (27)

to equation (24) derives

∂2Vt
∂ε2

∣∣∣∣
ε=0

= 2β̄2V0

[ ∫ t

0

(
2V0 − 2V0

(
(2r − V0)u+ 2V

1
2

0 Wu

)
+ 2r

(
(2r − V0)u+ 2V

1
2

0 Wu

))
du

+ 3V
1
2

0

∫ t

0

(
(2r − V0)u+ 2V

1
2

0 Wu

)
dWu

]
= 2β̄2V0

[
(V 2

0 − 3rV0 + 2r2)t2 − V0t+ 3V
1
2

0 (2r − V0)tWt + 3V0W
2
t − V

1
2

0 (2r + V0)

∫ t

0

Wudu

]
. (40)

Second, substituting equations (27), (32), (33) and (40) into equation (25) gives us that

∂3Vt
∂ε3

∣∣∣∣
ε=0

= 3β̄3V0

∫ t

0

[
8V0

(
(2r − V0)u+ 2V

1
2

0 Wu

)
− 4V0

(
(
3

2
V 2
0 − 5rV0 + 4r2)u2 + 5V

1
2

0 (2r − V0)uWu

− V0u+ 5V0W
2
u − V

1
2

0 (2r + V0)

∫ u

0

Wsds

)
+ 4r

(
(V 2

0 − 3rV0 + 2r2)u2 − V0u+ 3V0W
2
u

+ 3V
1
2

0 (2r − V0)uWu − V
1
2

0 (2r + V0)

∫ u

0

Wsds

)]
du+ 18β̄3V

3
2

0

∫ t

0

[
(
5

4
V 2
0 − 4rV0 + 3r2)u2

− V0u+ 4V
1
2

0 (2r − V0)uWu + 4V0W
2
u − V

1
2

0 (2r + V0)

∫ u

0

Wsds

]
dWu

= 6β̄3V0

[
(−V 3

0 + 4rV 2
0 −

14

3
r2V0 +

4

3
r3)t3 + 3V

1
2

0 (
5

4
V 2
0 − 4rV0 + 3r2)t2Wt − V0(3r − 2V0)t2

+ 6V0(2r − V0)tW 2
t − 3V

3
2

0 tWt + 4V
3
2

0 W 3
t + 2V0(3r + V0)

∫ t

0

W 2
udu− 3V0(2r + V0)Wt

∫ t

0

Wudu

+ V
1
2

0 (
5

2
V 2
0 − 2rV0 − 6r2)

∫ t

0

uWudu+ 2V
1
2

0 (V 2
0 + rV0 − 2r2)

∫ t

0

∫ u

0

Wsdsdu− V
3
2

0

∫ t

0

Wudu

]
.

(41)
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Next, we derive ∂4Vt
∂ε4

∣∣∣
ε=0

, but we firstly give the following equations by applying Itô’s lemma.

W 4
t = 4

∫ t

0

W 3
udWu + 6

∫ t

0

W 2
udu, (42)

tW 3
t =

∫ t

0

(W 3
u + 3uWu)du+ 3

∫ t

0

uW 2
udWu, (43)

t3Wt = 3

∫ t

0

u2Wudu+

∫ t

0

u3dWu, (44)

t2W 2
t = 2

∫ t

0

uW 2
udu+ 2

∫ t

0

u2WudWu +
1

3
t3, (45)∫ t

0

∫ u

0

W 2
s dsdWu = Wt

∫ t

0

W 2
udu−

∫ t

0

W 3
udu, (46)∫ t

0

∫ u

0

sWsdsdWu = Wt

∫ t

0

uWudu−
∫ t

0

uW 2
udu, (47)∫ t

0

∫ u

0

∫ s

0

WadadsdWu = Wt

∫ t

0

∫ u

0

Wsdsdu−
∫ t

0

Wu

∫ u

0

Wsdsdu, (48)∫ t

0

Wu

∫ u

0

WsdsdWu =
1

2

(
W 2
t

∫ t

0

Wudu−
∫ t

0

W 3
udu−

∫ t

0

∫ u

0

Wsdsdu

)
. (49)

Then substituting equations (33), (38), (39), (41) and (42) to (49) into equation (26), we obtain

∂4Vt
∂ε4

∣∣∣∣
ε=0

= 24β̄4V0

[
(V 4

0 − 5rV 3
0 +

25

3
r2V 2

0 − 5r3V0 +
2

3
r4)t4 − V

1
2

0 (
35

8
V 3
0 −

75

4
rV 2

0 +
49

2
r2V0 − 9r3)t3Wt

− V0(3V 2
0 − 8rV0 −

14

3
r2)t3 + 6V0(

3

2
V 2
0 − 5rV0 + 4r2)t2W 2

t − 3V
3
2

0 (4r − 5

2
V0)t2Wt + V 2

0 t
2

+ 10V
3
2

0 (2r − V0)tW 3
t − 6V 2

0 tW
2
t + 5V 2

0 W
4
t + V

3
2

0 (5V0 − 2r)

∫ t

0

uWudu− V 2
0

∫ t

0

W 2
udu

+ 2V
3
2

0 (r + 2V0)

∫ t

0

∫ u

0

Wsdsdu− V
1
2

0 (
35

8
V 3
0 −

45

4
rV 2

0 +
1

2
r2V0 + 9r3)

∫ t

0

u2Wudu

+ 3V 2
0 (V0 − 2r)

∫ t

0

uW 2
udu− V

3
2

0 (24r + 13V0)

∫ t

0

W 3
udu− 4V0(2V 2

0 + 4rV0 − 3r2)

∫ t

0

∫ u

0

W 2
s dsdu

− V
1
2

0 (7V 3
0 − 9rV 2

0 − 16r2V0 + 12r3)

∫ t

0

∫ u

0

sWsdsdu+ V0(
5

2
V 2
0 + 26rV0 − 30r2)

∫ t

0

Wu

∫ u

0

Wsdsdu

− 2V
1
2

0 (3V 3
0 − 10r2V0 + 4r3)

∫ t

0

∫ u

0

∫ s

0

Wadadsdu+ 3V
3
2

0 (8r + 3V0)Wt

∫ t

0

W 2
udu

+ 3V0(3V 2
0 − 2rV0 − 8r2)Wt

∫ t

0

uWudu− 6V
3
2

0 (2r + V0)W 2
t

∫ t

0

Wudu

+ 3V0(
5

2
V 2
0 − 4rV0 + 6r2)Wt

∫ t

0

∫ u

0

Wsdsdu− 3V 2
0 Wt

∫ t

0

Wudu

]
. (50)

Finally, H, L and M can be derived by substituting equations (40), (41) and (50) into equation (6).

Appendix B

Proof of lemma 4.4.

Proof. From lemma (3.3), we have the expectation of integrated variance with condition {WT = b} in the form

Eb[V(0,T )] =
1

T
Eb

[∫ T

0

Vtdt

]
=

1

T
Eb

[∫ T

0

(V0 + βG+ β2H + β3L+ β4M +O(ε5))dt

]
= V0 +

β

T
Eb

[∫ T

0

Gdt

]
+
β2

T
Eb

[∫ T

0

Hdt

]
+
β3

T
Eb

[∫ T

0

Ldt

]
+
β4

T
Eb

[∫ T

0

Mdt

]
+O(ε5). (51)
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Then by corollary 4.4, we derive the conditional expectation Eb
[∫ T

0
Gdt

]
as follows:

Eb

[∫ T

0

Gdt

]
= V0(2r − V0)Eb

[∫ T

0

tdt

]
+ 2V

3
2

0 Eb

[∫ T

0

Wtdt

]
= V0T

[1

2
(2r − V0)T + V

1
2

0 b
]
. (52)

Likewise, by repeating this calculation, we have the Eb
[∫ T

0
Hdt

]
, Eb

[∫ T
0
Ldt

]
, and Eb

[∫ T
0
Mdt

]
as

Eb

[∫ T

0

Hdt

]
= V0T

[1

3
(V 2

0 − 3rV0 + 2r2)T 2 +
1

6
V

1
2

0 (10r − 7V0)bT + V0b
2
]
. (53)

Eb

[∫ T

0

Ldt

]
= V0T

[1

4
(−V 3

0 + 4rV 2
0 −

14

3
r2V0 +

4

3
r3)T 3 + V

1
2

0 (
59

48
V 2
0 −

37

12
rV0 +

19

12
r2)bT 2

+
1

4
V0(r +

5

6
V0)T 2 + V0(

11

4
r − 41

24
V0)b2T − 1

6
V

3
2

0 bT + V
3
2

0 b3
]
. (54)

Eb

[∫ T

0

Mdt

]
= V0T

[1

5
(V 4

0 − 5rV 3
0 +

25

3
r2V 2

0 − 5r3V0 +
2

3
r4)T 4 + V

1
2

0 (−121

96
V 3
0 +

357

80
rV 2

0

− 183

40
r2V0 +

13

12
r3)bT 3 + V0(− 7

48
V 2
0 +

2

15
rV0 +

23

12
r2)T 3 + V0(

131

48
V 2
0

− 403

60
rV0 +

13

4
r2)b2T 2 + V

3
2

0 (
1

30
V0 −

71

60
r)bT 2 +

1

8
V 2
0 T

2 + V
3
2

0 (
16

5
r − 53

20
V0)b3T

− 11

24
V 2
0 b

2T + V 2
0 b

4
]
. (55)

Then the lemma is proved by substituting equation (52) to (55) into equation (51).
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