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Abstract

Flexibility of structures is extremely important for chemistry and robotics. Following our earlier 

work, we study flexibility using polynomial equations, resultants, and a symbolic algorithm of our 

creation that analyzes the resultant. We show that the software solves a classic arrangement of 

quadrilaterals in the plane due to Bricard. We fill in several gaps in Bricard’s work and discover 

new flexible arrangements that he was apparently unaware of. This provides strong evidence for 

the maturity of the software, and is a wonderful example of mathematical discovery via computer 

assisted experiment.
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1. Introduction

This project results from the convergence of four topics: systems of polynomial equations, 

flexibility of two and three dimensional objects, computational chemistry, and computer 

algebra. It also has application to robotics [19,22].

We have developed software to detect flexibility in certain structures that are generically 

rigid. It is based on symbolic computation of polynomials and rational functions, not 

numerical computing. We previously reported on earlier stages of this research in [16,11]. 

Since then, the software has been enormously improved in both power and efficiency, to the 

point where it not only discovers the previously known modes of flexibility of a classic 

structure due to R. Bricard, but discovers new modes apparently unknown to him.

We are mostly concerned with the framework in Fig. 1. It is a system of seven bars, joined at 

the nine junctions shown by rotational joints, allowing free rotation in the plane. It is 

generically rigid. This follows from a general theorem in kinematics [12] by which the 

mobility (number of degrees of freedom of relative motion) of a linkage system is given by 

the relation
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where n is the number of members, g is the number of joints and fi is the mobility at joint i. 
For the system in Fig. 1, comprised entirely of rigid rods with rotatable joints (with n = 7, g 
= 9 and f1, …, f9 = 1) this gives .

When M > 0 the system is generically flexible. When M = 0 it is generically rigid or 

determined. We wish to discover cases, by means of particular relations existing between its 

edges, that determinacy (rigidity) ceases to hold. Then the framework will be deformable 

(flexible).

Flexibility is an intuitive concept. Imagine a triangle made of three stiff rods joined with 

movable hinges. The formula above confirms the clear intuition that the structure is 

obviously rigid. In the same way, a quadrilateral in the plane is obviously flexible, and for it 

M > 0 (M = 1).

In computational chemistry, protein folding has been a major research topic for a number of 

years [21,7,6]. Molecules can fold because they are flexible. Simple examples are easily 

built from a few plastic balls and rods. In 1812, Cauchy considered flexibility of three 

dimensional polyhedra with triangular facets (similar to a geodesic dome) where each joint 

can pivot or hinge. He proved that if the polyhedron is convex it cannot be flexible; it must 

be rigid [4]. In 1896 Bricard [2] tried to find non-convex flexible polyhedra by looking at 

one of the smallest possible cases, octahedra. He partially succeeded: his flexible octahedra 

are not embeddable in actual three-space because some of their facets intercross. He also 

described the system of three quadrilaterals in the plane (Fig. 1) whose motion is 

algebraically equivalent to the octahedra.

People came to believe that there were no flexible polyhedra at all. But in 1978 Robert 

Connelly, building on Bricard, astonished them by finding a non-convex one [5], and soon 

models appeared of a simpler flexible structure [9,18].

Our approach is to describe the geometry of the object or molecule with a set of multivariate 

polynomial equations. Solving a system of multivariate polynomial equations is a classic, 

difficult problem. The approach via resultants was pioneered by Bezout [1], Dixon [3,10,13], 

Sylvester [8], and others. The resultant appears as a factor of the determinant of a matrix 

containing multivariate polynomials. Computing it can be quite a challenge [17], but we 

developed methods to do so [14]. Once we have the resultant, we described [16] an 

algorithm we call Solve that examines the resultant and determines ways that the structure 

can be flexible.

We discovered in this way some of the conditions of flexibility for Bricard’s arrangement of 

quadrilaterals in [2] that is algebraically equivalent to the octahedra. Solve was greatly 

improved by Fox [11] and more recently again by us. It is at least 500 times faster on 

Bricard’s quadrilaterals than in 2008, and now finds all three of Bricard’s ways the 
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quadrilaterals can flex (this was not true in [16]). Surprisingly, Solve has discovered new 

flexible arrangements of the quadrilaterals that were apparently not anticipated by Bricard.

The main point of this paper is that our new algebraic and algorithmic solution of Bricard’s 

quadrilaterals demonstrates that the software has matured to the point where one can 

confidently use it on more complex structures, such as molecules.

2. Basic setup and strategy

All computations here were done with Lewis’s computer algebra system Fermat [15], which 

excels as polynomial and matrix computations [20].

As explained in the introduction, we are primarily concerned here with the analysis of the 

flexibility of a certain structure of Bricard consisting of seven rigid rods forming three 

quadrilaterals in the plane (Fig. 1). We need to establish that our software can find all the 

flexible cases. It order to show why we are confident in this, we will present proofs 

paralleling some of those of Bricard [2], but ours are quite different and more algebraic.

Other than historical motivation, why should we concentrate on this arrangement of rods? 

As remarked in the introduction, a quadrilateral in the plane AD, DC, CB, B A is obviously 

flexible (M = 1; see Fig. 1). Imagine that AB is fixed. As AD pivots about A, the angles α 
and γ take on a continuum of values. If we add G F and F E we have two nested 

quadrilaterals, and the structure remains obviously flexible (M = 1), and β also takes on a 

continuum of values, unless we set F = A, so G F = G A and FE = AE, s5 = s7, s2 = e; then β 
would be constantly π during the flex. That is a degenerate case. The addition of one more 

rod or “brace” H I produces a third quadrilateral E H I B. The structure is now generically 

rigid (M = 0). However, it can be made flexible in several ways. A degenerate way to do so 

is to simply place H I on top of E B, so H I = E B, s3 = s8 = 0, s6 = b − e. We are not 

concerned with such degeneracies here.1 Far more interesting is to choose the lengths of the 

rods (sides) so that each quadrilateral is a parallelogram. Obviously, the system is then 

flexible. This is one of the cases we analyze below (Section 4).

This is our goal: non-generic flexibility. The system of Fig. 1 is one of the simplest to 

examine for non-degenerate flexibility, and was thought by Bricard to be “equivalent” to two 

octahedra in three dimensions.

Our strategy is to describe the arrangement by a system of three polynomial equations, 

where the parameters are the lengths of the sides, and the three variables represent the 

tangents of certain angles2 in the structure. Using resultants, we show that flexibility implies 

that each of the three tangents is a rational function of the other two, and analyze when one 

tangent can be a rational function of only one other. We thereby derive the three flexible 

cases that were defined by Bricard, but with new subcases.

1Informally, degeneracy means a side is 0, or an angle is constant during the flex.
2Technically, the tangent of one-half the angle.
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As in Bricard’s paper on flexible octahedra, elementary geometry and trigonometry lead to a 

system of three polynomial equations in three variables t1, t2, t3 and fifteen parameters 

(details in next paragraph), namely

(1)

(2)

(3)

These fifteen parameters are themselves simple polynomial functions of the sides of the 

flexing quadrilaterals, in such a way that c1c2c3 ≠ 0. The other parameters might be 0. The ti 
are half-angle tangents of angles α, β, γ in the quadrilaterals; see Fig. 1. (Cotangents could 

also be used, which has the effect of replacing ti with . This will be used in Theorem 3.) 

The seven rigid rods are AD, DC, C B, AB, G F, F E, H I. The joints allow each rod to pivot 

freely in the plane. AB remains fixed on the x-axis during pivoting, with A at the origin. We 

allow negative values for s3, s8, s2, or s7, so points G, F, H, I might be below the x-axis. 

Angles θ1 and θ2 will be discussed later in Theorem 4.

The equations arise from Fig. 1 using basic geometry and trigonometry. For example, the 

coordinates of the point D are (s1 cos(α), s1 sin(α)). C is (b + s9 cos(γ), s9 sin(γ)). 

Therefore

One obtains three equations of this kind (using also s5 and s6) and three obvious equations of 

type sin2(x)+cos2(x) = 1. Then use the well-known half angle tangent substitutions

and so on (with β, γ ; t2, t3) to form the three Eqs. (1)–(3). The fifteen parameters become
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(4)

None of the sides si, e, b is 0. b ≠ e, s7 ≠ s1, s3 ≠ s9, s2 ≠ s8. For convenience, we also define 

s10 ≡ e, s11 ≡ b, and we also refer to s1 − s7, s9 − s3, and s2 − s8 as “sides”.

As we discussed above, the arrangement of quadrilaterals in Fig. 1 is generically rigid. That 

means, in spite of the flexible joints, if numerical values were assigned arbitrarily for the 

eleven sides, the angles α, β, γ would be uniquely determined.3 The main task of this paper 

is

Problem 1

Find conditions on the sides under which the quadrilateral arrangement becomes flexible.

Flexibility is marked mathematically by the three angles, and their half-angle tangents ti, 
each taking on uncountably many values. As remarked above, if all three quadrilaterals are 

parallelograms, the arrangement is flexible. This means that under the substitutions s9 = s1, b 
= s4, s2 = s7, s5 = e, s8 = s3 s6 = b − e, not only are there common roots to the system of 

equations (1)–(3), but there is a continuum of common roots; each ti is a never-constant 

continuous function ti : I → ℝ. Never-constant means there is no open interval over which ti 
is constant. Allowing that would create degenerate cases, which we do not discuss here. 

(Some are discussed in [16].) We therefore have secondarily:

Problem 1′

Find all conditions on the sides under which the quadrilateral arrangement becomes non-

degenerate flexible.

To understand flexibility, we follow Bricard and ask.

3At least up to sign or supplement. Some assignments would be impossible.
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Problem 2

When is one of these variables, t2, say,

• a rational function of another tj, or

• a rational function of both of the other ones t1, t3?

Using resultants, we will show in our Main Theorem (Section 5) that flexibility always 

implies the second case. The first case is referred to as splitting.4

To make sense of “rational function” we must discuss the ground field, . Let  be a field. 

In many of our algebraic results,  could be any field of characteristic not 2. However, 

eventually we will evaluate expressions like those in (4) by substituting each parameter with 

an element of 

. Therefore  subfield of ℝ is appropriate. We do not allow the sides to be arbitrary 

complex numbers.

Then given , we may first think of the ground ring as  and the ground field 

as , the field of rational functions over  of the fifteen parameters. However, the 

ground field is really , where the fifteen parameters are replaced 

with their definitions in (4). This means that large polynomials in the fifteen a1, …, e3 must 

sometimes be thought of as even larger polynomials in the eleven s1, s2, …, s9, e, b.

The evaluation homomorphism, obtained by substituting parameters with values in , can be 

thought of as a map from  to itself. Also, when we speak of finding a solution to the 

system (1)–(3), we understand as usual that the common root may lie in an extension field of 

the ground field, for example, a radical extension.

We can now specify what we mean in Problem 1 by “find conditions on the sides under 

which the quadrilateral arrangement becomes flexible”. We mean find substitutions of the 

form si = p(s1, s2, …, ŝi, …), where , so that the ti are continuous functions from 

some interval to ℝ. We will show that this notion of “condition” does indeed lead to both old 

and new flexible arrangements. That in turn suggests:

Problem 3

Can all flexible cases be represented by a table of substitutions in this sense?

We will see in the conclusion that, very surprisingly, this is false, and we conjecture a 

modification of it.

The rest of the paper is organized as follows: In Section 3 we develop three lemmas to 

identify when an equation splits. The various split cases are summarized in Section 4. In 

Section 5 we present the main theorem, which solves Problem 2 and says that if no equation 

splits, then every ti is a rational function of the other two. In Section 6 we complete the 

4One may fairly ask for the motivation for Problem 2. Recall that a similar question about the roots of a polynomial is the basic idea in 
Abel’s analysis of the unsolvability of the quintic.
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theory of the non-split case. In Section 7 we describe the software results and two surprising 

new flexible cases for the quadrilaterals that were apparently unknown to Bricard.

In all of the following definitions, lemmas, and theorems we assume flexibility. Some of 

them are true without this assumption, but we are not concerned with that.

3. Splitting lemmas

Definition 1

We say that one of Eqs. (1)–(3) splits or decomposes if one of the ti in it can be expressed as 

a rational function of the other one.

For simplicity, let us concentrate on solving for t2 in Eq. (1). Suppose in (1) we have a1 = d1 

= 0. Then (1) reduces to

(5)

Since c1 cannot be 0, we can solve this for t2 and obtain a rational function, so (1) would 

split. This example is an important case in the following lemmas.

Assuming that a1 ≠ 0 or d1 ≠ 0, it is natural to solve for t2 using the quadratic formula. We 

have

(6)

Definition 2

The polynomial under the square root sign in (6) is called F(t1).

Lemma 1

t2 is a rational function of t1 if and only if F(t1) is a perfect square in 

[t1].

Proof

If a1 = 0 and d1 = 0 the result is immediate. So assume a1 ≠ 0 or d1 ≠ 0.

The “if” part of the statement is obvious. To prove the converse, assume that there is rational 

function t2 = f/g with f,  [t1]. Inserting this into (6) and clearing 

denominators yields

Multiply it out, collect terms, and solve for F(t1):
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where p and q are polynomials in  [t1]. But that ring is a UFD. By a 

standard argument with irreducible polynomials, q2 divides p2, so we are done.

Lemma 2

If F(t1) is a perfect square in  [t1] then a1b1 = 0 and d1e1 = 0.

Proof

Note that

is a polynomial in . If this is truly a quadratic in  and a perfect square then its 

discriminant must be 0. But when the parameters a1, b1, …, e1 are replaced with their 

expressions (4) in terms of the eleven sides s1, s2, …, e, the discriminant simplifies 

enormously to .5 Therefore, the discriminant cannot be 0. The only solution is 

that F(t1) is linear in . Thus, a1 = 0 or b1 0.

We now have that

If this is a perfect square, then it equals some (At1 + B)2. As there is no linear term in F(t1), 

it must be that A = 0 or B = 0.

We will prove that A = 0 leads to a contradiction. We showed above that there are two cases 

to consider, a1 = 0 or b1 = 0. Assume that a1 = 0. Then A = 0 implies that . Since a1 

= (− s2 + e − s5 + s7) (− s2 + e + s5 + s7) = 0 this in turn leads to two cases. If −s2 + e − s5 + 

s7 = 0, then −s2 + s5 = e − s7. When this is plugged into the definitions of c1, b1 and d1, we 

see after some computation that  reduces s5 + s2 = s7. But then e = 0.

If b1 = 0, the argument is analogous. Now A = 0 implies that . b1 = (s2 + e − s5 + s7)

(s2 + e + s5 + s7) = 0 so we again have two subcases. Each leads to the contradiction e = 0.

Therefore, A = 0 is impossible so it must be that B = 0. Therefore b1d1 = 0.

Lemma 3

In equation (i), i = 1, 2, 3, consider the six ways to choose a pair of {ai, bi, di, ei}, the four 

parameters that might be 0. In all six cases, if that pair of parameters is 0, the equation splits.

5We recommend a computer algebra system for this computation. However, Bricard did not have one!
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Proof

We illustrate with i = 1. The case of {a1, d1} was shown in the above example (5) with t2 a 

rational function of t1. {a1, b1} is analogous, solving for t1.

For {b1, e1} we have

Since t2 is a function taking on a range of values, it may be divided out and we obtain

whence we may solve for t2 as

This is valid unless both d1 and a1 are 0. But if that were true, we would have 2c1t1t2 = 0, 

which is impossible. The case {d1, e1} is analogous, solving for t1.

Now consider the case {a1, e1}. (1) reduces to

If d1 = 0 or b1 = 0 we are done. Otherwise, by the quadratic formula,

so splitting depends on analysis of the polynomial under the radical. This is simply F(t1) 

from Lemmas 1 and 2. We proceed as follows. From the relations (4) we see that a1 and e1 

are each the product of two linear polynomials in the eleven parameters s1, …, e. Thus a1 = 

0 = e1 leads to four cases, each of which is a system of two linear equations. This system 

may be solved, allowing some of the si to be replaced with others. This greatly simplifies the 

expressions in (4) for c1, d1, and b1. Two cases lead to the contradiction e = 0. In the other 

two, we have . Therefore, F(t1) is a perfect square and we are done.

The final case {b1, d1} is similar to {a1, e1}. (1) reduces to

If a1 = 0 we are done. Otherwise, by the quadratic formula,
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. Once again we use the relations (4) to produce four cases. As before, 

the solution of two linear systems leads to the contradiction e = 0; in the other two we have 

. Therefore,  is a perfect square and we are done.

4. List of split cases for t2 a rational function of t1

The cases and subcases in the previous section may seem bewildering. We have written a 

program in a computer algebra system to summarize the details of the four split cases for t2 a 

rational function of t1. Recall from Lemma 2 that when this occurs, we have a1b1 = 0 and 

d1e1 = 0. This leads to four cases a1 = 0 and d1 = 0; a1 = 0 and e1 = 0; b1 = 0 and d1 = 0; b1 = 

0 and e1 = 0.

As in the proof of Lemma 3, cases {a1, e1} and {b1, d1}, we use relations (4) to produce 

systems of two linear equations. This yields substitutions for one si in terms of others, and 

produces four main cases, each with two subcases. The table shows the resulting F(t1) and t2 

in terms of t1.

a1 = 0, d1 = 0:

a1 = 0, e1 = 0:

b1 = 0, d1 = 0:

b1 = 0, e1 = 0:

Some of the cases above lead to degenerate solutions, such as s7 = s5, s2 = e. This is a “kite”, 

which was discussed in [16]. On the other hand, kites can be part of a non-degenerate 
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configuration if other conditions hold. Bricard [2] distinguished two types of (non-

degenerate) split solutions. He was focused on the octahedra. His Case two corresponds to 

two quadrilaterals similar, the third a parallelogram. Case three corresponds to all three 

quadrilaterals being parallelograms. Case one is non-split, which we now address.

5. The main theorem

Theorem 1

Assuming flexibility, if none of Eqs. (1)–(3) split, then each of the variables ti is a rational 

function of the other two.

The main step in the proof of Theorem 1 is the following lemma. Although considered to be 

well known, we can find neither proof nor even precise statement of it, so we include it for 

completeness.

Lemma 4

Let f and g be univariate polynomials over some field, say f = anxn + ⋯ + a0 and g = bmxm + 

⋯ + b0, where anbma0b ≠ 0. Let S be their Sylvester Resultant matrix, N × N, where N = n 
+·m. If the rank of S = N – 1, then there exists a polynomial h(x) of degree 1, whose 

coefficients are rational functions of {ai, bj}, satisfied by all the common roots of f and g.

Proof

In other words, x is rational function of the coefficients {ai, bj }. Note that 0 is not a 

common root. We may assume N ≥ 3.

We assume familiarity with the basic facts about the Sylvester Resultant. Since the rank is N 
− 1, we may perform row and column operations on S until we have

where r = N − 1. All of the ci are rational combinations of the original coefficients {ai, bj}. 

For a common root x, the column vector

is in the kernel of the original S. Since column swaps may have been made, the transformed 

vector

Lewis and Coutsias Page 11

Math Comput Simul. Author manuscript; available in PMC 2017 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is in the kernel of S′. The exponents are a permutation of the set {0, 1, 2, …, N 1}. If no 

column swaps were made, the permutation is the identity map and eN − 1 = 0.

If we multiply the matrix S′ by the vector p we must get 0. That produces N − 1 equations, 

each a sum of two terms set to 0 (none of the ci can be 0 as 0 is not a common root). We 

distinguish three cases, according to eN − 1 = 0, 1, or k > 1. In the first case, one of the 

equations is x + cN−1 = 0, done. In the second case, one of the equations is 1 + cN−1x = 0, 

done. In the third case, two of the equations are x + cjxk = 0 and 1 + cixk = 0. Solve for xk in 

one equation, plug into the other, done.

Remark

This theorem can be generalized to the situation where the rank of the Sylvester matrix is 

<N − 1, but we do not need that here.

To use Lemma 4, we apply the Sylvester resultant method to Eqs. (2) and (3) to eliminate t3. 

This Sylvester matrix is 4 × 4:

(7)

Lemma 5

The rank of the Sylvester matrix (7) is 3 almost everywhere.

Proof

Recall that the ti are functions of time that are not 0 on any nontrivial interval.

As equations in t3, (2) and (3) are quadratic. The leading coefficients are ait2 + di and the 

“constant” terms are bit2 + ei (where t is t2 or t1). None of these can vanish, as then that 

equation would split (see Lemma 3). The hypotheses of Lemma 4 are satisfied.

Since for all values of t1 and t2 in some interval equations (2) and (3) have common root(s), 

the rank is either 0, 1, 2, or 3. The rank is obviously not 0, as for example c2 ≠ 0. If the rank 

were 1, then every 2 × 2 minor would have determinant 0. But the upper left 2 × 2 minor has 

determinant . This cannot be 0, as none of the equations split (see Lemma 3).

If the rank were 2, then every 3 × 3 minor would have determinant 0. Consider then the 

minor formed by rows 2, 3, 4, and columns 1, 2, 3.
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Its determinant is . If this is 0, the second 

factor must be 0 (by Lemma 3). Examining the second factor, we distinguish 3 cases:

• a2 = 0 a2 = 0: Then again by Lemma 3, d2 ≠ 0 and d3 ≠ 0. We immediately solve 

for t2 as a rational function of t1, contradiction.

• a2 ≠ 0: In the second factor, solve for  as a function of t2 (to the first power 

only) and t1. Plug this into Eq. (1) to obtain

Unless the coefficient of t2 = 0, we can solve for t2 as a rational function of t1, 

contradiction. Therefore both expressions in parentheses are 0. These are both 

polynomial functions of t1 so their coefficients relative to t1 must be 0. We 

immediately see then that a1a3 = 0 (coefficient of ) and d1d3 = 0 (coefficient of 

). Again by Lemma 3, that yields only two possibilities: a1 = 0, d3 = 0 or a3 = 

0, d1 0. We are soon led to contradictions, such as a2 must be 0, in both cases. 

The details are left to the reader.

• a3 ≠ 0: Exactly like the previous case, only solve for  instead of .

This competes the proof that the rank of Sylvester matrix is 3, except for isolated times 

when t1 or t2 could be 0.

The proof of Theorem 1 is now easy: since the rank of the Sylvester matrix is 3, use Lemma 

4 to produce t3 as a rational function of t1, t2. By symmetry, any ti is a rational function of 

the other two.

The proof of Lemma 5 allows us to deduce another result that will soon be of interest:

Lemma 6

With the notation of Lemma 5, the rank of the Sylvester matrix (7) is at most 2 (almost 

everywhere) iff Eqs. (2) and (3) are multiples of each other, by a nonzero rational function of 

t1 and t2.

Proof

The “if” part is obvious.

Suppose the rank is at most 2. In the proof of Lemma 5 we used the 3 × 3 minor formed by 

rows 2, 3, 4, and columns 1, 2, 3. The result was that

If we also consider the minor formed by rows 2, 3, 4 and columns 1, 2, 4, we obtain
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Thus,  times Eq. (2) equals Eq. (3).

Corollary 1

If none of Eqs. (1)–(3) split, then for almost all values of t1, t2, Eqs. (2) and (3), thought of 

as equations in t3, do not have two roots in common.

Proof

If they had two roots in common, they would be multiples of each other and the Sylvester 

rank would be no more than 2, contradicting Lemma 3.

Of course, the analogous statements can be made about the other pairs of (1)–(3) and the 

other ti.

6. Further analysis of the non-split case, Bricard’s case one

Since none of Eqs. (1)–(3) split, we may use the quadratic formula to solve for, say, t2 and t3 

in terms of t1:

(8)

(9)

From Theorem 1 we know that t3 is a rational function of t1 and t2. Therefore

where ϕ denotes a rational function.

Expand ϕ and collect terms. This yields an expression

and after squaring, eventually
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for some polynomials P, Q, L, M, R, S. But again, as in Lemma 1, we are over a UFD, so we 

have proven.

Theorem 2

With the notation of (8)–(9), in the non-split case the product F(t1)F1(t1) is a perfect square, 

but neither F(t1) nor F1(t1) is a perfect square.

Obviously, the same statement is true for the analogous polynomials F(t2), F1(t2), F(t3), 
F1(t3).6

Recall from (6) that the F polynomials are in general quartic with no cubic or linear terms:

(10)

(11)

However, it is possible that, say, a1 = 0, reducing F(t1) to a quadratic. Let us abbreviate F(t1) 

≡ F, F1(t1) ≡ F1. We distinguish three cases:

• Both F and F1 are quartic.

• Both F and F1 are quadratic.

• One of F and F1 is quartic and one is quadratic.

Bricard seems to have missed the possibility of the third case, which we call “quart-quad”. 

As he is mostly concerned with octahedra, perhaps he eliminated that case by some three 

dimensional argument. We used Solve and found no non-split solutions of quart-quad. 

Motivated by these experiments, we found a purely algebraic proof of the next theorem:

Theorem 3

If one of F and F1 is quartic and one is quadratic, then we have a split case.

Proof

Suppose without loss of generality that F is quadratic, so a1b1 = 0. F and F1 can be factored 

in some extension field, yielding

(12)

6The notation follows Bricard’s. Strictly speaking, this is not one function F or F1 being applied to different ti as the parameters vary.
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(13)

Since neither F nor F1 is a perfect square but their product is, relabeling if necessary we 

must have that α1 = β1, α2 = −β1, β2 = 0. Thus in F1, d3e3 = 0. Since F · F1 is a perfect 

square (in the polynomial ring) we have , where s is some polynomial. Therefore, 

.

Since a1b1 = 0 and d3e3 = 0, there are four cases. Let us consider first a1 = 0 and d3 = 0. 

Then we have from (8), (9)

(14)

(15)

In the second equation, replace  with . Simplifying, we have 

. Now solve for  in the other equation, plug into the above. We get

(16)

So t2 is a linear function of t1 or t3. Now, we know from Theorem 1 that any ti is a rational 

function of the others, so (16) may not seem surprising. However, the important fact is that 

all the exponents are 1.

Solve (16) for t2 and plug that into Eq. (2). Collecting terms yields:

(17)

The mi are polynomials in t3, up to degree 4.

Suppose first that no mi = 0. The key point is that this equation is quadratic in t1, which is 

because (16) is linear in each ti. Since it is quadratic in t1 we can apply the same logic used 

in the proof of Lemmas 5, 6, and Corollary 1 to the pair of Eqs. (17) and (3). There must be 

common root(s). If the rank of the Sylvester matrix is three, then t1 is a rational function of 

t3 (earlier theorem), so we have a split case. If the rank is less than three, then the two 

equations are multiples of each other (by a polynomial in the eleven parameters). However, 

this is impossible because the constant (degree zero) terms in the two equations are

Lewis and Coutsias Page 16

Math Comput Simul. Author manuscript; available in PMC 2017 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Note that the coefficient of t3 in the first is 2sc2c3d1 but there is no t3 term in the second. 

Thus, sc2c3d1 = 0, but sc2c3d1 cannot be 0 unless d1 = 0, which implies splitting, since a1 = 

0.

Now suppose that some mi = 0. These are equations in t3 alone, so mi = 0 implies every 

coefficient in it is 0. As shown above, this is impossible for m3 (without splitting). The 

vanishing of m2 is irrelevant, as (17) remains quadratic. If only m1 = 0, then t1 is a rational 

function of t3, hence a splitting. This proves the first case, that a1 = 0 = d3 implies splitting.

For the other three cases, one of them is just as above, but the other two seem harder, 

because we no longer have the simple monomial denominators of (14). However, recall that 

in forming Eqs. (1)–(3) we may use cotangent as well as tangent, which means we can 

replace ti with . That has the effect of switching ai ↔ ei and bi ↔ di, which reinstates the 

needed monomial denominators.

Suppose now that both F and F1 are quartic. In a splitting field we have

But since FF1 is a perfect square, each αi must equal some ±βj. Therefore, F and F1 are 

multiples of each other. The same is true if both F and F1 are quadratic. This is the key fact 

in the proof of:

Theorem 4

Referring to Fig. 1 for the angles θ1, θ2 opposite to α, in a non-split flexible case we have 
that cos(θ1) = ± cos(θ2). The same cosine relation is true for the angles CDG and IHE 
opposite to γ (technically π − γ) and for HIB and AGF opposite to β (and π − β).

Proof

We emphasize that this is true throughout the flex. Unlike Bricard’s rather specialized 

geometric argument, we give an algebraic proof.

Since it is a non-split case we know from above that F and F1 are multiples of each other; let 

r1 be the ratio. Comparing coefficients,

(18)

(19)

(20)
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Draw lines GE and DB. GE is on two triangles, one containing α, one containing θ1. DB is 

on two triangles, one containing α, one containing θ2. From the law of cosines we deduce:

(21)

(22)

If we consider the cosines as abstract variables, (18)–(22) is a system of five polynomial 

equations. Plug in relations (4) for a1, … , d3. Using resultants, we can eliminate any four 

variables. If we eliminate s5, s2, r1, cos(α), the resultant is quite simple and has these factors:

As the resultant must vanish, at least one of these factors must be 0. cos(θ1) cannot be 0, as 

then cos(α) would be a constant. The only choice is that cos2(θ2) = cos2(θ1).

The other cases are similar.

Using Theorem 4 we can form a system of six equations to effectively describe the non-split 

case. Assume first that cos(θ1) = cos(θ2). If we eliminate cos(θ1) from Eqs. (21) and (22), 

we obtain an expression involving cos(α) that must be 0, of the form A cos(α) + B. As we 

assume non-degeneracy, this can only be true if A and B are both 0. We repeat the argument 

with the two other quadrilaterals, yielding the following six equations (set each to 0):

(23)

Minor variations result by using cos(θ1) = − cos(θ2), etc.

7. Flexibility analysis with symbolic software

The program Solve was described in [16,11]. Here is a brief description.

Let res be the resultant of a system of equations defining a structure, such as (1)–(3). res is a 

polynomial in one of the angles, say t, and the fifteen parameters a1, b1, … , e3, or 

alternatively, in the eleven side parameters s1, s2, … , e. If the structure is flexible, then 
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infinitely many values of t satisfy the polynomial. The only way this can be is if every 

coefficient of tk vanishes. Solve examines these coefficients finding ways to kill them one-

by-one, usually starting at the top coefficient. Whenever a way is found to kill the coefficient 

of tk, that substitution is put on a stack and applied to res, creating a polynomial res′ of 

fewer terms and one fewer parameter. Then Solve calls itself on the new polynomial res′. 

This is essentially an enormous tree search. Many heuristics and techniques are used to keep 

the search manageable yet effective.

The output of the algorithm is a list of tables consisting of substitutions of the form 

, where . Here is a simple example. If res were (s9s8 − s7s6)t2 

+ (s4
2 − s3

2)t + s8 − s6 one solution would be the table of the three relations s9 = s7, s8 = s6, 

s4 = s3.

The relations may be described as follows: Partition the set of N parameters into nonempty 

subsets , , n + m = N. Each relation is an equation 

where g is a rational function. A clllection of m of these for j = 1, … , m is a solution table if 

res evaluated at them all is 0. In the example above X = {s3, s6, s7} and Y = {s4, s8, s9}.

Problem 3

Can all flexible cases be represented by a table of relations in the above sense?

To apply this to the quadrilaterals of Fig. 1, we eliminate two of the three angles in Eqs. (1)–

(3). In terms of the eleven side parameters, res has 190,981 terms.7 From 2006 to 2011, 

Solve(res) found many flexible cases of Bricard’s types two and three, and many degenerate 

cases [16,11]. Improvements by 2012 yielded the first non-split cases, Bricard’s case one. 

These were all what we call isohexagons. Here is an actual table as computed by Solve:

Note that s8 is negative; that just means that point H is below the x-axis. They are called 

isohexagons because a hexagon with equal opposite sides appears in the midst of the flex. 

Here are two images (Fig. 2), taken from a model made by plugging in numbers for the 

sides. The hexagon is outlined. Note that it does not consist entirely of sides si.

These isohexagons exhibit a curious kind of symmetry or “quasi-similarity”. Let r = (b − 

e)/e.

Then the table above is equivalent to this:

7By late 2013, this computation takes Fermat 1.86 min on a Mac Mini.
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Lower left Lower right Large

e b − e =r e b = (1 + r) e

s2 s8 = −r s2 s4 = (1 + r) s2

s5 s3 = r s5 s9 = (1 + r) s5

s7 s6 = r s7 s1 = (1 + r) s7

Each column lists the four sides of one of the quadrilaterals. Note that the sides of the lower 

right and large quadrilaterals are multiples of those of the lower left, but in an odd shifting 

pattern; none of these quadrilaterals is similar to another. From this and other examples we 

see that the following isohexagon property holds: for every one of the twelve sides, say x, 

there is a side on a different quadrilateral, say y, such that x/y or y/x equals r, 1 + r, −r, or 

−(1 + r). Bricard, who studied only octahedra, remarks that in case one there is an odd 

symmetry also.

Thus, the isohexagon may be thought of as the three-quadrilaterals analogue of the octahedra 

case one. We therefore conjectured that all case one examples were isohexagons. 

Surprisingly, this is false. To see why, recall the six equations (23). All six of these must be 

0. Form a single polynomial

(24)

where {ci} are the six equations in (23) and t is an abstract variable. Execute Solve(f), 
adding code to suppress split cases. This finishes very quickly with 136 tables, several of 

which are striking, such as

This is not an isohexagon, as it does not satisfy the isohexagon property. Substituting 

numerical values, we created a model of this case. Fig. 3 shows two snapshots during the 

flex.The last case above seems rather complicated due to the s1 and s9 equations. Notice that 

s9/s1 = s3/s6. To experiment, we removed the s9 and s1 equations, added s9 = s1s3/s6, and 

plugged the resulting table into the resultant res of 190,981 terms. It did not vanish, but left a 

polynomial res′ of 8803 terms. Further analysis of this polynomial revealed a surprising 

“irrational case”:
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(Use the last equation to replace s6 in the earlier relations.) This arises because s6 occurs 

with only even degree in res′. In the definition of table, the sets X and Y are

Fig. 4 is an image of an instantiation of this, plugging in real numbers for the X (and then Y) 

parameters.

The polynomial in the definition of  is easily seen to be not a perfect square. Therefore, the 

answer to Problem 3 is “no”.

The three structures in Figs. 2–4 were discovered first using Solve(f) for f defined in (24). 

However, all three now show up with the latest version of Solve(res). This is because when 

Solve encounters a polynomial (like res′) in which a variable (here s6) occurs with every 

exponent a multiple of n (here 2), the exponents are divided by n and the algorithm 

continues.

8. Conclusion

This problem of the flexible planar linkages was posed by Bricard in his memoir on the 

flexible octahedron. He seemed to imply that the two problems would have completely 

analogous resolutions given that they are described by systems of equations of identical 

form. As Bricard pointed out in his memoir, “it ought to be possible to analyze these 

equations by purely algebraic means, however the amount of computation required would be 

daunting”. He proceeded therefore to analyze his equations geometrically, arriving at his 

well known three classes of flexible octahedra. Here, with the help of computer algebra, 

which a hundred years after Bricard is now a mature field, we were able to carry out this 

“daunting” task for the planar mechanism case, and were rewarded by a surprising 

divergence from Bricard’s conclusions. Although the separation to three classes according to 

the type of splitting is identical for the two problems, the underlying geometric differences 

led to unexpectedly rich properties for the structures of case one, the case of no splitting, 

with no analogs in the octahedron. The other two split cases seem to be completely 

analogous for the two problems.

Earlier we defined three problems:
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Problem 1

Find conditions on the sides under which the quadrilateral arrangement becomes flexible.

This has been solved.

Problem 1′

Find all conditions on the sides under which the quadrilateral arrangement becomes non-

degenerate flexible.

We do not have a mathematical proof that our list is complete. However we have found cases 

analogous to all of Bricard’s cases for the articulated octahedron, and discovered 

unexpectedly rich properties for case one, where our algebraic analysis led to two quite 

different types of flexible structures with no apparent analogy to Bricard’s three-dimensional 

results.

Problem 2

When is one of these variables, t2, say, a rational function of another tj, or a rational function 

of both of the other ones t1, t3?

This has been solved. Our proofs are new and algebraic.

Problem 3

Can all flexible cases be represented by a table of relations in [our] sense?

No. However, we believe that our algorithm needs to be modified only by changing the 

definition of table to allow relations of the form 

The great success we have had on this project bodes well for future work with more complex 

structures, as equations describing those structures are also quadratic, based on distances and 

angles.

Work is ongoing applying these methods directly to the octahedra and to the cyclo-octane 

molecule.
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Fig. 1. 
Bricard’s quadrilaterals, showing labeled sides and base angles.
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Fig. 2. 
Flexing of case one quadrilaterals, forming “isohexagon”.

Lewis and Coutsias Page 25

Math Comput Simul. Author manuscript; available in PMC 2017 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Flexing of case one quadrilaterals, not an isohexagon.
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Fig. 4. 
Flexing of case one quadrilaterals, irrational relationship.
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