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Abstract

This paper deals with the problem of designing and analyzing rotating sched-

ules with an algebraic computational approach. Specifically, we determine a set

of Boolean polynomials whose zeros can be uniquely identified with the set of

rotating schedules related to a given workload matrix subject to standard con-

straints. These polynomials constitute zero-dimensional radical ideals, whose

reduced Gröbner bases can be computed to count and even enumerate the set

of rotating schedules that satisfy the desired set of constraints. Thereby, it

enables to analyze the influence of each constraint in the same.
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1. Introduction

The workforce scheduling problem consists of assigning employees to shifts

or days-off for a certain period of time. This can be done following a rotating

(or cyclic) approach, in which case the schedule is repeated periodically over an

infinite horizon or following a non-cyclic approach for a finite planning horizon.
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In a rotating schedule, all employees have the same schedule but perform

different shifts with a certain time offset. Such schedules are common to several

industries and public sector organizations where work is carried out 24 hours

a day, seven days a week. In such contexts, individual preferences of the em-

ployees are not taken into account, and the typical objective is to find schedules

that guarantee equity between workers. The assignment of shifts per week to

t distinct work teams yields a schedule of t rows and 7 columns. Specifically,

the (i, j) entry of the schedule corresponds to the shift or rest period that is

initially assigned to the ith team, the jth day of the first week. Once the week

finishes, each team moves down to the following row of the schedule (or to the

first row in case of being the last team) to perform the shift assignment of the

new week. In the case of non-cyclic workforce schedules, individual preferences

of employees can be taken into account and typically, the objective is the design

of schedules fulfilling as much as possible the workers’ preferences. This is often

the case of nurse scheduling. Both approaches, rotating and non-cyclic schedules

include constraints such as the minimum number of employees required for each

shift and shift order preferences (for instance, no morning shifts immediately

after night shifts) as well as weekend constraints (at least one day off during the

weekend every three or four weeks).

Rotating and non-cyclic workforce scheduling problems are NP-complete

problems (Lau [31]), and consequently hard to solve. Lau [31] analyzes the com-

plexity of the changing shift assignment problem (CSAP), a rotating scheduling

problem similar to the one considered in this paper where shift change con-

straints are imposed by a shift change Boolean matrix. The author considers

the decision problem associated to the CSAP and investigates whether a feasible

schedule exists, given a workload matrix, a set of teams, a set of shift types and

a shift change matrix. The author demonstrates the complexity of the rotating

scheduling problem by a polynomial many-one reduction from the 3SAT prob-

lem. In fact, the author concludes that the inclusion of order type constraints

between different shifts (including days off) gives rise to NP-hard problems.

Due to the high number of constraints that must be satisfied in practical appli-
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cations, including typical constraints affecting order between shifts, designing

computerized workforce schedules has been a research challenge during the last

three or four decades ([6]).

Different approaches have been used to solve problems of workforce schedul-

ing. The work of Tien and Kamiyama [36] contains an early survey on algo-

rithms used for workforce scheduling. For a general view we refer the interested

reader to the recent survey of Van den Bergh et al. [37], where a comprehen-

sive list of hard and soft constraints encountered in these problems is reported.

Manual approaches, integer programming, heuristic procedures, constraint pro-

gramming and network flow models have been used in order to obtain rotating

schedules [1]. McMillan [17] have integrated different techniques from manage-

ment science and artificial intelligence to solve general shift scheduling problems.

Balakrishnan and Wong [3] used a network flow formulation in order to solve

the rotating workforce scheduling problem. The constraints were incorporated

in the network, except for the staff-covering constraints which were treated as

side constraints. A similar approach was used by Lau [30] who modeled the

problem as a fixed-charge network and showed that a feasible schedule can be

obtained by finding disjoint paths in the network. Several other ad hoc algo-

rithms for rotating workforce schedules with different workweek lengths have

been proposed [21, 22]. Laporte et al. [27] presented an effective ILP based

algorithm for the construction of rotating schedules. Laporte [26] considers the

design of rotating workforce schedules by hand and shows how relaxing several

constraints can yield reasonable solutions. Laporte and Pesant [28] proposed

a constraint programming algorithm that can handle a larger variety of con-

straints than previous methods. They first provide a classification of the main

constraints classes governing the design of rotating schedules. The algorithm

can easily produce several solutions within reasonable computing times.

Traditionally, the focus of previous researchers has been the design of rotat-

ing schedules with the objective of minimizing costs and maximizing employee

satisfaction, and consequently, the different available methods do not generally

produce all possible rotating schedules satisfying certain conditions, but only
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those that are deemed to be of good quality. However, as discussed by Laporte

and Pesant [28], the problem is to some extent fuzzy in the sense that optimal-

ity is not easily defined through a formula, but human judgement is required in

practice to make a choice from a set of candidate solutions meeting predefined

constraints. These authors propose a constraint programming algorithm capa-

ble of producing a set of high quality solutions to be presented to the decision

makers. Several authors also emphasize the need to provide several solutions,

pointing out the need for human judgement to make a choice from a set of fea-

sible solutions. Different optimal solutions meeting predefined constraints are

thus calculated by varying the criteria taken as objective function. Musliu et

al. [33] generate a large number of plausible schedules to be evaluated with

multiple criteria. The main feature of their framework is the possibility to gen-

erate high-quality schedules through human interaction. Castillo et al. [9] also

generate different solutions, each optimizing a different criterion. Generating all

solutions is also useful in view of the fact that new criteria are often discovered

a posteriori and experience suggests that managers prefer to be presented with

an array of solutions from which they can make a selection. Moreover, knowing

the number of solutions helps analyze the influence of the constraints in the

resulting solution set.

Following this observation, this paper focuses on the analysis of the number

of solutions depending on the constraint types taken into consideration rather

than on obtaining a single optimal solution. We are interested in generating

all solutions satisfying certain constraints and in understanding the influence

of each constraint type on the set of feasible solutions. Our methodology will

therefore produce valuable information that can be used in an early phase of

working conditions negotiation.

The literature on the analysis of constraint influence and the number of

solutions of a given instance is scarce and problem specific. Pesant [34] exploits

the problem structure and derives polynomial time evaluations of the number of

solutions of individual constraints. These may be combined to approximate the

total number of solutions or can be used to guide search heuristics. Pesant and
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Quimper [35] propose and evaluate algorithms to compute solution densities of

variable-value pairs in knapsack constraints.

The alternative approach that we propose in this paper is to make use of the

combinatorial structure of rotating schedules in order to count and enumerate

the solutions satisfying specific subsets of a predefined set of constraints. Like

in combinatorial analysis, Gröbner bases enable us to count the number of solu-

tions without actually enumerating them. Knowing the number of solutions is

useful since this provides an assessment of how restrictive some constraints are.

If there are too many conflicting constraints, then the instance may have no

solution. Gröbner bases provide this information whereas it may take longer for

other enumerative algorithms to prove infeasibilities. Specifically, we observe

that the assignment of shifts per week to t distinct work teams in a rotating

schedule can be represented by the entries of a t×7 array. One can thus observe

the similarity between rotating schedules and Latin squares. A Latin square of

order n is an n × n array in which each cell contains one element chosen from

a set of n symbols (in our case, shift types), such that each symbol occurs pre-

cisely once in each row and column. A Latin square can then be considered as

a very special case of a rotating schedule, since the latter allows to repeat shifts

in the same week and in the same day. As such, we generalize the ideas devel-

oped in [13, 14] in order to determine explicitly the rotating schedules satisfying

certain constraints. Accordingly, we use the polynomial method of Alon [2] and

Bernasconi et al. [4] and we deal with the counting and enumeration of rotat-

ing scheduling as a combinatorial structure that generalize the concept of Latin

square. Depending on the number of times shifts must be assigned each day, we

impose certain conditions that can be modeled by polynomials whose variables

represent the entries of the array. This facilitates the use of the polynomial

method, which solves counting and enumeration problems in combinatorics by

computing the reduced Gröbner basis of a zero-dimensional ideal uniquely re-

lated to a given combinatorial object. An analysis of the use of Gröbner basis

techniques to solve discrete combinatorial problems with constraints has been

recently proposed by Jefferson et al. [23].
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The remainder of this paper is organized as follows. In Section 2, we indicate

some preliminary concepts and results on commutative algebra. In Section 3, we

enumerate the standard constraints that we are going to deal with. In Section

4, we identify the rotating schedules of a given workload matrix and satisfying

a certain set of constraints, with the set of zeros of a Boolean ideal, which

can be explicitly determined by computing the corresponding reduced Gröbner

basis. Since the computation time required to obtain such a basis is extremely

sensitive to the number of variables, we also show how to reduce it by means of

generation by columns. The proposed methods are then implemented in three

procedures in the open computer algebra system for polynomial computations

Singular [12], which are used in Section 5 to study the influence of several

important constraint types in the design of rotating schedules related to part-

time employers. Finally, we focus on the analysis of the well-known real case of

the Edmonton Police Department [8], for which we prove its infeasibility with

respect to the constraints exposed in Section 3 and we expose some alternative

solutions to those that appear in the literature.

2. Preliminaries.

In order to analyze the constraints of the problem, we interpret them as a set

of polynomials that we reduce to its Gröbner basis, from which we can extract

fundamental information. For the sake of completeness, we first introduce some

basic concepts of commutative algebra (see [10, 11] for more details). Let R =

k[x] = k[x1, . . . , xn] be a polynomial ring in n variables over a field k. A total

order ≤ on R is a binary relation among the polynomials of R such that, given

three polynomials p, q, r ∈ R, it is verified that

1. if p ≤ q and q ≤ p, then p = q;

2. if p ≤ q and q ≤ r, then p ≤ r;

3. p ≤ q or q ≤ p.
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A term order ≺ on R is a total order on the set of monomials xa = xa1
1 · . . . ·xan

n

in R such that

1. given a, b ∈ Nn verifying that xa ≺ xb, it is fulfilled that xa+c ≺ xb+c, for

all c ∈ Nn;

2. 1 ≺ xa, for all a ∈ Nn \ {0}.

The largest monomial of a polynomial of R with respect to a given term order

< is called its initial monomial. A subset I of R is called an ideal of R if

1. 0 ∈ I;

2. given two polynomials p, q ∈ I, it is verified that p+ q ∈ I;

3. given two polynomials p ∈ I and q ∈ R, it is verified that p · q ∈ I.

The variety V (I) related to an ideal I of R is defined as the set of zeros of

its polynomials, that is to say,

V (I) = {(a1, . . . , an) ∈ kn : p(a1, . . . , an) = 0, for all p ∈ I}. (1)

Two polynomials p, q ∈ R are congruent modulo an ideal I of R if p− q ∈ I.

It is an equivalence relation. The quotient R/I is then defined as the set of

equivalence classes of R with respect to this relation. The ideal generated by a

finite set of polynomials p1, . . . , pm ∈ R is defined as

⟨ p1, . . . , pm⟩ = {p : p =
m∑
i=1

qi · pi, where qi ∈ R, for all i ∈ {1, . . . ,m}}. (2)

Given a term order ≺ and an ideal I of R, the ideal generated by the initial

monomials of all the non-zero elements of I is called its initial ideal I≺. Any

monomial of R not contained in I≺ is called a standard monomial of I with re-

spect to ≺. If the variety V (I) is finite, the ideal I is said to be zero-dimensional.

In such a case, the quotient R/I is a finite-dimensional vector space whose di-

mension coincides with the number of standard monomials of I. Moreover, this
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dimension is always greater than or equal to the number of points of V (I). The

equality is achieved if I is radical, that is, if any polynomial p belongs to I

whenever there exists a natural n ∈ N such that pn ∈ I.

The dimension of R/I and the points of V (I) can be completely determined

by means of Gröbner bases. A Gröbner basis of I with respect to ≺ is any

generating set G of I such that the initial monomials of its elements generate

the initial ideal I≺. It is said to be reduced if all its polynomials are monic and

no monomial of a polynomial of G can be generated by the initial monomials

of the other polynomials of the basis. This reduced basis is unique and can be

decomposed into finitely many disjoint subsets, each of them being the zeros of

a triangular system of equations, whose factorization and subsequent resolution

are easier than the system related to the generators of the original ideal I

[20, 29, 32]. The most general algorithm to obtain the reduced Gröbner basis of

an ideal is the multivariate division algorithm for polynomials of Buchberger [7],

which can be used over any field. Further, the algorithms F4 and F5 of Faugère

[15, 16] and the algorithm slimGB of Brickenstein [5] are more efficient over the

rational field or a finite field.

3. Problem description. Rotating Schedules

Several constraints must be taken into account in order to preserve equal op-

portunities among workers and to prevent health risks like stress, sleep disorder

or digestive upsets. They are normally classified as hard and soft constraints,

depending on whether they must be obligatorily fulfilled or whether they are

preferable but not necessary. Often, the hard constraints compose the feasibility

space and the soft ones are penalized in the objective function. In our case, we

analyze the feasibility space resulting from the subsets of constraints taken into

consideration, and therefore whenever we consider a subset of constraints, each

of them will be taken as hard. Analogously to [27], we consider the following

constraints:

C.1) Schedules should contain as many full weekends off as possible. That is
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to say, given two rotating schedules that have the same number of Satur-

days and Sundays off, the schedule with the greater number of complete

weekends off is preferable. This is done by imposing that the number of

weekends off must be equal to the minimum of the number of Saturdays

and Sundays off.

C.2) Weekends off should be well spaced out in the cycle. We ensure that

this is fulfilled by considering patterns in which the weekends off are as

much well spaced as possible. That is to say, given two rotating schedules

with the same number of weekends off, we consider the schedule with

the greater number of rotations among periods of consecutive weekends

off and periods of consecutive weekends with at least one working day.

If both schedules have the same number of such rotations, we consider

the one with the smallest mean deviation in the number of weeks that

compose the periods of weekends off. Thus, for instance, the following

three patterns of six-week rotating schedules, whose Saturdays off and

Sundays off are represented by the symbol X, are ordered from worst to

best according to what we have just stated. So, from the beginning we

would impose the last pattern.



· · · · · X X

· · · · · X X

· · · · · X X

· · · · · X X

· · · · · · ·

· · · · · · ·





· · · · · X X

· · · · · X X

· · · · · X X

· · · · · · ·

· · · · · X X

· · · · · · ·





· · · · · X X

· · · · · X X

· · · · · · ·

· · · · · X X

· · · · · X X

· · · · · · ·



Due to the cyclical structure of a rotating schedule, observe that any other

choice based on a cyclic rotation of the weeks would yield the same original

pattern.

C.3) A shift change can only occur after at least one day off.

C.4) The number of consecutive work days must not exceed 6 days and must

not be less than 2.
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C.5) The number of consecutive rest days must not exceed 6 days and must

not be less than 2.

C.6) A shift change without at least 24 hours of rest is not allowed. Observe

that C.3 implies C.6, since a day off suppose at least 24 rest hours.

In the following section, we use the combinatorial structure of any rotating

schedule to model Constraints C.1–C.6 as a system of Boolean polynomials, that

is to say, polynomials on a quotient ring Z/2Z[x1, . . . , xm]/⟨x2
1 − 1, . . . , x2

m −

1 ⟩, whose zeros correspond to the set of rotating schedules that satisfy such

conditions.

4. Boolean polynomials related to rotating schedules

In order to design a rotating schedule, it is necessary to know in advance

its related workload matrix, that is, the number of shifts of each type that have

to be assigned each day of the week. Given s − 1 distinct shifts works, let the

workload matrix W = (wij) be an s × 7 array with all column sums equal to

the number of work teams t. Each element wij indicates the number of work

teams required for shift i on the jth day if i < s and the number of work teams

having such a day as rest day, otherwise. The days are ordered from Monday

(first column) to Sunday (last column). Thus, for instance, the next array is a

workload matrix related to a rotating schedule with three distinct work shifts

(Day, Evening and Night) and five work teams, where Mondays and Tuesdays

are rest days for all the work teams.


0 0 1 1 1 1 1

0 0 1 1 1 0 0

0 0 0 2 2 2 2

5 5 3 1 1 2 2



Shift works are usually denoted in a rotating schedule by their initials: Day

(D), Evening (E) and Night (N). Besides, rest days are usually denoted by X.

A possible rotating schedule related to the previous workload matrix is then
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

X X X X X N N

X X X N N X X

X X X N N N N

X X E E E X X

X X D D D D D



For our purposes, however, since we are interested in defining Boolean poly-

nomials that can be used to design rotating schedules, we represent the s − 1

work shifts by the numbers 1, . . . , s− 1, in forward rotation order and the days

off by the number s. The set {1, . . . , s} is denoted as [s]. The previous rotating

schedule is then rewritten with the elements of the set [4]: Day (1), Evening

(2), Night (3) and rest day (4).


4 4 4 4 4 3 3

4 4 4 3 3 4 4

4 4 4 3 3 3 3

4 4 2 2 2 4 4

4 4 1 1 1 1 1



Let RSW denote the set of rotating schedules of s−1 work shifts and t work

teams, which have W as workload matrix. It can be identified with the set

of t × 7 arrays R = (rij) with elements taken from the set [s] such that the

frequency vector of the symbols that appear in each column of R is given by the

corresponding column of W , that is, given i ∈ [s] and j ∈ [7], the jth column of

R contains wij occurrences the symbol i. The aim of the problem is to construct

the subset RSW satisfying Constraints C.1–C.6. Concretely, we first determine

the relations between the entries of R ∈ RSW that are given by those of W

and the conditions imposed by the constraints. These relations yield a zero-

dimensional ideal whose solutions can be identified with the elements of RSW

and that can be obtained by using Gröbner bases. Thus, for instance, Constraint

C.1 implies that any rotating schedule of RSW should have fW=min{ws6, ws7}

full weekends off. Constraint C.2 is of special interest since it enables to impose

some of the entries of our future rotating schedule. This idea can be generalized

for any entry of the matrix R. Concretely, those entries marked with the symbol

s corresponding to the fW full weekends off could be distributed by hand in

advance, in a well-spaced way in the cycle. Indeed, this is the usual way to
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proceed for designing rotating schedules [28]. Let St,s be the set of t× 7 arrays

with entries in the set [s] ∪ {0}. Given E = (eij) ∈ St,s, we say that R =

(rij) ∈ RSW contains E if rij = eij for all i ∈ [t] and j ∈ [7] such that eij ̸= 0.

If RSW,E denotes the subset of rotating schedules of RSW containing E, then

RSW =
∪

E∈St,s
RSW,E . We show in Theorem 1 how each set RSW,E can be

identified with the set of zeros of an ideal that is zero-dimensional and radical.

Its reduced Gröbner basis can then be computed to explicitly determine the

cardinality of RSW,E .

Theorem 1. The set RSW,E can be identified with the set of zeros of the fol-
lowing zero-dimensional ideal of Q[x111, . . . , xt7s].

IW,E = ⟨ 1 − xijeij
: i ∈ [t], j ∈ [7], eij ∈ [s] ⟩ + ⟨ xijk : i ∈ [t], j ∈ [7], eij ∈ [s], k ∈ [s] \ {eij} ⟩+

⟨ xijk · (1 − xijk) : i ∈ [t], j ∈ [7], k ∈ [s], eij = 0 ⟩ + ⟨ 1 −
∑
k∈[s]

xijk : i ∈ [t], j ∈ [7], eij = 0 ⟩+

⟨wkj −
∑
i∈[t]

xijk : j ∈ [7], k ∈ [s], wkj ̸= 0 ⟩.

Moreover, |RSW,E | = dimQ(Q[x111, . . . , xt7s]/IW,E).

Proof. Any rotating schedule R = (rij) ∈ RSW,E can be uniquely identified

with a zero (x111, . . . , xt7s), where xijk = 1 if rij = k and 0, otherwise. The

finiteness of RSW implies IW,E to be zero-dimensional. Besides, since IW,E ∩

Q[xijk] = ⟨xijk ·(1− xijk) ⟩ ⊆ IW,E for all i ∈ [t], j ∈ [7] and k ∈ [s], Proposition

2.7 of [10] assures IW,E to be radical and thus, Theorem 2.10 of [10] implies that

|RSW,E | = |V (IW,E)| = dimQ(Q[x111, ..., xt7s]/IW,E). �

The ideal IW,E of Theorem 1 is embedded in a polynomial ring over the

rational field Q. In order to reduce the computational time necessary to deter-

mine the reduced Gröbner basis of such an ideal, it is interesting to study the

possibility of replacing Q by a finite field. In fact, since the variables xijk of the

ideal IW,E can only take the values zero and one, it is convenient to study the

feasibility of working with the field Z/2Z. The resulting ideal would be then of

Boolean type, whose suitability in the computation of reduced Gröbner bases

related to solving counting problems in combinatorics was already exposed by
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Bernasconi et al. in [4]. In our case, there exist two kinds of polynomials in the

ideal IW,E that have to be slightly modified in order to work with the base field

Z/2Z:

a) The polynomials of the form 1 −
∑

k∈[s] xijk, where i ∈ [t], j ∈ [7] and

eij = 0. In Z/2Z, we could find a zero of the ideal IW,E containing more

than one one in the assignment of 0/1-values to the s-tuple of variables

(x1jk, . . . , xsjk). Since this is not possible in our construction, we add the

following monomials to the ideal IW,E :

xijk · xijl, for all l ∈ {j + 1, . . . , s}.

b) The polynomials of the form wkj −
∑

i∈[t] xijk, where j ∈ [7], k ∈ [s] and

wkj ̸= 0. In Z/2Z, the value of wkj would be replaced by wkj mod 2 and

hence, the set of zeros of the ideal IW,E would be modified. To recover the

same set of zeros, we substitute each one of the mentioned polynomials in

the ideal IW,E by

1−
∑

1≤i1<...<iwkj
≤t

xi1jk . . . xiwkj
jk.

Besides, in order to avoid a problem similar to that indicated in the pre-

vious assertion, we also add the following monomials:

xi1jk · . . . · xiwkj+1jk, for all 1 ≤ i1 < . . . < iwkj+1 ≤ t.

The next result is a consequence of the previous reasoning.

Theorem 2. The set RSW,E can be identified with the set of zeros of the fol-
lowing zero-dimensional ideal of Z/2Z[x111, . . . , xt7s].

I
′
W,E = ⟨ 1 − xijeij

: i ∈ [t], j ∈ [7], eij ∈ [s] ⟩ + ⟨ xijk : i ∈ [t], j ∈ [7], eij ∈ [s], k ∈ [s] \ {eij} ⟩+

⟨ xijk · (1 − xijk) : i ∈ [t], j ∈ [7], k ∈ [s], eij = 0 ⟩ + ⟨ 1 −
∑
k∈[s]

xijk : i ∈ [t], j ∈ [7], eij = 0 ⟩+

⟨ xijk · xijl : i ∈ [t], j ∈ [7], k, l ∈ [s], eij = 0 ⟩+

⟨ 1 −
∑

1≤i1<...<iwkj
≤t

xi1jk . . . xiwkj
jk : j ∈ [7], k ∈ [s], wkj ̸= 0 ⟩+
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⟨ xi1jk · . . . · xiwkj+1jk : 1 ≤ i1 < . . . < iwkj+1 ≤ t, j ∈ [7], k ∈ [s], wkj ̸= 0 ⟩.

Moreover, |RSW,E | = dimZ/2Z(Z/2Z[x111, . . . , xt7s]/I
′
W,E). �

Constraints C.3−C.6 can also be imposed on our rotating schedules once

we translate them to polynomials of Q[x111, . . . , xt7s] or Z/2Z[x111, . . . , xt7s],

which can be incorporated to the ideal IW,E of Theorem 1 or to the ideal I ′W,E

of Theorem 2, respectively. In fact, these polynomials do not depend on the

base field. To see this, let us study each constraint separately.

Constraint C.3 implies that if two consecutive cells (i1, j1) and (i2, j2) of our

rotating schedule contain two numbers k, l < s, then k = l. Such a condition can

be translated to Boolean polynomials by imposing the monomial xi1j1k · xi2j2l

to be zero whenever k ̸= l. Thus, if xi1j1k = 1, then xi2j2l = 0 and hence, it is

not possible to have a shift work change without at least one day off.

C.3) For all i ≤ t, j ≤ 7 and k, l < s such that k ̸= l, we add the monomial

xijk · x((i+⌊ j
7 ⌋−1 mod t)+1)((j mod 7)+1)l (3)

In order to obtain the lower bound of two work days of Constraint C.4, we

impose that given three consecutive cells, (i1, j1), (i2, j2) and (i3, j3), in our

rotating schedule, if the first and third cells correspond to rest days, then the

second one is also associated to a rest day. To this end, it is sufficient to impose

the polynomial xi1j1s ·(xi2j2s−1) ·xi3j3s to be zero. Hence, if xi1j1s = xi3j3s = 1

(that is, if the first and third days are rest days), then xi2j2s = 1 (that is, the

second day is also a rest day).

C.4.1) For all i ≤ t and j ≤ 7, we add the polynomial

xijs · (x((i+⌊ j
7 ⌋−1 mod t)+1)((j mod 7)+1)s − 1)·

x((i+⌊ j+1
7 ⌋−1 mod t)+1)((j+1 mod 7)+1)s

(4)

Analogously, for an upper bound of six work days, it is necessary that, given

seven consecutive cells, (i1, j1), . . . , (i7, j7), of our rotating schedule, at least one
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of such cells is associated to a rest day. To obtain it, we impose the polynomial∏7
d=1(xidjds − 1) to be zero. Since at least one of the seven variables must be

distinct from zero, there exists at least one rest day every seven days.

C.4.2) For all i ≤ t and j ≤ 7, we add the polynomial

7∏
d=1

(x((i+⌊ j
d ⌋−1 mod t)+1)ds − 1) (5)

Observe that the first index of the variable x only changes when d ≤ j. In

that case, it moves to the next work team.

The polynomials related to Constraint C.5 are imposed analogously to those

of Constraint C.4.

C.5.1) For all i ≤ t and j ≤ 7, we add the polynomial

(xijs − 1) · x((i+⌊ j
7 ⌋−1 mod t)+1)((j mod 7)+1)s·

(x((i+⌊ j+1
7 ⌋−1 mod t)+1)((j+1 mod 7)+1)s − 1)

(6)

C.5.2) For all i ≤ t and j ≤ 7, we add the monomial:

7∏
d=1

x((i+⌊ j
d ⌋−1 mod t)+1)ds (7)

Finally, Constraint C.6 implies that, if two consecutive cells (i1, j1) and

(i2, j2) of our rotating schedule contain, respectively, two numbers k, l < s, then

k < l. This condition can be translated to Boolean polynomials by imposing

the binomial xi1j1k · xi2j2l to be zero whenever k > l.

C.6) For all i ≤ t, j ≤ 7 and k, l < s such that k > l, we add the monomial

xijk · x((i+⌊ j
7 ⌋−1 mod t)+1)((j mod 7)+1)l (8)

It is important to remark at this point that the computation of the reduced

Gröbner basis of a zero-dimensional ideal is extremely sensitive to the number

of variables [18, 19, 24, 25]. Specifically, Lackshman [24, 25] proved that the
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complexity of such a computation is O(dn), where d is the maximal degree of

the polynomials of the ideal and n is the number of variables. In our case, the

degree of the polynomials is given by Theorems 1 and 2. Our algorithm is thus

extremely sensitive to the number of variables, and it is convenient to reduce

this number whenever possible. A first attempt for that is to eliminate those

variables related to non-zero entries of the matrix E, because the assignment of

the 0/1 values to those variables is uniquely determined. Specifically, if eij ∈ [s],

then both ideals IW,E and I ′W,E contain the polynomial 1−xijeij and the set of

monomials {xijk : k ∈ [s] \ {j}}. Hence, the variable xijeij can be substituted

by 1 whenever it appears in a polynomial of IW,E or I ′W,E . Analogously, we can

eliminate directly any monomial of such ideals that contain a variable xijk, with

k ∈ [s] \ {eij}.

A more specific method to reduce the number of variables is to combine

the polynomial method just described with that of generation by columns [28].

This last method consists of determining all the shifts of one day, before ob-

taining those of the following day. The number of variables necessary in such

a case is considerably reduced, because it is not necessary to consider the sub-

script related to the day. Depending on the day, we need to consider dif-

ferent sets of multivariate polynomials related to Constraints C.1-C.6. Sim-

ilarly to Theorems 1 and 2, these polynomials determine an ideal whose ze-

ros are uniquely related to the rotating schedules of the set RSW,E . Due to

their extensive length, these polynomials have been made available online on

http://personal.us.es/raufalgan/CrewGB.html. Further, the following re-

marks are considered.

1) Firstly, it is useful to determine day-to-day the set SW,E of all the possible

distributions of rest shifts that can be found in a rotating schedule of

the set RSW,E . Any such distribution can be uniquely identified with a

matrix S = (sij) whose entries are in the set {0, s}, where each symbol

s represents the exact position of a rest shift. Observe that Constraints

C.3 and C.6 do not have any influence in these distributions and hence,
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we can omit them at this stage. Specifically, for a fixed day d ∈ [7], we

can consider the set of Boolean variables {xi : i ∈ [t]}, such that xi = 1 if

there exists a rest shift the day d of the ith week, and 0 otherwise. The

following two polynomials should then be added to the considered ideal:

xi − 1, if eid = s, and

t∑
i=1

xi − wsd (9)

2) In those cases in which Constraints C.3 and C.6 are not under consid-

eration, in order to calculate the cardinality of RSW,E , it is sufficient to

consider any distribution S = (sij) ∈ SW,E . If E ∪ S denotes the t × 7

matrix whose entries combine those of E with the non-zero entries of S,

then the following is verified:

|RSW,E | = |SW,E | · |RSW,E∪S | (10)

3) Given S ∈ SW,E , if Constraint C.3 is imposed, then any block of con-

secutive work days contained between two consecutive blocks of rest days

in S must be assigned to the same work shift. The variables related to

these work days can be identified and hence, the number of variables of

Theorems 1 and 2 is reduced.

5. Implementation of the method

We have considered all the results of the previous section to implement in

Singular three procedures, rotating, rotating2 and ColGen, included in the li-

brary scheduling.lib, which is available online on http://www.personal.us.es/

raufalgan/LS/scheduling.lib.

The three procedures determine explicitly the subset of rotating schedules

of the set RSW,E that satisfy some of the Constraints C.1−C.6. Specifically, the

procedure rotating makes use of the ideal IW,E of Theorem 1 and Polynomials

(3)−(8). The procedure rotating2 also makes use of these polynomials, but it is

based on the ideal I ′W,E of Theorem 2 and on the reduction of variables indicated

17



in the second half of Section 4. Finally, the procedure ColGen combines both

polynomial and generation by columns methods.

To test these procedures, we have considered the following four and five

weeks workload matrices W1 and W2 used by Laporte [26]. These matrices

correspond to part-time employees for which the initial workload matrix contains

zero entries distributed throughout the week.

W1 =


0 0 1 1 1 1 1

0 0 1 1 1 0 0

0 0 0 2 2 2 2

4 4 2 0 0 1 1

 W2 =


0 0 1 1 1 1 1

0 0 1 1 1 0 0

0 0 0 2 2 2 2

5 5 3 1 1 2 2



According to Constraints C.1 and C.2, we have imposed that the correspond-

ing rotating schedules must contain the following two respective arrays:

E1 =


0 0 0 0 0 0 0

0 0 0 0 0 4 4

0 0 0 0 0 0 0

0 0 0 0 0 0 0

 E2 =



0 0 0 0 0 0 0

0 0 0 0 0 4 4

0 0 0 0 0 0 0

0 0 0 0 0 4 4

0 0 0 0 0 0 0



Due to the cyclical structure of a rotating schedule, observe that our par-

ticular choice of the second weekend of E1 as weekend off does not have any

influence on the subsequent computation and it can indeed be any other week.

Analogously, what is important in the choice of weekends off in E2 is that they

are well spaced, but any other choice based on a cyclic rotation would yield the

same result in the subsequent computations.

Once we have included the previous arrays as input of the procedures rotat-

ing, rotating2 and ColGen, we show in Table 1 the number of rotating schedules

|RSWi,Ei |, i = 1, 2, related to such arrays, according to Constraints C.3−C.6.

For each case, we also indicate the running times in seconds related to the pro-

cedures rotating, rotating2 and ColGen, in a system with an Intel Core i7-2600,

3.4 GHz and Ubuntu. Specifically, we indicate the running time necessary to

count the number of possible rotating schedules and, between parentheses, we

also indicate the running time necessary to enumerate them. The algorithm

which we have used to determine the reduced Gröbner bases is slimGB [5],

which is efficiently implemented in Singular.
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Constraints
|RSW1,E1

|
Running time in seconds

|RSW2,E2
|
Running time in seconds

C.3 C.4 C.5 C.6 rotating rotating2 ColGen rotating rotating2 ColGen

15,552 0 (439) 0 (20) 0 (14) 648,000 1 (*) 0 (6,672) 1 (661)

x 3 0 (1) 0 (0) 0 (0) 360 63 (119) 1 (8) 1 (2)

x 15,552 0 (479) 0 (20) 0 (14) 171,072 3,031 (15,515) 18 (1,249) 1 (180)

x 15,552 0 (720) 0 (20) 0 (14) 145,152 650 (11,904) 8 (947) 1 (157)

x 81 0 (5) 0 (0) 1 (1) 13,824 5,121 (9,606) 20 (1,345) 38 (60)

x x 3 0 (1) 0 (0) 0 (0) 42 5 (10) 0 (1) 0 (1)

x x 3 0 (1) 0 (0) 0 (0) 62 11 (26) 1 (1) 1 (1)

x x 3 0 (1) 0 (0) 0 (0) 360 93 (150) 1 (8) 1 (2)

x x 15,552 0 (697) 0 (20) 0 (14) 46,656 5 (3,449) 0 (168) 1(50)

x x 81 0 (5) 0 (0) 1 (1) 3,060 5,442 (7,611) 10 (353) 10 (15)

x x 81 0 (5) 0 (0) 1 (1) 1,848 1,249 (1,727) 5 (115) 9 (12)

x x x 3 0 (1) 0 (0) 0 (0) 10 1 (2) 1 (1) 0 (0)

x x x 3 0 (1) 0 (0) 0 (0) 42 3 (7) 1 (1) 0 (1)

x x x 3 0 (1) 0 (0) 0 (0) 62 6 (14) 1 (1) 1 (1)

x x x 81 0 (5) 0 (0) 1 (1) 698 35 (258) 1 (13) 3 (4)

x x x x 3 1 (1) 0 (0) 0 (0) 10 1 (3) 1 (1) 0 (0)

Table 1: Distribution of rotating schedules according to the type of constraints. * indicates a

case for which the computer system runs out of memory.

The three methods explicitly determine those rotating schedules of RSW1,E1

and RSW2,E2 satisfying all the constraints (see last row of Table 1). Specifically,

the set RSW1,E1 contains the following three rotating schedules:


4 4 4 3 3 3 3

4 4 2 2 2 4 4

4 4 4 3 3 3 3

4 4 4 1 1 1 1

 ,


4 4 4 3 3 3 3

4 4 2 2 2 4 4

4 4 4 1 1 1 1

4 4 4 3 3 3 3

 ,


4 4 1 1 1 1 1

4 4 2 2 2 4 4

4 4 4 3 3 3 3

4 4 4 3 3 3 3

 .

Analogously, the set RSW2,E2 contains the following ten rotating schedules:



4 4 4 4 4 3 3

4 4 4 3 3 4 4

4 4 4 3 3 3 3

4 4 2 2 2 4 4

4 4 1 1 1 1 1


,



4 4 4 4 4 3 3

4 4 2 2 2 4 4

4 4 4 3 3 3 3

4 4 4 3 3 4 4

4 4 1 1 1 1 1


,



4 4 4 3 3 3 3

4 4 1 1 4 4 4

4 4 4 3 3 3 3

4 4 2 2 2 4 4

4 4 4 4 1 1 1


,



4 4 4 3 3 3 3

4 4 2 2 2 4 4

4 4 4 4 1 1 1

4 4 1 1 4 4 4

4 4 4 3 3 3 3


,



4 4 4 4 1 1 1

4 4 2 2 2 4 4

4 4 4 3 3 3 3

4 4 1 1 4 4 4

4 4 4 3 3 3 3


,



4 4 4 4 4 3 3

4 4 2 2 2 4 4

4 4 1 1 1 1 1

4 4 4 3 3 4 4

4 4 4 3 3 3 3


,



4 4 4 4 4 1 1

4 4 2 2 2 4 4

4 4 4 3 3 3 3

4 4 1 1 1 4 4

4 4 4 3 3 3 3


,



4 4 4 4 4 3 3

4 4 4 3 3 4 4

4 4 1 1 1 1 1

4 4 2 2 2 4 4

4 4 4 3 3 3 3


,



4 4 4 4 4 1 1

4 4 1 1 1 4 4

4 4 4 3 3 3 3

4 4 2 2 2 4 4

4 4 4 3 3 3 3


,



4 4 4 4 1 1 1

4 4 1 1 4 4 4

4 4 4 3 3 3 3

4 4 2 2 2 4 4

4 4 4 3 3 3 3


.

The number of possible rotating schedules in Table 1 also provides informa-

tion about the influence of each constraint on the final schedule. Observe, for
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instance, how Constraints C.4 and C.5 do not have any influence on the design

of a rotating schedule of workload matrix W1, that is, they do not reduce the

number of solutions when they are considered alone nor in combination with

other constraints. However, the same constraints influence the design of rotat-

ing schedules of workload matrix W2. It can also be observed that, since C.3

implies C.6, the latter has no influence in the number of solutions when both

are considered together.

We analyze the effectiveness of the method by depicting the behavior of the

computational time as the number of work teams increases. To this end, we

have repeated the procedure just described, but we now analyze the following

series of workload matrices:

Wi =


0 0 1 1 1 1 1

0 0 1 1 1 0 0

0 0 0 2 2 2 2

i + 3 i + 3 i + 1 i − 1 i − 1 i i

 ,

for i ∈ N. Recall that the number of work teams is equal to the column sum,

that is, i + 3, and observe that the workload matrices for i = 1 and i = 2

correspond to the previously studied matrices W1 and W2. Figure 1 shows the

computational time required by the procedure ColGen to count the number of

rotating schedules related to each workload matrix Wi. The x-axis determines

the workload matrix, and the y-axis the computational time. We show different

curves depending on the set of constraints that has been considered. Since

Constraints C.1 and C.2 are imposed a priori when creating the schedule pattern,

we distinguish six distinct cases depending on which of the Constraints C.3–

C.6 are considered: none of the four constraints C.3–C.6 is imposed (∅); each

constraint is separately imposed or all the four constraints are imposed together.

We interpolate the results obtained for the discrete values of i ∈ N and thus

obtain six curves. The exponential shape of these curves shows the already

mentioned sensitivity of Gröbner bases to the number of variables. It can also be

observed that the computational time improves for every workload matrix when

all constraints are considered together, which fits with the results shown in Table
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1 for W1 and W2, where it can be seen that the computational times diminishes

as new constraints are added to the constraints set taken into consideration.

Figure 1: ColGen computational time for counting solutions of workload matrices Wi as the

number of work teams (i+ 3) increases.

As we have seen, our method can find the number of solutions and enumerate

them for feasible cases. Unlike heuristic methods, it also identifies the infeasible

cases. Algebraically, infeasibility means for example that the Gröbner basis of

the corresponding ideal I ′W,E in Theorem 2 is ⟨ 1 ⟩, or equivalently, the dimension

of the quotient ring Z/2Z[x111, . . . , xt7s]/I
′
W,E is 0.

In order to illustrate the effectiveness of our method for infeasible cases, we

have applied it to the well-known real problem of Edmonton Police Department,

introduced by Butler [8] and studied by Balakrishnan and Wong [3] and Laporte

and Pesant [28]. This is a rotating workforce example with a 9-week cycle and

3 shift types that includes additional constraints in shift change patterns. Its

related workload matrix is

W =


2 2 2 2 2 2 2

2 2 2 3 3 3 2

2 2 2 2 2 2 2

3 3 3 2 2 2 3


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The method proposed by Balakrishnan and Wong needed 73.54 seconds to

find a first solution of the problem and that of Laporte and Pesant needed 3.78

seconds. None of the proposed solutions in the literature satisfies all Constraints

C.1–C.6. By using the procedure ColGen, we obtain in 347 seconds that there

does not exist any distribution of rest shifts according to the workload matrix

W and to Constraints C.1, C.2, C.4 and C.5 and hence, we can ensure that the

problem is indeed infeasible under such constraints.

Besides, in order to compare the performance of our model with that of other

models, we consider the proposal of Balakrishnan and Wong [3] and fix the same

rest shifts as these authors do in their proposed solution. In 1.87 seconds (equal

to 2.54% of the 73.54 seconds that they needed), we obtain not only the same

solution as them, but also the following alternative solution, whose night shifts

are concentrated in two blocks instead of three, and the opposite for the morning

shifts:



2 2 2 2 2 2 4

4 1 1 1 1 1 4

4 4 2 2 2 2 2

4 4 3 3 3 3 3

3 3 4 4 1 1 1

1 4 4 2 2 2 2

2 2 4 4 3 3 3

3 3 3 3 4 4 1

1 1 1 1 4 4 4



Analogously, Laporte and Pesant [28] propose three solutions for this prob-

lem excluding Constraints C.3 and C.5. We fix the same rest days as them and

prove in less than two seconds for each one of the three cases that there is no

solution that satisfies such constraints.

6. Conclusions

We have shown how the polynomial method can be used in order to count

and enumerate all possible rotating schedules that satisfy a given set of con-

straints, and thus to analyze their influence on the existence of such schedules.

We have also seen that the computation time required for counting all feasible

rotating schedules is small but that depending on the constraints considered, the
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computational cost necessary to count and to enumerate them can be excessive

even for small instances. We overcome this problem by improving the polyno-

mial structure of the method in order to accelerate the counting process and

by constructing the schedule using generation by columns in combination with

Gröbner bases in order to enumerate the solutions within less time. This com-

bination enables us to solve cases that were intractable by just using Gröbner

bases due to memory and storage problems. It yields the same results for the

tractable cases, normally within less computational time. Thereby, we provide a

methodology that determines the exact number of rotating schedules for a given

workload matrix and constraints, and also enumerates them when the problem

is feasible. The decision maker can then choose the more convenient rotating

schedules among all the feasible ones, and see the influence of each constraint

in the resulting number of rotating schedules. In cases where the problem is

infeasible, such as the Edmonton Police Department, our method enables us

to detect infeasibility within a short time, to solve the same constraints relax-

ations as in the literature within 2.54% of the computation time, as well as to

analyze how constraint relaxation influences the number and quality of feasible

solutions.
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