
Available online at www.sciencedirect.com

ScienceDirect

Mathematics and Computers in Simulation 141 (2017) 24–39
www.elsevier.com/locate/matcom

Original articles

A generalized Taylor method of order three for the solution of initial
value problems in standard and infinity floating-point arithmetic✩

P. Amodioa, F. Iavernaroa, F. Mazziaa, M.S. Mukhametzhanovb,c, Ya.D. Sergeyevb,c,∗

a Dipartimento di Matematica, Università degli Studi di Bari, Italy
b DIMES, Università della Calabria, Italy

c Department of Software and Supercomputing Technologies, Lobachevsky State University of Nizhni Novgorod, Russia

Received 26 November 2015; received in revised form 22 February 2016; accepted 18 March 2016
Available online 7 April 2016

Abstract

A well-known drawback of algorithms based on Taylor series formulae is that the explicit calculation of higher order derivatives
formally is an over-elaborate task. To avoid the analytical computation of the successive derivatives, numeric and automatic
differentiation are usually used. A recent alternative to these techniques is based on the calculation of higher derivatives by using the
Infinity Computer—a new computational device allowing one to work numerically with infinities and infinitesimals. Two variants
of a one-step multi-point method closely related to the classical Taylor formula of order three are considered. It is shown that the
new formula is order three accurate, though requiring only the first two derivatives of y(t) (rather than three if compared with the
corresponding Taylor formula of order three). To get numerical evidence of the theoretical results, a few test problems are solved
by means of the new methods and the obtained results are compared with the performance of Taylor methods of order up to four.
c⃝ 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.

Keywords: Ordinary differential equations; Initial value problems; Taylor methods; Numerical infinitesimals; Infinity computer

1. Introduction

The Taylor series method is one of the earliest algorithms to approximate the solution of initial value problems
y′

= f (t, y), t ∈ [t0, T],

y(t0) = y0,
(1)

where f : [t0, T] × Rn
→ Rn is assumed sufficiently differentiable.

✩ Research of P. Amodio, F. Iavernaro and F. Mazzia was supported by the Università degli Studi di Bari, project “Equazioni di Evoluzione:
analisi qualitativa e metodi numerici”. Research of Ya.D. Sergeyev and M.S. Mukhametzhanov was supported by the Russian Science Foundation,
project No.15-11-30022 “Global optimization, supercomputing computations, and applications”.

∗ Corresponding author at: DIMES, Università della Calabria, Italy.
E-mail addresses: pierluigi.amodio@uniba.it (P. Amodio), felice.iavernaro@uniba.it (F. Iavernaro), francesca.mazzia@uniba.it (F. Mazzia),

muhametzhanov.m@gmail.com (M.S. Mukhametzhanov), yaro@dimes.unical.it (Ya.D. Sergeyev).

http://dx.doi.org/10.1016/j.matcom.2016.03.007
0378-4754/ c⃝ 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.matcom.2016.03.007&domain=pdf
http://www.elsevier.com/locate/matcom
http://dx.doi.org/10.1016/j.matcom.2016.03.007
http://www.elsevier.com/locate/matcom
mailto:pierluigi.amodio@uniba.it
mailto:felice.iavernaro@uniba.it
mailto:francesca.mazzia@uniba.it
mailto:muhametzhanov.m@gmail.com
mailto:yaro@dimes.unical.it
http://dx.doi.org/10.1016/j.matcom.2016.03.007

A generalized Taylor method of order three for the
solution of initial value problems in standard and

infinity floating-point arithmeticI

P. Amodioa, F. Iavernaroa, F. Mazziaa, M.S. Mukhametzhanovb,c,
Ya.D. Sergeyevb,c,∗

aDipartimento di Matematica, Università degli Studi di Bari, Italy
bDIMES, Università della Calabria, Italy

cDepartment of Software and Supercomputing Technologies
Lobachevsky State University of Nizhni Novgorod, Russia

Abstract

A well-known drawback of algorithms based on Taylor series formulae is that
the explicit calculation of higher order derivatives formally is an over-elaborate
task. To avoid the analytical computation of the successive derivatives, numeric
and automatic differentiation are usually used. A recent alternative to these
techniques is based on the calculation of higher derivatives by using the Infinity
Computer – a new computational device allowing one to work numerically with
infinities and infinitesimals. Two variants of a one-step multi-point method
closely related to the classical Taylor formula of order three are considered.
It is shown that the new formula is order three accurate, though requiring
only the first two derivatives of y(t) (rather than three if compared with the
corresponding Taylor formula of order three). To get numerical evidence of the
theoretical results, a few test problems are solved by means of the new methods
and the obtained results are compared with the performance of Taylor methods
of order up to four.

Keywords: Ordinary differential equations, initial value problems, Taylor
methods, numerical infinitesimals, Infinity Computer

IResearch of P. Amodio, F. Iavernaro and F. Mazzia was supported by the Università
degli Studi di Bari, project “Equazioni di Evoluzione: analisi qualitativa e metodi numerici”.
Research of Ya.D. Sergeyev and M.S. Mukhametzhanov was supported by the Russian Science
Foundation, project No.15-11-30022 “Global optimization, supercomputing computations, and
applications”.
∗Corresponding author
Email addresses: pierluigi.amodio@uniba.it (P. Amodio),

felice.iavernaro@uniba.it (F. Iavernaro), francesca.mazzia@uniba.it (F. Mazzia),
muhametzhanov.m@gmail.com (M.S. Mukhametzhanov), yaro@dimes.unical.it (
Ya.D. Sergeyev)

Preprint submitted to Elsevier March 7, 2018

1. Introduction

The Taylor series method is one of the earliest algorithms to approximate
the solution of initial value problems{

y′ = f(t, y), t ∈ [t0, T],
y(t0) = y0,

(1)

where f : [t0, T]× Rn → Rn is assumed sufficiently differentiable.
Newton and Euler describe this approach in their seminal works of the 18th

century. Since then, many authors mention Taylor series methods and some
codes have been developed for both ODEs and DAEs: within the recent litera-
ture, we mention [3, 4, 5, 15, 53, 54].

A well-known drawback of the algorithms based on Taylor series formulae
is that the explicit calculation of higher order derivatives formally is an over-
elaborate task, especially when the dimension n of the system is not small. To
avoid the analytical computation of the successive partial derivatives involved
in the truncated Taylor expansion of f , a numerical differentiation approach has
been often considered (see, for example, [24, 25]). A further interest in Taylor
series methods stemmed from considering automatic rather than numerical dif-
ferentiation, which makes use of specific tools based on the involved elementary
functions (see [29]) and allows for a speed up of the overall computation.

We report two instances for which the use of Taylor series methods has
proved to be a powerful tool:

• The analysis of the stability properties of equilibria and periodic orbits of
dynamical systems often requires an accurate integration of the variational
equations. Within this context, high-order Taylor series methods have
been successfully exploited to correctly reproduce the highly oscillatory
behavior of their solutions, avoiding extremely small stepsizes during the
integration procedure. In most cases the variational equations are slight
modifications of the original ones, so that it is possible to formulate the
integration algorithm for both systems with little added effort.

• In some physical problems [1, 2, 22] it is important to approximate the
solution with a very high precision, as in the determination of normal forms
of differential systems, initial conditions for periodic problems, numerical
detection of periodic orbits, computation of physical constants, etc. The
Taylor method, just by increasing the degree of the formulae, permits
high-precision integration, provided a multi-precision library is also used.

A recent alternative to numeric and automatic differentiation is based on
the calculation of higher derivatives by using the Infinity Computer which is
equipped with a new numeral system (see [30, 33, 38, 32, 42, 47]) for performing
numerical computations with infinite and infinitesimal quantities. The possibil-
ity to work with numerical infinitesimals allows one both to calculate the exact
values of the derivatives numerically without finding the respective derivatives

2

analytically and to work with infinitesimal stepsizes. The first attempts to use
the Infinity Computer in this direction have been done in [39, 43, 45].

In order to see the place of the new approach in the historical panorama of
ideas dealing with infinite and infinitesimal, see [17, 18, 19, 26, 35, 37, 49]. In
particular, connections of the new approach with bijections are studied in [19]
and metamathematical investigations on the theory and its non-contradictory
identification can be found in [18]. The new methodology has been successfully
used in such fields as numerical differentiation and optimization (see [9, 39,
56]), fractals (see [13, 14, 31, 34, 41, 48]), models for percolation and biological
processes (see [13, 14, 52, 41]), hyperbolic geometry (see [20, 21]), infinite series
(see [16, 35, 40, 55]), set theory, lexicographic ordering, and Turing machines
(see [37, 46, 44, 49, 50, 50]), cellular automata (see [10, 11, 12]), etc.

The paper is structured as follows. Section 2 gives a brief introduction into
the work with numerical infinitesimals and infinities on the Infinity Computer.
Section 3 introduces the new methods. Convergence and stability analysis of
the new algorithms is performed in Section 4. Some numerical illustrations are
provided in Section 5. Finally, Section 6 concludes the paper.

We stress that the action played by the Infinity Computer only concerns
the accurate evaluation of the derivatives appearing in the expression of the
methods. As a matter of fact, the variant of the standard Taylor methods we
are going to introduce may be efficiently implemented in both standard and
infinity floating-point arithmetic.

2. Numerical infinitesimals and infinities

In our everyday activities with finite numbers the same finite numerals1 are
used for different purposes (e.g., the same numeral 9 can be used to express the
number of elements of a set, to indicate the position of an element in a sequence,
and to execute practical computations). In contrast, when we face the necessity
to work with infinities or infinitesimals, the situation changes drastically. In fact,
in this case different numerals are used to work with infinities and infinitesimals
in different situations. To illustrate this fact it is sufficient to mention that we
use the symbol ∞ in standard analysis, ω for working with ordinals, ℵ0,ℵ1, ...
for dealing with cardinalities.

Many codes and theories dealing with infinite and infinitesimal quantities
have a symbolic (not numerical) character. For instance, many versions of non-
standard analysis (see [28]) are symbolic, since they have no numeral systems to
express their numbers by a finite number of symbols (the finiteness of the number
of symbols is necessary for organizing numerical computations). Namely, if we
consider a finite n, any numeral used to express finite quantities and consisting

1There exists an important distinction between numbers and numerals. A numeral is a
symbol (or a group of symbols) that represents a number. A number is a concept that a
numeral expresses. The same number can be represented by different numerals. For example,
the symbols ‘9’, ‘nine’, ‘IIIIIIIII’, and‘IX’, are different numerals, but they all represent the
same number.

3

of a finite number of symbols may be associated with it, such as, for example,
n = 72, or n = 30. In contrast, if we consider a non-standard infinite m, then
it is not clear which numerals can be used to assign a concrete value to m.
Analogously, in non-standard analysis, if we consider an infinitesimal h then
it is not clear which numerals consisting of a finite number of symbols can be
used to assign a concrete value to h and to write h = ... In fact, very often in
non-standard analysis texts, a generic infinitesimal h is used and it is considered
as a symbol, i.e., only symbolic computations can be done with it. Approaches
of this kind leave unclear such issues, e.g., whether the infinite 1/h is integer or
not or whether 1/h is the number of elements of an infinite set.

In order to allow one to execute numerical computations with different in-
finities and infinitesimals and to use the same numerals in all the situations
(as it happens with numerals expressing finite quantities), a new computa-
tional methodology and the respective numeral system have been developed
in [30, 33, 38]. This numeral system avoids indeterminate forms and situations
similar to ∞ + 1 = ∞ and ∞− 1 = ∞ providing results ensuring that if a is
a numeral written in this numeral system then for any a (i.e., a can be finite,
infinite, or infinitesimal) it follows a+ 1 > a and a− 1 < a.

The numeral system is based on a new infinite unit of measure expressed by
the numeral ¬, called grossone, that is introduced as the number of elements
of the set of natural numbers. Concurrently with the introduction of ¬ in the
mathematical language all other symbols (like ∞, Cantor’s ω, ℵ0,ℵ1, ..., etc.)
traditionally used to deal with infinities and infinitesimals are excluded from the
language because ¬ and other numbers constructed with its help not only can be
used instead of all of them but can be used with a higher accuracy. Analogously,
when zero and the positional numeral system had been introduced in Europe,
Roman numerals I, V, X, etc. had not been involved and new symbols 0, 1, 2,
etc. have been used to express numbers. The new element – zero expressed by
the numeral 0 – had been introduced by describing its properties in the form
of axioms. Analogously, ¬ is introduced by describing its properties postulated
by the Infinite Unit Axiom added to axioms for real numbers (see [33, 38] for a
detailed discussion).

Let us see now how, thanks to the introduction of ¬ in place of the usual
symbol ∞, one can write down different numerals expressing different infinities
and infinitesimals and to execute computations with all of them. Indeterminate
forms are not present and, for example, the following relations hold for infi-
nite numbers ¬, ¬2.7 and ¬−1, ¬−2.7 (that are infinitesimals), as for any other
(finite, infinite, or infinitesimal) number expressible in the new numeral system

0 ·¬ = ¬ · 0 = 0, ¬−¬ = 0,
¬

¬
= 1, ¬0 = 1, 1¬ = 1, 0¬ = 0, (2)

0 ·¬−1 = ¬−1 · 0 = 0, ¬−1 > 0, ¬−2.7 > 0, ¬−1 −¬−1 = 0,

¬−1

¬−1 = 1, (¬−1)0 = 1, ¬ ·¬−1 = 1, ¬ ·¬−2 = ¬−1,

4

¬−2.7

¬−2.7 = 1,
¬2.7

¬
= ¬1.7,

¬−1

¬−2 = ¬, ¬2.7 ·¬−2.7 = 1.

The introduction of the numeral ¬ allows us to represent infinite and in-
finitesimal numbers in a unique framework and to work with all of them nu-
merically on the Infinity Computer (see the patent [36]). For this purpose a
numeral system similar to traditional positional numeral systems was intro-
duced in [30, 33]. To construct a number C in the numeral positional system
with base ¬, we subdivide C into groups corresponding to powers of ¬:

C = cpm
¬pm + . . .+ cp1

¬p1 + cp0
¬p0 + cp−1

¬p−1 + . . .+ cp−k
¬p−k . (3)

Then, the record

C = cpm
¬pm . . . cp1

¬p1cp0
¬p0cp−1

¬p−1 . . . cp−k
¬p−k (4)

represents the number C, where all numerals ci 6= 0, they belong to a traditional
numeral system and are called grossdigits. They express finite positive or neg-
ative numbers and show how many corresponding units ¬pi should be added
or subtracted in order to form the number C. Note that in order to have a
possibility to store C in the computer memory, values k and m should be finite.

Numbers pi in (4) are sorted in the decreasing order with p0 = 0

pm > pm−1 > . . . > p1 > p0 > p−1 > . . . p−(k−1) > p−k.

They are called grosspowers and they themselves can be written in the form (4).
In the record (4), we write ¬pi explicitly because in the new numeral positional
system the number i in general is not equal to the grosspower pi. This gives the
possibility to write down numerals without indicating grossdigits equal to zero.

The term having p0 = 0 represents the finite part of C since c0¬0 = c0 (see
(2)). Terms having finite positive grosspowers represent the simplest infinite
parts of C. Analogously, terms having negative finite grosspowers represent
the simplest infinitesimal parts of C. For instance, the number ¬−1 = 1

¬
mentioned above is infinitesimal. Note that all infinitesimals are not equal to
zero. In particular, 1

¬
> 0 since it is a result of division of two positive numbers.

A number represented by a numeral in the form (4) is called purely finite if it
has neither infinite nor infinitesimals parts. For instance, 14 is purely finite and
14 + 5.3¬−1.5 is not. All grossdigits ci are supposed to be purely finite. Purely
finite numbers are used on traditional computers and for obvious reasons have
a special importance for applications. All of the numbers introduced above can
be grosspowers, as well, giving thus a possibility to have various combinations
of quantities and to construct terms having a more complex structure.

Many numerical methods for solving ODEs require the computation of the
derivatives of an unknown function y(t) at some specific points. In particular,
this is the case with methods based on Taylor expansion. Let us see how the
usage of infinitesimals on the Infinity Computer allows one to calculate exact
derivatives of y(t) numerically.

5

Let us denote by y(k)(ti) the k-th derivative of the solution y(t) at the point
ti and suppose that f(t, y) assumes purely finite values at purely finite t and y.
It has been shown in [43] that, in order to calculate the k-th derivative at the
point ti, k infinitesimals steps from the point ti using the Euler formula with
h = ¬−1 should be executed as follows

yi,1 = yi + ¬−1f(ti, yi), yi,2 = yi,1 + ¬−1f(ti + ¬−1, yi,1), . . .

yi,k = yi,k−1 + ¬−1f(ti + (k − 1)¬−1, yi,k−1).

Then, since approximations of the derivatives can be obtained by the forward
differences ∆j

h, 1 ≤ j ≤ k, with h = ¬−1 as follows

∆k
¬−1 =

k∑
j=0

(−1)j
(
k

j

)
yi,k−j , (5)

where yi,0 = yi. We obtain

y(k)(ti) =
∆k

¬−1

¬−k
+O(¬−1). (6)

Since the error of the approximation is O(¬−1), the finite part of the value
∆k

¬−1

¬−k gives us the exact derivative y(k)(ti). For a more detailed description of

the numerical computation of exact derivatives on the Infinity Computer see
[39, 43].

3. Definition of the new method

The method we are interested in is a one-step multi-point method of the
form (w1, y1) = Φh(w0, y0) closely related to the classical Taylor formula of
order three. Here h stands for the integration stepsize and w1 and y1 are ap-
proximations to y(t1), with t1 = t0 + h. More specifically, the extra-point w1

is to be meant as a preliminary low order approximation to y(t1) which is then
exploited to derive the more accurate approximation y1 (see Section 3.2 for more
details).

As will be shown in the next section, the new formula is order three accurate,
though requiring only the first two derivatives of y(t) (rather than three if
compared with the corresponding Taylor formula of order three).

We begin with introducing an auxiliary method, denoted by ŷ1 = Φ̂h(y0),
which will prove very helpful to properly define method Φh as well as to study
its convergence and stability properties. Methods Φ̂h and Φh first appeared in
[51] where they are referred to as methods 1.3 and 1.4, respectively. For sake of
simplicity, but without loss of generality, in the sequel we assume that problem
(1) is scalar and autonomous.2 For later use, we list the shape of the first four

2Section 5 also includes results pertaining to the non-autonomous and vector cases (see
also Remark 1). Notice that we avoid the computation of high-order mixed derivatives on the
Infinity Computer, which will be the object of a future research.

6

derivatives of the solution y(t) of (1) evaluated at t0, in terms of the function f
and its derivatives:

y′(t0) = f(y0),

y′′(t0) = f ′(y0)f(y0),

y′′′(t0) = f ′′(y0)(f(y0))2 + (f ′(y0))2f(y0),

y(iv)(t0) = f ′′′(y0)(f(y0))3 + 4f ′′(y0)f ′(y0)(f(y0))2 + (f ′(y0))3f(y0).

(7)

On the Infinity Computer, the derivatives appearing in (7) are evaluated with
the aid of formulae (5)-(6). In standard arithmetic they are provided ana-
lytically, even though we also illustrate the effects of approximating them by
suitable divided differences (see Section 5).

The following result regards the computational cost to compute the Taylor
coefficients.

Theorem 1 ([3, 27]). If the evaluation of f(y) involves r elementary functions,
the computational complexity of the evaluation of f(y), f ′(y), . . . f (s−1)(y) is

C = rs2 +O(s). (8)

The efficiency of Taylor methods as compared with classical Runge–Kutta
methods has been discussed in [3]. For a numerical approach to the computation
of the coefficients in Taylor expansions see [25].

3.1. Definition of method ŷ1 = Φ̂h(y0)

We first consider the standard Taylor formula of order two to obtain an
initial guess, say v1, of y(t1) (see (7)):

v1 = y0 + hy′(t0) +
h2

2
y′′(t0) ≡ y0 + hf(y0) +

h2

2
f ′(y0)f(y0). (9)

We use again the same formula to obtain an approximation to the solution of
(1), denoted by p2(t), in a neighborhood of t1:

p2(t) = v1 + f(v1)(t− t1) +
1

2
f ′(v1)f(v1)(t− t1)2. (10)

Rather than advancing the solution in time, we exploit the information brought
by p2(t) to improve the accuracy of the numerical solution at time t1. To this
end, we first recast p2(t) as a polynomial expanded around t0

p2(t) = v1 + f(v1)(t− t0 + t0 − t1) +
1

2
f ′(v1)f(v1)(t− t0 + t0 − t1)2

= v1 − hf(v1) +
h2

2
f ′(v1)f(v1) + (1− hf ′(v1)) f(v1)(t− t0)

+
1

2
f ′(v1)f(v1)(t− t0)2,

(11)

7

and then we blend the coefficients of the polynomial p2(t) with the corresponding
ones in the classical Taylor formula to form a new second degree polynomial
q2(t), namely

q2(t) = α0y0 + (1− α0)
(
v1 − hf(v1) +

h2

2
f ′(v1)f(v1)

)
+
(
α1f(y0) + (1− α1) (1− hf ′(v1)) f(v1)

)
(t− t0)

+
1

2

(
α2f

′(y0)f(y0) + (1− α2)f ′(v1)f(v1)
)
(t− t0)2,

(12)

which will be used to advance the solution, by setting ŷ1 = Φ̂h(y0) = q2(t1).
The parameters αi, i = 0, 1, 2, will be selected in order to improve the conver-
gence and stability properties of the standard second order Taylor formula, as
is discussed in Section 4. The use of convex combinations in (12) comes from
imposing the consistency conditions up to order two. In other words, order
two is achieved independently of the choice of the parameters αi. Furthermore,
without loss of generality, we assume α0 = 1 since it can be shown that the
value of α0 does not alter the shape of the resulting method. The following
scheme then summarizes the implementation details of the method to construct
the numerical approximation ŷk ' y(tk), with tk = t0 + kh.

ŷ0 = y0

h = (T − t0)/n
for k = 1, . . . , n

vk = ŷk−1 + hf(ŷk−1) +
h2

2
f ′(ŷk−1)f(ŷk−1)

ŷk = ŷk−1 + h
(
α1f(ŷk−1) + (1− α1) (1− hf ′(vk)) f(vk)

)
+
h2

2

(
α2f

′(ŷk−1)f(ŷk−1) + (1− α2)f ′(vk)f(vk)
)

end

(13)

3.2. Definition of method (w1, y1) = Φh(w0, y0)

To reduce the computational effort per step associated with the implemen-
tation of the method defined by Φ̂h, we consider a variant consisting in ap-
proximating the values of f(ŷk−1) and f ′(ŷk−1) appearing in algorithm (13) by
means of suitable known quantities available for free. More precisely, we assume
that the very first step is performed by method Φ̂h, and we set w1 = v1 and
y1 = ŷ1 = Φ̂h(y0).

At the second step, we avoid the evaluations of f(y1) and f ′(y1), as required
by (9), and instead approximate them by f(w1) and f ′(w1) respectively, which
we inherit from the previous step. More in general, to compute the subsequent
approximations yk = Φh(yk−1), k = 2, 3, . . . , we replace the quantities f(yk−1)
and f ′(yk−1), required by algorithm (13), by f(wk−1) and f ′(wk−1) respectively.
The implementation details of the method defined by Φh are summarized below.

8

h = (T − t0)/n

w1 = y0 + hf(y0) +
h2

2
f ′(y0)f(y0)

y1 = y0 + h
(
α1f(y0) + (1− α1) (1− hf ′(w1)) f(w1)

)
+
h2

2

(
α2f

′(y0)f(y0) + (1− α2)f ′(w1)f(w1)
)

for k = 2, . . . , n

wk = yk−1 + hf(wk−1) +
h2

2
f ′(wk−1)f(wk−1)

yk = yk−1 + h
(
α1f(wk−1) + (1− α1) (1− hf ′(wk)) f(wk)

)
+
h2

2

(
α2f

′(wk−1)f(wk−1) + (1− α2)f ′(wk)f(wk)
)

end

(14)

Remark 1. The shape of Algorithms (13) and (14) does not change for vector-
valued functions. In such a case, f ′(y) denotes the Jacobian matrix of f(y). We
also recall that a non-autonomous system y′ = f(t, y), with y ∈ Rn, may be
always recast as an autonomous system of the form z′ = F (z), with z ∈ Rn+1,
by setting:

z =

(
y
t

)
and F (z) =

(
f(y)

1

)
.

Modulo this transformation, the two algorithms above may also handle the non-
autonomous case.

4. Convergence and stability analysis

The analysis of the integrator described in algorithm (14) will be carried

out by interpreting Φh as a perturbation of Φ̂h. For this reason, we begin with
stating some preliminary results pertaining to this latter formula.

Theorem 2. If the coefficients α1 and α2 satisfy

α1 − α2 =
1

3
(15)

the method Φ̂h has order p = 3. In addition, if the coefficients α1 and α2 are
selected as

α1 =
5

6
, α2 =

1

2
, (16)

(thus also satisfying (15)), Φ̂h becomes the standard fourth-order Taylor formula
when applied to the linear problem y′ = λy, λ ∈ C, where C denotes the set of
complex numbers.

9

Proof. The local truncation error associated with the method Φ̂h at the first
step is

τ(h) = y(t0 + h)− Φ̂h(y0) =
∑
k≥0

y(k)(t0)

k!
hk − Φ̂h(y0), (17)

assuming f analytical. Thus, to estimate τ(h) we need to expand Φ̂h(y0) in
powers of h. With reference to (13) with k = 1, we consider the expansions

f(v1) = f
(
y0 + hf(y0) + h2

2 f
′(y0)f(y0)

)
= f(y0) + f ′(y0)

(
hf(y0) + h2

2 f
′(y0)f(y0)

)
+ f ′′(y0)

2

(
hf(y0) + h2

2 f
′(y0)f(y0)

)2
+O(h3)

= f(y0) + hf(y0)f ′(y0)

+h2

2

[
f(y0)(f ′(y0))2 + (f(y0))2f ′′(y0)

]
+O(h3),

f ′(v1) = f ′
(
y0 + hf(y0) + h2

2 f
′(y0)f(y0)

)
= f ′(y0) + hf(y0)f ′′(y0)

+h2

2

[
f(y0)f ′(y0)f ′′(y0) + (f(y0))2f ′′′(y0)

]
+O(h3).

Plugging them into the equation in (13) defining ŷ1 yields

Φ̂h(y0) = ŷ1 = y0 + f(y0)h+
1

2
f(y0)f ′(y0)h2

+
α1 − α2

2
f(y0)

(
(f ′(y0))2 + f(y0)f ′′(y0)

)
h3 +O(h4).

(18)

Inserting (18) into (17) and taking into account relations (7) we deduce that

the method defined by Φ̂h has order three if condition (15) is fulfilled.3

In the specific case where the problem is linear, namely f(y) = λy and hence
f (k)(y) = λky, a direct computation based upon the previous argument shows
that

τ(h) =
(1

3!
− α1

2
+
α2

2

)
(hλ)3y0 +

(1

4!
+

1

4
− α1

2
+
α2

4

)
(hλ)4y0 +

∑
k≥5

y(k)(t0)

k!
hk,

and order four is achieved by imposing
α1

2
− α2

2
=

1

3!
,

α1

2
− α2

4
=

1

4!
+

1

4
,

which has solution (16).

3One may check that it is not possible to achieve order four under the assumption that the
coefficients αi are independent of the problem at hand.

10

More in general, method Φ̂h has order four when applied to autonomous
linear problems y′ = Ay + b. Consequently, an increase of order is also experi-
enced numerically for nonlinear problems when the dynamics takes place in a
neighborhood of an equilibrium point where the Lyapunov first approximation
theorem holds true (see Problem 2 in Section 5).

The linear stability analysis amounts to study the (global) asymptotic behav-

ior of the sequence ŷn = Φ̂h(ŷn−1) when the method is applied to the well-known
linear test equation y′ = λy, with λ ∈ C. In such an event, as has been shown
in Theorem 2, the method Φ̂h is equivalent to the fourth order Taylor formula
and, as a direct consequence, we can state the following result.

Corollary 1. Method Φ̂h share the same linear stability properties of the fourth-
order Taylor method.

More specifically, setting q = hλ, we have ŷn = R̂(q)ny0, where

R̂(q) =

4∑
k=0

qk

k!

is the stability function. We recall that the region of absolute stability of a
generic method providing a sequence yn when applied to the linear test equation,
is defined as

D = {q ∈ C : yn → 0, as n→∞}

In our case, we see that q ∈ D ⇔ |R̂(q)| < 1.
We now move to the study of the method corresponding to the map Φh,

introduced in Section 3.2. In particular, we will take advantage of the results
previously obtained for the method defined by Φ̂h, by regarding Φh as a pertur-
bation of Φ̂h.

Lemma 1. Under the assumption (15), the sequences (vk, ŷk) and (wk, yk)
defined in algoritms (13) and (14) respectively, are related as

wk = vk +O(h4), yk = ŷk +O(h4), with k = 0, 1, . . . , N, (19)

where N is a positive constant integer, independent of h.

Proof. We use an induction argument on the index k. For k = 1, (19) is obvi-
ously true since, by definition, (13) and (14) provide the same approximations
(w1 = v1 and y1 = ŷ1). Assume that property (19) holds true for k − 1. From
the proof of Theorem 2 we deduce that

ŷk = ŷk−1 + hf(ŷk−1) +
h2

2
f(ŷk−1)f ′(ŷk−1)

+
h3

3!

(
f(ŷk−1)(f ′(ŷk−1))2 + (f(ŷk−1))2f ′′(ŷk−1)

)
+O(h4),

thus, comparing with the definition of vk in (13), we conclude that

ŷk − vk = O(h3), for any k = 0, 1, (20)

11

Exploiting the induction hypothesis and (20), we finally get

wk = yk−1 + f(wk−1)h+ f(wk−1)f ′(wk−1)
h2

2
= ŷk−1 +O(h4) + f(vk−1 +O(h4))h

+f(vk−1 +O(h4))f ′(vk−1 +O(h4))
h2

2

= ŷk−1 + f(vk−1)h+ f(vk−1)f ′(vk−1)
h2

2
+O(h4)

= vk +O(h4),

and analogously

yk = yk−1 +
(
α1f(wk−1) + (1− α1) (1− hf ′(wk)) f(wk))

)
h

+
(
α2f

′(wk−1)f(wk−1) + (1− α2)f ′(wk)f(wk)
)h2

2
= ŷk−1 +O(h4) +

[
α1f(vk−1 +O(h4))
+ (1− α1)

(
1− hf ′(vk +O(h4))

)
f(vk +O(h4)))

]
h

+
[
α2f

′(vk−1 +O(h4))f(vk−1 +O(h4))

+ (1− α2)f ′(vk +O(h4))f(vk +O(h4))
]h2

2
= ŷk−1 +

(
α1f(vk−1) + (1− α1) (1− hf ′(vk)) f(vk))

)
h

+
(
α2f

′(vk−1)f(vk−1) + (1− α2)f ′(vk)f(vk)
)h2

2
+O(h4)

= ŷk−1 +
(
α1f(ŷk−1 +O(h3)) + (1− α1) (1− hf ′(vk)) f(vk))

)
h

+
[
α2f

′(ŷk−1 +O(h3))f(ŷk−1 +O(h3))

+ (1− α2)f ′(vk)f(vk)
]h2

2
+O(h4)

= ŷk−1 +
(
α1f(ŷk−1) + (1− α1) (1− hf ′(vk)) f(vk))

)
h

+
(
α2f

′(ŷk−1)f(ŷk−1) + (1− α2)f ′(vk)f(vk)
)h2

2
+O(h4)

= ŷk +O(h4).

This completes the proof.

The following result then comes from standard computation, by letting now
the integer N in (19) to increase as h decreases, under the constraint that
t = t0 +Nh is a fixed time in the integration interval [t0, tf].

Theorem 3. The method defined by the map Φh and described in algorithm
(14) has order of convergence p = 3, that is

|yN − y(t)| = O(h3), with h =
t− t0
N

. (21)

We observe that a result analogous to (21) applies to the error |yN − ŷN |
and consequently, unlike Φ̂h, the method Φh does not increase its order when
applied to linear problems.

12

Concerning the linear stability analysis, the application of the method de-
fined by Φh to the test equation y′ = λy yields

wk = yk−1 + qwk−1 +
1

2
q2wk−1

yk = yk−1 + α1qwk−1 + (1− α1)q(1− q)wk +
1

2
α2q

2wk−1 +
1

2
(1− α2)q2wk,

or, in matrix form,(
1 0

(1 − α1)q(1 − q) − 1
2

(1 − α2)q2 1

)(
wk

yk

)
=

(
q + 1

2
q2 1

α1q + 1
2
α2q2 1

)(
wk−1

yk−1

)
.

Inverting the matrix at the left-hand side, we arrive at

zk = R(q)zk−1,

with zk = (wk, yk)>, and the real matrix R(q) =
(
rij(q)

)
defined as

r11(q) =
q2

2
+ q,

r12(q) = 1,

r21(q) = (
α1

2
+
α2

4
− 3

4
)q4 + (

α1

2
+
α2

2
− 1)q3 + (

α2

2
− α1 + 1)q2 + α1q,

r22(q) = (α1 +
α2

2
− 3

2
)q2 + (1− α1)q + 1.

(22)
Denoting by λ1(q) and λ2(q) the two eigenvalues of R(q), it turns out that the
absolute stability region of the method Φh is given by

D =

{
q ∈ C : max

i=1,2
|λi(q)| < 1

}
.

Figure 1 displays the absolute stability regions related to methods Φ̂h (i.e.,
for linear problems, the fourth order Taylor method), and Φh for the choice of
parameters as in (16). The Taylor formula of order two has also been considered
for comparison purposes.

5. Numerical illustrations

To get numerical evidence of the theoretical results presented above, we
solve a few test problems by means of the methods defined at (13) and (14)
and compare their performance with Taylor methods of order up to four. Such
comparisons are carried out by evaluating the error in the numerical approxi-
mations at the end of the time integration interval tf . As a reference solution
against which to measure the obtained accuracy, we use the theoretical solution
of the problem when available, or a very accurate numerical solution obtained in

13

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−3

−2

−1

0

1

2

3

MethodΦh

Taylor, order 2

Taylor, order 3

Taylor, order 4

Figure 1: Absolute stability region of method Φh compared with those corresponding to the
Taylor methods of order 2, 3, and 4.

Matlab with the aid of a solver in the ODE suite. For a m-dimensional problem,
we use the following mixed-type error

E = max
1≤i≤m

|y(i)(tf)− y(i)
N |

1 + |y(i)(tf)|
, (23)

where y(i)(tf) denotes the ith component of the reference solution evaluated at

time tf and y
(i)
N is the corresponding numerical approximation (tf = t0 +Nh).

Both the Infinity Computer and analytic differentiation lead to an accurate
approximation of the derivatives, thus yielding equivalent results. Consequently,
we do not provide comparisons between these two different implementation pro-
cedures.

5.1. Problem 1

Consider the scalar (non-autonomous) initial value problem y′ =
cos(πt)

1 + y
, t ∈ [0, π],

y(0) = 0,
(24)

admitting solution

y(t) =

√
2

π
sin(πt) + 1− 1.

We solve problem (24) for decreasing values of the stepsize h

hn =
h0

2n
, with h0 =

π

20
, and n = 0, 1, 2, . . . , 9,

and compare the numerical approximations at the end of the time interval with
the exact one, according to formula (23). Figure 2 summarizes the obtained re-

sults. As is expected, the errors produced by the new methods Φh and Φ̂h decay

14

10
−4

10
−3

10
−2

10
−1

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

stepsize h

E
rr
o
r

Φh

Φ̂h

Taylor ord. 2
Taylor ord. 3

Figure 2: Problem 1. Errors versus stepsize.

with order three with respect to the stepsize. Though avoiding the computation
of y′′(t), the performance of both methods is analogous to the third-order Tay-
lor formula. It is worth noting that the implementation of method Φh requires
precisely the same computational cost as the second-order Taylor formula, but
achieving much better results (see Figure 2).

As was emphasized in the introduction, if the two methods are implemented
on the Infinity Computer, the user may avoid to provide the analytic expression
of the derivative f ′(y), which is instead obtained with the aid of the first order
difference formula

f ′(y) ≈ f(y + δ)− f(y)

δ
, (25)

by setting δ = ¬−1. Of course, in case of vector or non-autonomous systems, a
formula equivalent to (25) is used to evaluate the first partial derivatives of the
Jacobian matrix (see Remark 1). We recall that this choice yields the exact value
of f ′(y) up to machine precision. Therefore, as a further experiment, it makes
sense to see how a numerical approximation of the derivatives corresponding
to decreasing values of the parameter δ, now taken as a positive real number
in the standard arithmetic, may affect the overall behavior of the integrator,
as compared to the choice δ = ¬−1, also considering that for all these choices,
including the latter one, the computational effort remains unchanged.

In Figure 3, we compare the performance of method Φh, for δ = 10−5, 10−7,
10−9, 10−11, 10−13, and δ = ¬−1. Inside the range of the prescribed stepsizes,
we see that choosing a value of δ not sufficiently small results in an eventual
loss of convergence rate. As an example, for δ = 10−5 this happens when h
becomes as small as 10−3 (solid line with asterisks in the picture). This simply
means that, for h < 10−3, the derivatives are not accurately computed and a
smaller value of δ is then required to recover the order three convergence rate.
Improvements are in fact obtained by reducing the value of δ to 10−7 and 10−9.

15

10−5 10−4 10−3 10−2 10−1 100
10−15

10−12

10−9

10−6

10−3

100

stepsize h

E
rr

o
r

δ = ¬−1

δ = 1e− 5

δ = 1e− 7

δ = 1e− 9

δ = 1e− 11

δ = 1e− 13

Figure 3: Problem 1. Errors generated by method Φh for different choices of the parameter δ
to approximate the required derivatives of f , according to formula (25).

Contrary to what is expected, a further reduction of the discretization step
δ in (25) results in a loss of efficiency: for δ = 10−13 the performance of the
method is poorer than for the largest value considered. The reason is that
approximating the derivative by means of formulae such as (25) may lead to an
ill-conditioned problem for small values of the parameter δ due to cancelation
issues related to the difference at numerator. Table 1 reports the errors in
the approximation of y′′ = f ′(y)f(y) in the last computed point, obtained by
replacing f ′(wn) with the corresponding first order difference formula (see (7)
and (14)). A loss of significant digits is experienced starting from δ = 10−9,
independently of the stepsize h used. This unpleasant outcome is an effect of
the use of finite arithmetic, and is responsible for the eventual order reduction
phenomenon inferred from Figure 3 and discussed above.

This is not the case when the same computation is carried out on the Infinity
Computer. In fact, while the computer representation of x±δ, with x a floating
point number and δ ∈ R, produces an error, the quantities x±¬ are precisely
represented and thus do not give rise to any digit cancelation phenomenon. For
completeness, we also report, in Figure 4, the result obtained by approximating
the first derivative by means of the second order difference formula

f ′(y) ≈ f(y + δ)− f(y − δ)
2δ

, (26)

which is more frequently used by codes when a numerical evaluation of the
Jacobian matrix f ′(y) is required.4 We can see that an analogous reduction

4For δ = ¬−1 we continue to use formula (25), which is the one implemented on the Infinity
Computer.

16

δ
h

10−5 10−7 10−9 10−11 10−13

π/24 2.36e-05 2.37e-07 2.61e-08 1.00e-05 1.56e-03
π/25 3.86e-05 3.87e-07 1.92e-08 2.57e-06 1.57e-03
π/26 5.39e-05 5.35e-07 1.19e-07 3.87e-05 2.33e-03
π/27 6.77e-05 6.80e-07 3.68e-07 3.64e-05 1.80e-03
π/28 5.99e-05 6.01e-07 4.17e-07 1.86e-05 2.96e-03
π/29 5.65e-05 5.58e-07 3.35e-07 4.28e-05 7.18e-03
π/210 5.49e-05 5.43e-07 4.55e-07 4.44e-05 5.76e-03
π/211 5.41e-05 5.35e-07 2.93e-07 3.59e-05 1.66e-04
π/212 5.37e-05 5.38e-07 4.63e-07 2.05e-05 4.60e-04
π/213 5.35e-05 5.37e-07 5.23e-07 3.45e-05 2.46e-03
π/214 5.35e-05 5.28e-07 2.14e-07 4.62e-05 6.34e-03
π/215 5.34e-05 5.30e-07 1.50e-07 5.17e-05 7.17e-03
π/216 5.34e-05 5.28e-07 3.69e-07 5.51e-05 5.84e-03
π/217 5.34e-05 5.27e-07 3.22e-07 3.87e-05 2.70e-03

Table 1: Errors in the approximation of y′′ in the last computed point, generated by replacing
f ′ with the corresponding first order difference formula (25).

of order takes place in this case as well. This means that the loss of accuracy
cannot be prevented by improving the accuracy of the discretization formula,
but is an unavoidable outcome of the standard floating-point arithmetic.

5.2. Problem 2

In Theorem 2 we have shown the special feature of method Φ̂h to become
a fourth order formula, actually the fourth order Taylor formula, when applied
to a linear problem. One may argue that the performance of the method may
benefit from this property even when applied to nonlinear systems whose dy-
namics takes place in a neighborhood of an equilibrium point. To illustrate
this aspect, we consider the dynamics of a pendulum under influence of gravity.
Using Lagrangian mechanics, its motion can be described by the dimensionless
nonlinear equation {

y′1 = y2,
y′2 = − sin y1,

(27)

where y1 is the angle that the pendulum forms with its stable rest position,
and y2 is the angular velocity. In case of small amplitude oscillations around
the equilibrium point (y1, y2) = (0, 0), the problem may be well described by
its linearized version, namely the so called harmonic oscillator y′′1 + y1 = 0,
obtained through the approximation sin y1 ≈ y1. We compare the behavior of
methods Φ̂h and Φh with Taylor methods of order 2, 3 and 4 for the following
decreasing values of stepsize:

hn =
h0

2n
, with h0 =

π

5
, and n = 0, 1, 2, . . . , 7,

17

10−5 10−4 10−3 10−2 10−1 100
10−15

10−12

10−9

10−6

10−3

100

stepsize h

E
rr

o
r

δ = ¬−1

δ = 1e− 9

δ = 1e− 11

δ = 1e− 13

Figure 4: Problem 1. Errors generated by method Φh for different choices of the parameter δ
to approximate the required derivatives of f , according to formula (26).

We use [t0, tf] = [0, 2π] as integration interval and the two initial conditions
y0 = (0.5, 0)> and y0 = (1, 0)> to simulate the system under the circumstance
that the nonlinear part of (27) may be neglected or not.

Figure 5 summarizes the results. The picture at the top shows the error (23)
versus the stepsize, when the pendulum undertakes mild oscillations so that its
dynamic is essentially equivalent to that of a harmonic oscillator. We see that,
in accord with Theorem 2, the behavior of method Φ̂h is precisely the same as
that of the fourth-order Taylor method, while Φh displays order three and yields
errors similar to the corresponding Taylor formula. In the bottom picture in
Figure 5 we show the results obtained after doubling the amplitude of oscillations
of the pendulum. We see that, in this case, the nonlinear part of the vector
field is no longer negligible even though the benefits of the order four do not
completely evaporate. In fact, for large stepsizes, the behavior of method Φ̂h and
the Taylor method of order four is again quite similar and both methods produce
comparable errors. As the stepsize decreases, the accuracy curve associated with
method Φh departs from the order four slope and eventually reveals an error
reduction rate typical of a third-order method.

6. Conclusions

We have introduced two one-step multi-point methods, based on the Taylor
expansion, for the numerical solution of initial value problems. Both convergence
and linear stability analysis suggest that the new formulae are competitive with
respect to the corresponding Taylor formulae. In particular, both integrators
are order three accurate, though requiring only the first two derivatives of y(t).

18

10
−3

10
−2

10
−1

10
0

10
−15

10
−10

10
−5

10
0

stepsize h

E
rr
o
r

Φh

Φ̂h

Taylor ord. 2
Taylor ord. 3
Taylor ord. 4

y0 = (0.5, 0)⊤

10
−3

10
−2

10
−1

10
0

10
−15

10
−10

10
−5

10
0

stepsize h

E
rr
o
r

Φh

Φ̂h

Taylor ord. 2
Taylor ord. 3
Taylor ord. 4

y0 = (1, 0)⊤

Figure 5: Problem 2. Errors versus stepsize.

19

The Infinity Computer, thanks to its ability of handling numerically both infini-
ties and infinitesimals, has been proposed to compute the required derivatives
as an alternative tool with respect to numeric and automatic differentiation.
The numerical experiments show the good performance of the new methods as
compared with the Taylor formula of order three. Furthermore, their implemen-
tation on the Infinity Computer avoids possible conditioning issues associated
with the use of divided differences during the computation of the derivatives.

The presented approach leaves room to a number of possible investigations.
For example, one can choose one or more free coefficients to confer some specific
geometric properties on the resulting methods. This possibility has already been
researched in the recent past (see, for example, [7, 8, 6]) and could make the
formulae appropriate for solving conservative problems, such as Hamiltonian
systems. As a further example, it is possible to associate with the proposed
methods a stiffness detection strategy with a suitable mesh selection strategy,
as suggested in [23] for explicit Runge-Kutta methods. These aspects will be
faced in a future research.

References

[1] P. Amodio, L. Brugnano, and F. Iavernaro. Energy-conserving methods for
Hamiltonian boundary value problems and applications in astrodynamics.
Adv. Comput. Math., 41:881–905, 2015.

[2] P. Amodio, C.J. Budd, O. Koch, G. Settanni, and E. Weinmüller. Asymp-
totical computations for a model of flow in saturated porous media. Appl.
Math. Comput., 237:155–167, 2014.

[3] R. Barrio. Performance of the Taylor series method for ODEs/DAEs. Ap-
plied Mathematics and Computation, 163(2):525–545, 2005.

[4] R. Barrio, F. Blesa, and M. Lara. VSVO formulation of the Taylor method
for the numerical solution of ODEs. Computers & Math. Applic., 50:93–111,
2005.

[5] R. Barrio, M. Rodŕıguez, A. Abad, and F. Blesa. Breaking the limits: The
Taylor series method. Appl. Math. Comput., 217:7940–7954, 2011.

[6] L. Brugnano and F. Iavernaro. Line Integral Methods for Conservative
Problems. Monographs and Research Notes in Mathematics. Chapman
and Hall/CRC, Boca Raton, FL, 2016.

[7] L. Brugnano and F. Iavernaro. Line integral methods which preserve all
invariants of conservative problems. J. Comput. Appl. Math., 236:3905–
3919, 2012.

[8] L. Brugnano, F. Iavernaro, and D. Trigiante. Energy and QUadratic Invari-
ants Preserving integrators based upon Gauss collocation formulae. SIAM
J. Numer. Anal., 50(6):2897–2916, 2012.

20

[9] S. De Cosmis and R. De Leone. The use of grossone in mathematical pro-
gramming and operations research. Applied Mathematics and Computation,
218(16):8029–8038, 2012.

[10] L. D’Alotto. Cellular automata using infinite computations. Applied Math-
ematics and Computation, 218(16):8077–8082, 2012.

[11] L. D’Alotto. A classification of two-dimensional cellular automata using
infinite computations. Indian Journal of Mathematics, 55:143–158, 2013.

[12] L. D’Alotto. A classification of one-dimensional cellular automata using
infinite computations. Applied Mathematics and Computation, 255:15–24,
2015.

[13] D.I. Iudin, Ya.D. Sergeyev, and M. Hayakawa. Interpretation of percolation
in terms of infinity computations. Applied Mathematics and Computation,
218(16):8099–8111, 2012.

[14] D.I. Iudin, Ya.D. Sergeyev, and M. Hayakawa. Infinity computations in
cellular automaton forest-fire model. Communications in Nonlinear Science
and Numerical Simulation, 20(3):861–870, 2015.

[15] Á. Jorba and M. Zou. A software package for the numerical integration
of ODEs by means of high-order Taylor methods. Experiment. Math.,
14(1):99–117, 2005.

[16] V. Kanovei and V. Lyubetsky. Grossone approach to Hutton and Euler
transforms. Applied Mathematics and Computation, 255:36–43, 2015.

[17] G. Lolli. Infinitesimals and infinites in the history of mathematics: A brief
survey. Applied Mathematics and Computation, 218(16):7979–7988, 2012.

[18] G. Lolli. Metamathematical investigations on the theory of grossone. Ap-
plied Mathematics and Computation, 255:3–14, 2015.

[19] M. Margenstern. Using grossone to count the number of elements of infi-
nite sets and the connection with bijections. p-Adic Numbers, Ultrametric
Analysis and Applications, 3(3):196–204, 2011.

[20] M. Margenstern. An application of grossone to the study of a family of
tilings of the hyperbolic plane. Applied Mathematics and Computation,
218(16):8005–8018, 2012.

[21] M. Margenstern. Fibonacci words, hyperbolic tilings and grossone. Com-
munications in Nonlinear Science and Numerical Simulation, 21(1–3):3–11,
2015.

[22] R. Mart́ınez and C. Simó. Simultaneous binary collisions in the planar
four-body problem. Nonlinearity, 12(4):903–930, 1999.

21

[23] F. Mazzia and A.M. Nagy. A new mesh selection strategy with stiffness
detection for explicit Runge-Kutta methods. Applied Mathematics and
Computation, 255:125–134, 2015.

[24] E. Miletics and G. Molnárka. Taylor series method with numerical deriva-
tives for initial value problems. J. Comput. Meth. Sci. Eng., 4(1–2):105–
114, 2004.

[25] E. Miletics and G. Molnárka. Implicit extension of Taylor series method
with numerical derivatives for initial value problems. Comput. Math. Appl.,
50(7):1167–1177, 2005.

[26] F. Montagna, G. Simi, and A. Sorbi. Taking the Pirahã seriously. Commu-
nications in Nonlinear Science and Numerical Simulation, 21(1–3):52–69,
2015.

[27] R.A. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1966.

[28] A. Robinson. Non-standard Analysis. Princeton Univ. Press, Princeton,
1996.

[29] D. Estévez Schwarz and R. Lamour. Projector based integration of DAEs
with the Taylor series method using automatic differentiation. J. Comput.
Math Appl., 262:62–72, 2014.

[30] Ya.D. Sergeyev. Arithmetic of Infinity. Edizioni Orizzonti Meridionali, CS,
2003, 2nd ed. 2013.

[31] Ya.D. Sergeyev. Blinking fractals and their quantitative analysis using
infinite and infinitesimal numbers. Chaos, Solitons & Fractals, 33(1):50–
75, 2007.

[32] Ya.D. Sergeyev. Infinity computer and calculus. In Simos T.E., Psihoyios
G., and Tsitouras Ch., editors, AIP Proc. of the 5th International Confer-
ence on Numerical Analysis and Applied Mathematics, volume 936, pages
23–26. Melville, New York, 2007.

[33] Ya.D. Sergeyev. A new applied approach for executing computations with
infinite and infinitesimal quantities. Informatica, 19(4):567–596, 2008.

[34] Ya.D. Sergeyev. Evaluating the exact infinitesimal values of area of Sier-
pinski’s carpet and volume of Menger’s sponge. Chaos, Solitons & Fractals,
42(5):3042–3046, 2009.

[35] Ya.D. Sergeyev. Numerical point of view on Calculus for functions assuming
finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal
domains. Nonlinear Analysis Series A: Theory, Methods & Applications,
71(12):e1688–e1707, 2009.

22

[36] Ya.D. Sergeyev. Computer system for storing infinite, infinitesimal, and fi-
nite quantities and executing arithmetical operations with them. USA patent
7,860,914, 2010.

[37] Ya.D. Sergeyev. Counting systems and the First Hilbert problem. Nonlinear
Analysis Series A: Theory, Methods & Applications, 72(3-4):1701–1708,
2010.

[38] Ya.D. Sergeyev. Lagrange Lecture: Methodology of numerical computa-
tions with infinities and infinitesimals. Rendiconti del Seminario Matem-
atico dell’Università e del Politecnico di Torino, 68(2):95–113, 2010.

[39] Ya.D. Sergeyev. Higher order numerical differentiation on the Infinity Com-
puter. Optimization Letters, 5(4):575–585, 2011.

[40] Ya.D. Sergeyev. On accuracy of mathematical languages used to deal with
the Riemann zeta function and the Dirichlet eta function. p-Adic Numbers,
Ultrametric Analysis and Applications, 3(2):129–148, 2011.

[41] Ya.D. Sergeyev. Using blinking fractals for mathematical modelling of pro-
cesses of growth in biological systems. Informatica, 22(4):559–576, 2011.

[42] Ya.D. Sergeyev. Numerical computations with infinite and infinitesimal
numbers: Theory and applications. In Sorokin A. and Pardalos P.M.,
editors, Dynamics of Information Systems: Algorithmic Approaches, pages
1–66. Springer, New York, 2013.

[43] Ya.D. Sergeyev. Solving ordinary differential equations by working with
infinitesimals numerically on the Infinity Computer. Applied Mathematics
and Computation, 219(22):10668–10681, 2013.

[44] Ya.D. Sergeyev. Computations with grossone-based infinities. In Calude
C.S. and Dinneen M.J., editors, Unconventional Computation and Natu-
ral Computation: Proc. of the 14th International Conference UCNC 2015,
volume LNCS 9252, pages 89–106. Springer, New York, 2015.

[45] Ya.D. Sergeyev. Numerical infinitesimals for solving ODEs given as a black-
box. In Simos T.E. and Tsitouras Ch., editors, AIP Proc. of the Interna-
tional Conference on Numerical Analysis and Applied Mathematics 2014
(ICNAAM-2014), volume 1648, page 150018. Melville, New York, 2015.

[46] Ya.D. Sergeyev. The olympic medals ranks, lexicographic ordering, and
numerical infinities. The Mathematical Intelligencer, 37(2):4–8, 2015.

[47] Ya.D. Sergeyev. Un semplice modo per trattare le grandezze infinite ed
infinitesime. Matematica nella Società e nella Cultura: Rivista della Unione
Matematica Italiana, 8(1):111–147, 2015.

[48] Ya.D. Sergeyev. The exact (up to infinitesimals) infinite perimeter of the
Koch snowflake and its finite area. Communications in Nonlinear Science
and Numerical Simulation, 31(1–3):21–29, 2016.

23

[49] Ya.D. Sergeyev and A. Garro. Observability of Turing machines: A refine-
ment of the theory of computation. Informatica, 21(3):425–454, 2010.

[50] Ya.D. Sergeyev and A. Garro. Single-tape and multi-tape Turing machines
through the lens of the Grossone methodology. Journal of Supercomputing,
65(2):645–663, 2013.

[51] Ya.D. Sergeyev, M.S. Mukhametzhanov, F. Mazzia, F. Iavernaro, and
P. Amodio. Numerical methods for solving initial value problems on the
Infinity Computer. International Journal of Unconventional Computing, in
press.

[52] M.C. Vita, S. De Bartolo, C. Fallico, and M. Veltri. Usage of infinitesi-
mals in the Menger’s Sponge model of porosity. Applied Mathematics and
Computation, 218(16):8187–8196, 2012.

[53] V. Šátek, J. Kunovský, and A. Szöllös. Explicit and implicit Taylor series
solutions of stiff systems. In F. Breitenecker and I. Troch, editors, MathMod
Vienna 2012 - 7th Vienna Conference on Mathematical Modelling, 2012.

[54] S. Yalçinbaş and M. Sezer. A Taylor collocation method for the approxi-
mate solution of general linear Fredholm–Volterra integro-difference equa-
tions with mixed argument. Appl. Math. Comput., 175:675–690, 2006.

[55] A.A. Zhigljavsky. Computing sums of conditionally convergent and di-
vergent series using the concept of grossone. Applied Mathematics and
Computation, 218(16):8064–8076, 2012.

[56] A. Žilinskas. On strong homogeneity of two global optimization algorithms
based on statistical models of multimodal objective functions. Applied
Mathematics and Computation, 218(16):8131–8136, 2012.

24

