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Abstract

The component-by-component (CBC) algorithm is a method for construct-
ing good generating vectors for lattice rules for the efficient computation of
high-dimensional integrals in the “weighted” function space setting introduced
by Sloan and Woźniakowski. The “weights” that define such spaces are needed
as inputs into the CBC algorithm, and so a natural question is, for a given
problem how does one choose the weights? This paper introduces two new
CBC algorithms which, given bounds on the mixed first derivatives of the in-
tegrand, produce a randomly shifted lattice rule with a guaranteed bound on
the root-mean-square error. This alleviates the need for the user to specify the
weights. We deal with “product weights” and “product and order dependent
(POD) weights”. Numerical tables compare the two algorithms under vari-
ous assumed bounds on the mixed first derivatives, and provide rigorous upper
bounds on the root-mean-square integration error.

1 Introduction

Our aim in the current work is the efficient and relatively painless numerical com-
putation of high-dimensional integrals of the form

Isf :=

∫

[0,1]s
f(x) dx ,

where [0, 1]s := [0, 1]×· · ·×[0, 1] denotes the s-dimensional unit cube. A quasi-Monte
Carlo (QMC) approximation of the above integral is an equal-weight quadrature rule

Qn,s(Pn)f :=
1

n

n−1∑

k=0

f(tk) ,

where the quadrature points, Pn := {tk}
n−1
k=0 , are chosen deterministically from [0, 1]s.

The setting for the error analysis of such QMC approximations, introduced by Sloan
and Woźniakowski [14], assumes that the integrand f belongs to some s-variate
weighted function space Ws,γ , where in the original formulation each variable has
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an associated “weight” parameter γi > 0 whose size describes the importance of xi.
Weights of this kind γ = {γi}

∞
i=1 are incorporated into Ws,γ through the weighted

norm ‖·‖s,γ and are nowadays referred to as product weights, see Section 2 for more
details. In Section 2 we also consider more general weights, that is, a parameter γu is
allowed for each subset u ⊆ {1, . . . , s}, but in the Introduction we shall concentrate
on product weights.

This paper introduces two new variants of the component-by-component (CBC)
algorithm that, given a bound on the norm of the integrand, choose not only the
QMC points but also the weights, with a view to minimising the error of the QMC
approximation. Although still playing an important role in our constructions, the
weight parameters no longer need to be chosen by the practitioner because this
choice is handled automatically inside the algorithms.

More precisely, in such a weighted function space Ws,γ, the worst-case error of
Qn,s over the unit ball of Ws,γ , is defined by

en,s,γ(Pn) := sup
‖f‖s,γ≤1

|Isf −Qn,s(Pn)f | ,

from which it follows by linearity that the error of a QMC approximation satisfies

|Isf −Qn,s(Pn)f | ≤ en,s,γ(Pn) ‖f‖s,γ . (1)

This error bound is convenient because of its separation into the product of two
factors, one which depends only on the quadrature points and the other which
depends only on the integrand. A key aspect of the current work is that both the
worst-case error and the norm depend on the weights.

In this paper the user is assumed to have information about the norm ‖f‖s,γ
(defined in (4) below) in the form of estimates of the parameters Bℓ and bi in the
following assumption:

Standing Assumption: For two sequences of positive real numbers (Bℓ)
s
ℓ=1

and (bi)
s
i=1, we assume that the mixed first derivatives of the integrand satisfy the

following family of upper bounds, for each u ⊆ {1 : s}:

∫

[0,1]|u|

(
∫

[0,1]s−|u|

∂|u|

∂xu

f(x) dx−u

)2

dxu ≤ B|u|

∏

j∈u

b2j . (2)

Here {1 : s} is shorthand for {1, 2, . . . , s}, xu = {xj}j∈u are the active variables,
x−u = {xj}j∈{1:s}\u are the inactive variables, and ∂|u|/∂xu is the first-order, mixed
partial derivative with respect to xu.

Bounds of the form given in (2), together with explicit values of Bℓ and bi, have
been found for a particular PDE problem in several recent papers, including [7].

The CBC algorithm, first invented by Korobov [4], and rediscovered in [13, 12],
is an efficient method of constructing “good” QMC point sets such as lattice rules
[8, 11]. The idea behind the construction is to work through each dimension i =
1, 2, . . . , s sequentially, choosing the ith component of the rule by minimising the
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worst-case error in that dimension while all previous components remain fixed. Be-
cause the worst-case error depends explicitly on the weights, the CBC algorithm
requires the weights as inputs. Thus, the weights are not only useful for theory,
but also as a practical necessity. The relevant aspects of the CBC algorithm and
general QMC theory will be presented in Section 2, however, for a more complete
introduction to the concepts above see [2].

The CBC construction has the virtue that, as was shown in [1, 5], the worst-
case error of the resulting QMC approximation converges to zero at a rate that,
depending on the weights, can be arbitrarily close to n−1, with a constant that can
be independent of s. From [1, 5], the root-mean-square error of a CBC generated
“randomly shifted lattice rule” approximation of Isf (in the special case of prime n
and product weights) is bounded above by

(

1

n− 1

s∏

i=1

(

1 + γλi
2ζ(2λ)

(2π2)λ

))
1
2λ

‖f‖s,γ for all λ ∈
(
1
2 , 1
]
, (3)

where ζ(x) =
∑∞

k=1 k
−x is the Riemann zeta function.

Until recently the choice of weights was generally ad hoc, but in the paper [7]
a new principle was used to determine weights for a particular problem: having
estimated an upper bound on the norm of the integrand (which like the worst-case
error depends on the weights), those authors chose weights that minimise an upper
bound on the error (3). (Note that [7] dealt with a specific problem of randomly
shifted lattice rules applied to PDEs with random coefficients, however the strategy
of that paper can easily be applied to other problems.) The result is a family of
weight sequences indexed by the parameter λ, where λ affects the theoretical rate
of convergence. The fact that λ must be chosen by the user is a major drawback of
the strategy in [7]. One option would be to take λ as close to 1

2 as possible to ensure
a good convergence rate, however, because of the occurrence of the zeta function
ζ(2λ), the constant goes to ∞ as λ → 1

2 . A good rate of convergence does not help
for a fixed value of n if the constant becomes too large. To obtain the best bound
a delicate balance between the two factors in (3) is needed.

Another drawback of the method used in [7] is that the bound (3) is often a
crude overestimate. The first algorithm we introduce in this paper, the double
CBC (DCBC) algorithm, counters this while at the same time removing the
need to choose λ by dealing with the exact “shift-averaged” worst-case error (see
Section 2), rather than the upper bound given by the first factor in (3). For the case
of product weights, at step i of the DCBC algorithm, after fixing the component of
the lattice rule, the weight γi is chosen so as to minimise a bound on the error in
the current dimension. An advantage of this method is that the choice of weight in
each dimension adds virtually no extra computational cost to the algorithm.

The second algorithm we propose begins with the upper bound (3), and hence
the family of weights indexed by λ obtained following the strategy in [7]. To choose
the “best” λ, and in turn the “best” weights, an iteration of the CBC algorithm with
respect to λ is employed to minimise heuristically a bound on the approximation
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error. Because of this iteration process it is called the iterated CBC (ICBC)
algorithm.

The philosophy of both algorithms is to concentrate on reducing the guaranteed
error bounds. This paradigm represents a shift away from the usual focus on the
best rate of convergence. It is particularly useful when dealing with problems where
function evaluations are highly expensive, such as those where QMC methods have
been applied to PDEs with random coefficients [7], for which there is often a practical
limit on the number of quadrature points n.

So far we have discussed only product weights, however, both algorithms can
be extended to cover a more general form of weights called “POD weights” (see
Section 2).

The structure of the paper is as follows. Section 2 provides a brief review of
the relevant aspects of QMC theory. Details on our two new algorithms are given
in Section 3. In Section 4 we give tables for the guaranteed error bounds resulting
from the two algorithms, under various assumptions on the parameters Bℓ and bi
in (2). The examples show that there are different situations where each of the
algorithms outperforms the other, thus it is not possible to say that one algorithm
always outperforms the other.

2 Relevant quasi-Monte Carlo theory

Here we fix notation and briefly outline the relevant aspects of QMC theory, includ-
ing weighted function spaces for error analysis, randomly shifted lattice rules and
the CBC construction. For a more comprehensive overview the reader is referred to
the review papers [2, 6] or the book [3].

2.1 Weighted Sobolev spaces and randomisation

Given a collection of positive real numbers, γ = {γu} where u denotes a finite
subset of N = {1, 2, . . . , }, let Ws,γ be the s-dimensional weighted Sobolev space
with unanchored norm

‖f‖2s,γ =
∑

u⊆{1:s}

1

γu

∫

[0,1]|u|

(
∫

[0,1]s−|u|

∂|u|

∂xu

f(x) dx−u

)2

dxu . (4)

In practice it is difficult to work with general weights γu and so often weights
with some inherent structure are used. The three most common forms are product

weights where γu =
∏

j∈u γj for some sequence 1 ≥ γ1 ≥ γ2 ≥ · · · > 0; order

dependent weights where each weight depends only on the cardinality of the set,
γu = Γ|u|, for a sequence of positive real numbers Γ0 := 1,Γ1,Γ2, . . . ; and product

and order dependent (POD) weights which are a hybrid of the previous two, with
γu = Γ|u|

∏

j∈u γj .
Given a random shift ∆ uniformly distributed on [0, 1]s, and point set Pn =

{tk}
n−1
k=0 , the randomly shifted point set (Pn;∆) = {t̃k}

n−1
k=0 is obtained by taking
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t̃k = {tk +∆}, where the braces indicate that we take the fractional part of each
component in the vector to ensure it still belongs to [0, 1]s. We will write the shifted
QMC approximation as Qsh

n,s(Pn;∆).
In this setting, the shift-averaged worst-case error is used as a measure of the

quality of a point set. It is simply the worst-case error of the shifted point set,
averaged in the root-mean-square sense over all possible shifts, that is, eshn,s,γ(Pn) :=

(
∫

[0,1]s e
2
n,s,γ(Pn;∆) d∆)1/2. It then follows from the error bound (1) that the root-

mean-square error of a shifted QMC approximation (where the expected value is
taken with respect to the shift ∆) satisfies

√

E

(∣
∣Isf −Qsh

n,s (Pn; ·) f
∣
∣2
)

≤ eshn,s,γ(Pn) ‖f‖s,γ . (5)

Again, the usefulness of this error bound lies in the fact that the right hand side
splits into two factors. Note that both factors depend on the weights.

In practice we use a small number of independent and identically distributed
random shifts to estimate the error of approximation, see e.g., [2].

2.2 Randomly shifted lattice rules

A rank-1 lattice rule is a QMC rule for which the quadrature points are generated
by a single integer vector z called the generating vector. Each component zi belongs
to Un := {z ∈ N : z < n, gcd(z, n) = 1}, the multiplicative group of integers modulo
n, and z ∈ U

s
n = Un × · · · × Un. The number of positive integers less than and

co-prime to n is given by the Euler totient function ϕ(n) = |Un|. So, for an n-point
lattice rule in s dimensions there are (ϕ(n))s possible generating vectors.

As mentioned in the previous section, incorporating randomness into the QMC
rule is practically beneficial, and for lattice rules this is best done by randomly
shifting the points. Given some random shift ∆ ∼ U ([0, 1]s), and generating vector
z, the ∆-shifted rank-1 lattice rule has points

t̃k =

{
kz

n
+∆

}

for k = 0, 1, . . . , n − 1. The shift-averaged worst-case error of a randomly shifted
lattice rule in the space Ws,γ with general weights, is given explicitly by (see [2, Eq.
(5.12)])

eshn,s,γ(z) =

√
√
√
√
√

∑

∅6=u⊆{1:s}

γu




1

n

n−1∑

k=0

∏

j∈u

B2

({
kzj
n

})


 , (6)

where B2(x) = x2 − x+ 1
6 is the Bernoulli polynomial of degree 2.
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2.3 The component-by-component construction

The CBC algorithm is a method of constructing generating vectors that results
in “good” lattice rules in the context of minimising the shift-averaged worst-case
error (6). The CBC construction is a greedy algorithm that works through each
component of the generating vector sequentially, choosing zi to minimise the shift-

averaged worst-case error in that dimension while all previous components remain

fixed.

Algorithm 1 (The CBC algorithm)
Given n and s and a sequence of weights γ = {γu}u⊆{1:s}.

1. Set z1 to 1.

2. For i = 2, . . . , s choose zi ∈ Un so as to minimise eshn,i,γ(z1, . . . , zi−1, zi) given
that all of the previous components z1, . . . , zi−1 remain fixed.

Setting z1 to be 1 is done by convention, since in the first dimension every choice
results in an equivalent quadrature rule. Using structured weights (product, order
dependent or POD form) simplifies the formula for the shift-averaged worst-case er-
ror (6) even further, allowing the calculation of eshn,i,γ(z1, . . . , zi−1, zi) for all zi ∈ Un

together to be performed as one matrix-vector product. In general a naive imple-
mentation of this algorithm costs O(s n2) operations, however a fast construction
performs the matrix-vector product using a fast Fourier transform (FFT) reduces
this to O(s n log n) in the case of product weights and O(s n log n + s2n) for or-
der dependent or POD weights. For full details on the Fast CBC construction see
[2, 9, 10].

The shift-averaged worst-case error of a CBC generated lattice rule satisfies the
following upper bound:

eshn,s,γ(z) ≤




1

ϕ(n)

∑

∅6=u⊆{1:s}

γλ
u

(
2ζ(2λ)

(2π2)λ

)|u|




1
2λ

for all λ ∈
(
1
2 , 1
]
. (7)

This result was proved in [2] for general weights and in [1, 5] for product weights.

3 The CBC black box algorithms

The two new algorithms introduced in this section aim to choose weights so as to
make the bound (5) on the root-mean-square error of the QMC approximation as
small as possible. Hence we will require a bound on the norm of the integrand
f ∈ Ws,γ to be known and of the specific form given in the Assumption (2) in the
Introduction.
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In this way the norm of f in Ws,γ, see (4), with some, as yet unspecified, weights
γ will be bounded by

‖f‖2s,γ ≤
∑

u⊆{1:s}

1

γu
B|u|

∏

j∈u

b2j =: Ms,γ , (8)

and in turn from (5) the mean-square error of a lattice rule approximation will be
bounded by

E

(∣
∣
∣Isf −Qsh

n,s(z; ·)f
∣
∣
∣

2
)

≤
(

eshn,s,γ(z)
)2

Ms,γ . (9)

The first new algorithm is named the double CBC (DCBC) algorithm since
at each step two parameters are chosen: the component of the generating vector
and the weight. We assume the weights are of product or POD form. In the case of
POD weights we assume that the order dependent weight factors {Γℓ}

s
ℓ=0 are given.

Starting with the error bound (9), in each dimension, with all previous parameters
remaining fixed, we choose the component of z to minimise eshn,s,γ and then the
product component of the weight to minimise the entire bound.

3.1 The double CBC algorithm for product weights

In the case of product weights, the squared shift-averaged worst-case error (see (6))
of a lattice rule with generating vector z is

(

eshn,s,γ(z1, . . . , zs)
)2

= − 1 +
1

n

n−1∑

k=0

s∏

j=1

(

1 + γjB2

({
kzj
n

}))

=
(

eshn,s−1,γ(z1, . . . , zs−1)
)2

+ γsGs(z1, . . . , zs) ,

in which the first term is independent of γs, and

Gs(z1, . . . , zs) :=
1

n

n−1∑

k=0

B2

({
kzs
n

}) s−1∏

j=1

(

1 + γjB2

({
kzj
n

}))

.

For product weights it is natural to assume that the bound on the norm is also
of product form, that is, Bℓ = 1 for all ℓ = 1, 2, . . . , s. It follows that this bound (8)
can also be written recursively as

Ms,γ =
∑

u⊆{1:s}

∏

j∈u

b2j
γj

=
s∏

j=1

(

1 +
b2j
γj

)

=

(

1 +
b2s
γs

)

Ms−1,γ . (10)

In this situation, the bound (9) on the mean-square error can be written as

((

eshn,s−1,γ(z1, . . . , zs−1)
)2

+ γsGs(z1, . . . , zs)

)(

1 +
b2s
γs

)

Ms−1,γ . (11)
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Treating (11) as a function of γs and zs, and noting that zs is only present in
Gs, at each step of the algorithm we can first choose zs to minimise Gs and then
choose γs to minimise the entire error bound. For future reference, the minimiser of
expressions of this form is given by the following Lemma.

Lemma 1 Suppose that a, b, c, d are positive real numbers. Then the function h :

(0,∞) → (0,∞) given by h(x) = (a+ bx)(c+ d
x) is minimised by x∗ =

√
ad
bc .

Proof. The first two derivatives of h with respect to x are h′(x) = bc− ad/x2 and
h′′(x) = 2ad/x3 > 0 for x > 0, so h is convex. Solving h′(x) = 0 yields the formula
for the stationary point x∗, which is the global minimum. ✷

Consequently, the choice of weight that minimises the bound on the mean-square
error (11) is given by, with s replaced by i,

γi =

√
√
√
√

(

eshn,i−1,γ(z1, . . . , zi−1)
)2

b2i

Gi(z1, . . . , zi)
. (12)

Note that in the first dimension the upper bound on the mean-square error (11)
becomes G1

(
γ1 + b21

)
, which attains its minimum when γ1 = 0. Since 0 is not a

sensible choice of weight our algorithm requires that γ1 be given.

Algorithm 2 (The double CBC algorithm for product weights)
Given n and s, and bounds of the form (2) with Bℓ = 1 for all ℓ, and the weight in
the first dimension γ1, set z1 to 1. Then for each i = 2, . . . , s,

1. Choose zi ∈ Un to minimise Gi(z1, . . . , zi−1, zi).

2. Set γi as in (12) and update the mean-square error bound (11).

At each step of the algorithm, the process of choosing zi to minimise Gi is the
same as in the original CBC algorithm. Thus, the methods used in the fast CBC
construction can also be applied in this algorithm.

3.2 The double CBC algorithm for POD weights

For weights of POD form, given a sequence of order dependent weight factors {Γℓ}
and a bound on the norm Ms,γ the algorithm chooses the product component of
the weights γi in each dimension. Note that, for this case we no longer assume all
Bℓ = 1. As before, the first step is to obtain a recursive formula for the bound on
the norm of the integrand in each dimension. By splitting the sum in (8) according
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to whether or not s belongs to the set u, we have

Ms,γ =

s∑

ℓ=0

Bℓ

Γℓ

∑

u⊆{1:s}
|u|=ℓ

∏

j∈u

b2j
γj

=

s∑

ℓ=0

Bℓ

Γℓ







∑

u⊆{1:s−1}
|u|=ℓ

∏

j∈u

b2j
γj

+
∑

s∈u⊆{1:s}
|u|=ℓ

∏

j∈u

b2j
γj







= Ms−1,γ +
b2s
γs

s∑

ℓ=1

Bℓ

Γℓ

∑

u⊆{1:s−1}
|u|=ℓ−1

∏

j∈u

b2j
γj

︸ ︷︷ ︸

Hs−1,ℓ−1

= Ms−1,γ +
b2s
γs

s−1∑

ℓ=0

Hs−1,ℓ , (13)

where we have introduced the termsHi,ℓ to simplify the notation. Applying a similar
method of splitting the sum, a recursive formula for Hs,ℓ is obtained

Hs,ℓ :=
Bℓ+1

Γℓ+1

∑

u⊆{1:s}
|u|=ℓ

∏

j∈u

b2j
γj

=
Bℓ+1

Γℓ+1

∑

u⊆{1:s−1}
|u|=ℓ

∏

j∈u

b2j
γj

+
Bℓ+1

Γℓ+1

∑

s∈u⊆{1:s}
|u|=ℓ

∏

j∈u

b2j
γj

= Hs−1,ℓ +
b2sBℓ+1

γsΓℓ+1

∑

u⊆{1:s−1}
|u|=ℓ−1

∏

j∈u

b2j
γj

= Hs−1,ℓ +
b2s
γs

Bℓ+1

Bℓ

Γℓ

Γℓ+1
Hs−1,ℓ−1 , (14)

with Hi,0 =
B1
Γ1

for all i = 1, 2, . . . , s and Hi,ℓ = 0 for all ℓ > i.
It follows that for POD weights the upper bound (9) on the mean-square error

of the QMC approximation can be written recursively as

E

(∣
∣
∣Isf −Qsh

n,s(z1, . . . , zs; ·)f
∣
∣
∣

2
)

(15)

≤

((

eshn,s−1,γ(z1, . . . , zs)
)2

+ γsGs(z1, . . . , zs)

)(

Ms−1,γ +
b2s
γs

s−1∑

ℓ=0

Hs−1,ℓ

)

,

where Gs(z1, . . . , zs) is now given by

Gs(z1, . . . , zs)

=
1

n

n−1∑

k=0

(

B2

({
kzs
n

})

︸ ︷︷ ︸

Ωn(zs,k)

s∑

ℓ=1

Γℓ

Γℓ−1

∑

u⊆{1:s−1}
|u|=ℓ−1

(
ℓ−1∏

i=1

Γi

Γi−1

)
∏

j∈u

(

γjB2

({
kzj
n

}))

︸ ︷︷ ︸

ps−1,ℓ−1(k)

)

=
1

n

n−1∑

k=0

Ωn(zs, k)

s∑

ℓ=1

Γℓ

Γℓ−1
ps−1,ℓ−1(k) . (16)
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We have introduced the terms Ωn, ps−1,ℓ−1 to simplify notation, and we have ar-
ranged to deal only with the ratios Γℓ/Γℓ−1 to improve numerical stability. Again
by Lemma 1, the product component of the weight that minimizes the bound on
(15) is given by, with s replaced by i,

γi =

√
√
√
√

(

eshn,i,γ(z1, . . . , zi−1)
)2

b2i
∑i−1

ℓ=0Hi−1,ℓ

Mi−1,γ Gi(z1, . . . , zi)
. (17)

Calculating Gs for all zs ∈ Un by summing over all u ⊆ {1 : s − 1} as in (16)
would cost O(n22s−1) operations and is infeasible for even moderate s. The cost
can be reduced by storing Ωn and constructing ps−1,ℓ−1 recursively. Letting Gs =
[Gs(z1, . . . , zs−1, zs)]zs∈Un

, the calculation of Gs for all zs ∈ Un can be performed by
the matrix-vector product

Gs =
1

n
Ωn

s∑

ℓ=1

Γℓ

Γℓ−1
ps−1,ℓ−1 , (18)

where

Ωn :=

[

B2

({
kz

n

})]

z∈Un,k=0,1,...,n−1

.

At each step the vectors ps−1,ℓ−1 can be constructed recursively as follows

ps,ℓ = ps−1,ℓ +
Γℓ

Γℓ−1
γsΩn(zs, :) .∗ ps−1,ℓ−1 , (19)

whereΩn(zs, :) is the row corresponding the new component of the generating vector
zs, and .∗ denotes component-wise multiplication, and with ps,0 = 1, ps,ℓ = 0 for
all ℓ > s. Note that (19) is obtained by splitting the sum according to whether or
not s ∈ u, as in (13) and (14). Since the cost of updating ps,ℓ is O(s n) the total
cost of calculating Gs in each dimension has been reduced to O(n2+sn) operations.
Additionally, using the concepts from the Fast CBC algorithm [9, 10] this product
can be performed more efficiently using the FFT which would further reduce the cost
to O(n log n+ sn). The total cost of the algorithm is O(s n log n+ s2n) operations.

Algorithm 3 (The double CBC algorithm for POD weights)
Given n and s, bounds of the form (2), order dependent weight factors {Γℓ}

s
ℓ=0, and

the weight in the first dimension γ1, set z1 = 1, H0,0 = B1/Γ1, p0,0 = 1. Then for
each i = 2, . . . , s,

1. For ℓ = 0, . . . , i− 1, update Hi−1,ℓ using (14) and pi−1,ℓ using (19).

2. Calculate Gi using (18) and FFT.

3. Choose zi ∈ Un to minimise Gi(z1, . . . , zi−1, zi).
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4. Set γi as in (17) and update the mean-square error bound (15).

We have so far neglected the question of how to choose the order dependent
weight factors Γℓ. Three possible choices are:

• Γℓ given a priori, such as by the common choice Γℓ = ℓ!.

• Γℓ = Γℓ(λ), that is, the order dependent weight factors of the weights γu(λ)
from the formula (20) below. In this case we are still left with the predicament
of how to choose λ, a choice which this algorithm aimed to circumvent.

• Γℓ = Bℓ. Here the recursion for the bound on the norm (13) is the same as
the product weight case (10), that is, the terms Hi,ℓ are no longer required.
Further, since there is some inherent connection between the form of the bound
on the norm and the weights this choice seems more natural than the other
two.

3.3 The iterated CBC algorithm

Combining (9) with the upper bound on shift-averaged worst-case error (7) we
have that the mean-square error of a CBC constructed lattice rule approximation is
bounded above by

E

(∣
∣
∣Isf −Qsh

n,s(z; ·)f
∣
∣
∣

2
)

≤




1

ϕ(n)

∑

∅6=u⊆{1:s}

γλ
u

(
2ζ(2λ)

(2π2)λ

)|u|




1
λ

×




∑

u⊆{1:s}

1

γu
B|u|

∏

j∈u

b2j



 for all λ ∈
(
1
2 , 1
]
.

From [7, Lemma 6.2], the weights that minimise this error bound for each λ ∈
(
1
2 , 1
]

are of POD form

γu(λ) = Γ|u|(λ)
∏

j∈u

γj(λ) =



B|u|

∏

j∈u

(2π2)λb2j
2ζ(2λ)





1
1+λ

. (20)

For each λ ∈
(
1
2 , 1
]
the corresponding weights γ(λ) = {γu(λ)}u⊆{1:s} can be

taken as input into the CBC algorithm to construct a lattice rule generating vector
which, through the weights, depends on λ: z(λ). Now that we know the weights
γ(λ) and generating vector z(λ) explicitly, from (9), the mean-square error of the
resulting QMC approximation is bounded by

E

(∣
∣
∣Isf −Qsh

s,n(z; ·)f
∣
∣
∣

2
)

≤
(

eshn,s,γ(λ)(z(λ))
)2

Ms,γ(λ) =: En,s,z(λ)(λ) . (21)
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The goal of the iterated CBC (ICBC) algorithm is to carry out iterations
of the original CBC algorithm to choose a λ that minimises the right hand side of
(21). However, since each component zj is obtained by a minimisation over a set of
integers and because this minimisation depends on the weights (and hence λ), when
treated as a function of λ the shift-averaged worst-case error is discontinuous. Hence,
we cannot guarantee that a minimum exists and as such our algorithm heuristically
searches for a “good” value of λ. As mentioned in the introduction, the choice of λ
is non-trivial since one needs to balance the size of the constant and the theoretical
convergence rate.

Suppose that in the upper bound (21) the generating vector z remains fixed,
then the upper bound, En,s,z(λ), is a continuous function of the single variable λ
and can be minimised numerically.

The idea behind this algorithm is at each step of the iteration to use En,s,z(k)(λ)
as an approximation to the right hand side of the upper bound (21). In this way the
next iterate λk+1 is taken to be the minimiser of En,s,z(k)(λ), which can be found
numerically using a quasi-Newton method.

Algorithm 4 (The iterated CBC algorithm)
Given n, s, bounds of the form (2), an initial λ0 ∈

(
1
2 , 1
]
, a tolerance τ and a

maximum number of iterations kmax. For k = 0, 1, 2, . . . , kmax:

1. Generate the weights γu(λk) using (20).

2. Construct the generating vector z(k) from the original CBC algorithm with
weights γu(λk).

3. If

∣
∣
∣
∣

d

dλ
En,s,z(k)(λk)

∣
∣
∣
∣
< τ then end the algorithm.

4. Otherwise, choose λk+1 to be the minimiser of En,s,z(k)(λ), found numerically
using a quasi-Newton algorithm.

Remark 1 For the quasi-Newton algorithm in Step 4 we require the derivative of
En,s,z, for fixed z, with respect to λ

dEn,s,z

dλ
=




∑

∅6=u⊆{1:s}

γ′
u
(λ)




1

n

n−1∑

k=0

∏

j∈u

B2

({
kzj
n

})











∑

u⊆{1:s}

B|u|

∏

j∈u b
2
j

γu(λ)





−




∑

∅6=u⊆{1:s}

γu(λ)




1

n

n−1∑

k=0

∏

j∈u

B2

({
kzj
n

})











∑

u⊆{1:s}

γ′
u
(λ)

γ2
u
(λ)

B|u|

∏

j∈u

b2j



 ,

where the derivative of each weight with respect λ is

γ′
u
(λ) = γu(λ)







− log

(

B|u|

∏

j∈u
(2π2)

λ
b2j

2ζ(2λ)

)

(1 + λ)2
+

|u|
(

log(2π2)− 2ζ′(2λ)
ζ(2λ)

)

(1 + λ)







.
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4 Numerical results

For the numerical results we look at how each new method performs for different
types of bounds (2), that is, for different sequences b := (bi)

s
i=1 and B := (Bℓ)

s
ℓ=1.

As a figure of merit we will use the upper bound on the root-mean-square (RMS)
error (cf. (9)), which we denote by

En,s,b,B(γ,z) := eshn,s,γ(z)
√

Ms,γ .

Here we have specifically used this notation to indicate the dependence on the se-
quences b, B but also to emphasise that this upper bound is primarily a function
of γ and z, the outputs of our algorithms. Note also that in Tables 1–8 the re-
sults given for our algorithms are guaranteed error bounds (in the RMS sense) for
integrands which satisfy the appropriate bounds.

In the examples let the maximum dimension be s = 100 and the number of
points n be prime and ranging up to 32,003. Here we choose n to be prime because
it makes the “fast” aspects of the implementation simpler, but note that n prime is
not a requirement of either algorithm. Also, we use the notation “e” for the base-10
exponent.

4.1 The case Bℓ = 1

As a start, let Bℓ = 1 for all ℓ = 1, . . . , s, and consider the cases bi = i−2, bi = 0.5i

and bi = 0.8i. With Bℓ = 1 it is natural to restrict attention to product weights.
The results for this case are given in Tables 1, 2, 3, respectively. These tables
compare results for En,s,b,B from the DCBC, ICBC algorithms with the original
CBC algorithm using common choices of product weights. The choices of common
weights are γi = i−1.1, γi = i−2 and γi(λ) as in (20) with λ = 0.6, 1. The row
labelled “rate” gives the exponent (x) for a least-squares fit of the result En,s,b,B to
a power law (n−x).

Comparing results for the two new algorithms, note that for bi = i−2 (Table 1)
the results of the DCBC algorithm are better, while for bi = 0.5i, 0.8i (Tables 2,
3) the ICBC algorithm produces better bounds, and so it is not the case that one
algorithm is always better than the other. However, in all cases the ICBC algorithm
performs as well as or better than the original CBC algorithm with common choices
of weights.

Table 4 gives the final value of λ, denoted λ∗, resulting from the ICBC algorithm
for our three choices of b, along with the resulting RMS error bound. Notice that,
as expected the value of λ∗ found by the algorithm appears to approach 0.5 as n
increases, albeit very slowly.

Figures 1a and 1b compare the weight γi in each dimension for the DCBC, ICBC
algorithms, with γi = i−2 as a reference, for bi = i−2 and bi = 0.5i, respectively.
Here n = 1999.

Figure 2 compares the RMS error bound in each dimension for the DCBC and
ICBC algorithms, for bi = 0.8i with n = 1999. Notice that due to the greedy nature
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Variants CBC with common weights

n DCBC ICBC γi = i−1.1 γi = i−2 γi(λ = 0.6) γi(λ = 1)

251 6.8e-3 7.0e-3 3.5e-2 7.5e-3 8.2e-3 1.3e-2
499 3.5e-3 3.6e-3 2.1e-2 4.0e-3 4.2e-3 7.6e-3
997 1.8e-3 1.9e-3 1.3e-2 2.2e-3 2.2e-3 4.3e-3

1999 9.7e-4 1.0e-3 7.8e-3 1.2e-3 1.1e-3 2.4e-3
4001 5.1e-4 5.2e-4 4.8e-3 6.3e-4 5.8e-4 1.4e-3
7993 2.7e-4 2.7e-4 2.9e-3 3.4e-4 2.9e-4 7.8e-4
16001 1.4e-4 1.4e-4 1.8e-3 1.9e-4 1.5e-4 4.4e-4
32003 7.4e-5 7.5e-5 1.1e-3 1.0e-4 7.9e-5 2.5e-4

rate 0.93 0.93 0.71 0.88 0.95 0.82

Table 1: Results for the root-mean-square error bound En,s,b,B for bi = i−2: DCBC,
ICBC and CBC results for common choices of weights.

Variants CBC with common weights

n DCBC ICBC γi = i−1.1 γi = i−2 γi(λ = 0.6) γi(λ = 1)

251 4.1e-3 3.3e-3 2.8e-2 5.5e-3 3.3e-3 6.7e-3
499 2.1e-3 1.7e-3 1.7e-2 2.9e-3 1.7e-3 3.6e-3
997 1.1e-3 8.6e-4 1.0e-2 1.6e-3 8.6e-4 2.0e-3
1999 5.6e-4 4.4e-4 6.2e-3 8.6e-4 4.4e-4 1.1e-3
4001 2.9e-4 2.2e-4 3.8e-3 4.6e-4 2.2e-4 5.8e-4
7993 1.5e-4 1.1e-4 2.3e-3 2.5e-4 1.1e-4 3.1e-4

16001 7.6e-5 5.9e-5 1.4e-3 1.4e-4 5.9e-5 1.7e-4
32003 3.9e-5 3.0e-5 8.7e-4 7.5e-5 3.0e-5 9.3e-5

rate 0.96 0.96 0.71 0.88 0.97 0.88

Table 2: Results for the root-mean-square error bound En,s,b,B for bi = 0.5i: DCBC,
ICBC and CBC results for common choices of weights.

Variants CBC with common weights

n DCBC ICBC γi = i−1.1 γi = i−2 γi(λ = 0.6) γi(λ = 1)

251 9.9e-2 8.3e-2 2.0e-1 2.8 1.6e-1 1.2e-1
499 5.7e-2 5.0e-2 1.2e-1 1.5 8.9e-2 7.2e-2
997 3.5e-2 2.9e-2 7.5e-2 8.2e-1 5.1e-2 4.5e-2

1999 2.1e-2 1.7e-2 4.6e-2 4.4e-1 2.8e-2 2.8e-2
4001 1.2e-2 1.0e-2 2.8e-2 2.4e-1 1.6e-2 1.8e-2
7993 7.3e-3 5.9e-3 1.7e-2 1.3e-1 9.1e-3 1.1e-2
16001 4.3e-3 3.5e-3 1.0e-2 7.1e-2 5.0e-3 6.7e-3
32003 2.5e-3 2.0e-3 6.4e-3 3.9e-2 2.9e-3 4.2e-3

rate 0.75 0.75 0.71 0.88 0.82 0.69

Table 3: Results for the root-mean-square error bound En,s,b,B for bi = 0.8i: DCBC,
ICBC and CBC results for common choices of weights.
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n bi = i−2 bi = 0.5i bi = 0.8i

251 0.672 0.616 0.756
499 0.668 0.615 0.744
997 0.661 0.610 0.735

1999 0.657 0.607 0.725
4001 0.652 0.604 0.715
7993 0.645 0.601 0.711
16001 0.642 0.597 0.700
32003 0.637 0.594 0.696

Table 4: Value of λ∗ from ICBC for product weights with bi = i−2, 0.5i and 0.8i.

Dimension
20 40 60 80

W
ei

gh
t (

lo
g-

sc
al

e)

10-4

10-3

10-2

10-1

100

DCBC
ICBC
1/i2

(a) bi = i−2.
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(b) bi = 0.5i.

Figure 1: Weight in each dimension found from DCBC and ICBC, with γi = i−2 for
comparison (n = 1999).
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Figure 2: En,s,b,B in each dimension for DCBC and ICBC with bi = 0.8i (loglog
scale).

of the DCBC algorithm, it performs better in the earlier dimensions, however, the
ICBC algorithm produces weights with a better bound overall.

4.2 POD weights

Now, we look at the performance of each algorithm for combinations of Bℓ = ℓ and
Bℓ = ℓ! with bi = i−2 and bi = 0.5i, the results are given in Tables 5–8. Each
table presents the RMS error bound En,s,b,B obtained from the DCBC algorithm
for different choices of order dependent weights, and those obtained from the ICBC
algorithm along with the output λ∗. With regards to the strategy for choosing Γℓ in
the DCBC algorithm for POD weights, in three out of the four cases the best choice
was to let Γℓ = Bℓ (see Tables 5–7). However, in all cases the results are similar and
indicate that the choice of Γℓ does not greatly effect the final bound En,s,b,B.

DCBC ICBC

n En,s,b,B (Γℓ = Bℓ) En,s,b,B (Γℓ = ℓ!) En,s,b,B λ∗

251 8.6e-3 8.5e-3 8.7e-3 0.680
499 4.6e-3 4.5e-3 4.6e-3 0.673
997 2.5e-3 2.5e-3 2.5e-3 0.666
1999 1.3e-3 1.3e-3 1.3e-3 0.659
4001 6.9e-4 7.0e-4 6.8e-4 0.655
7993 3.7e-4 3.7e-4 3.6e-4 0.650

16001 1.9e-4 2.0e-4 1.9e-4 0.645
32003 1.0e-4 1.1e-4 1.0e-4 0.640

rate 0.91 0.90 0.92

Table 5: POD weight results with bi = i−2 and Bℓ = ℓ: En,s,b,B from DCBC for
different choices of Γℓ, En,s,b,B from ICBC and λ∗ from ICBC.
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DCBC ICBC

n En,s,b,B (Γℓ = Bℓ) En,s,b,B (Γℓ = ℓ) En,s,b,B λ∗

251 9.2e-3 1.1e-2 9.7e-3 0.692
499 5.0e-3 5.8e-3 5.1e-3 0.685
997 2.7e-3 3.2e-3 2.8e-3 0.679

1999 1.5e-3 1.7e-3 1.5e-3 0.673
4001 7.9e-4 9.6e-4 8.0e-4 0.667
7993 4.2e-4 5.2e-4 4.3e-4 0.661
16001 2.3e-4 2.8e-4 2.3e-4 0.656
32003 1.2e-4 1.6e-4 1.3e-4 0.651

rate 0.89 0.87 0.89

Table 6: POD weight results with bi = i−2 and Bℓ = ℓ!: En,s,b,B from DCBC for
different choices of Γℓ, En,s,b,B from ICBC and λ∗ from ICBC.

DCBC ICBC

n En,s,b,B (Γℓ = Bℓ) En,s,b,B (Γℓ = ℓ!) En,s,b,B λ∗

251 4.9e-3 5.0e-3 3.8e-3 0.619
499 2.5e-3 2.6e-3 2.0e-3 0.617
997 1.3e-3 1.4e-3 1.0e-3 0.612
1999 6.9e-4 7.2e-4 5.3e-4 0.608
4001 3.6e-4 3.8e-4 2.7e-4 0.605
7993 1.9e-4 2.0e-4 1.4e-4 0.602

16001 9.8e-5 1.0e-4 7.2e-5 0.597
32003 5.1e-5 5.3e-5 3.7e-5 0.595

rate 0.94 0.93 0.95

Table 7: POD weight results with bi = 0.5i and Bℓ = ℓ: En,s,b,B from DCBC for
different choices of Γℓ, En,s,b,B from ICBC and λ∗ from ICBC.

DCBC ICBC

n En,s,b,B (Γℓ = Bℓ) En,s,b,B (Γℓ = ℓ) En,s,b,B λ∗

251 5.1e-3 5.1e-3 4.0e-3 0.625
499 2.6e-3 2.6e-3 2.1e-3 0.622
997 1.4e-3 1.4e-3 1.1e-3 0.618

1999 7.3e-4 7.3e-4 5.6e-4 0.614
4001 3.9e-4 3.8e-4 2.9e-4 0.608
7993 2.0e-4 2.0e-4 1.5e-4 0.604
16001 1.1e-4 1.0e-4 7.9e-5 0.602
32003 5.6e-5 5.5e-5 4.1e-5 0.599

rate 0.93 0.93 0.95

Table 8: POD weight results with bi = 0.5i and Bℓ = ℓ!: En,s,b,B from DCBC for
different choices of Γℓ, En,s,b,B from ICBC and λ∗ from ICBC.

17



5 Concluding remark

We introduced two new CBC algorithms, the double CBC (DCBC) algorithm and
the iterated CBC (ICBC) algorithm, which only require parameters specified by the
problem to determine the point set for QMC integration, and provide guaranteed
error bounds by also choosing “good” weight parameters. The numerical results
show different examples where each algorithm performs better than the other. Both
algorithms generally outperform the original CBC algorithm with common choices
of weights. In all cases the entries En,s,b,B provide guaranteed upper bounds on
the root-mean-square error for the randomly shifted integration rules, under the
indicated assumptions on the bound parameters Bℓ and bi.
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[14] I. H. Sloan and H. Woźniakowski, When are quasi-Monte Carlo algorithms
efficient for high dimensional integrals?, J. Complexity 14 (1998) 1–33.

Alexander D. Gilbert
alexander.gilbert@unsw.edu.au
School of Mathematics and Statistics, University of New South Wales, Sydney NSW
2052, Australia

Frances Y. Kuo
f.kuo@unsw.edu.au
School of Mathematics and Statistics, University of New South Wales, Sydney NSW
2052, Australia

Ian H. Sloan
i.sloan@unsw.edu.au
School of Mathematics and Statistics, University of New South Wales, Sydney NSW
2052, Australia

19


	1 Introduction
	2 Relevant quasi-Monte Carlo theory
	2.1 Weighted Sobolev spaces and randomisation
	2.2 Randomly shifted lattice rules
	2.3 The component-by-component construction

	3 The CBC black box algorithms
	3.1 The double CBC algorithm for product weights
	3.2 The double CBC algorithm for POD weights
	3.3 The iterated CBC algorithm

	4 Numerical results
	4.1 The case B= 1
	4.2 POD weights

	5 Concluding remark

