
Polynomial Hamiltonian systems of degree 3 with
symmetric nilpotent centers

Fabio Scalco Dias
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Avenida BPS 1303, Pinheirinho, CEP 37.500–903, Itajubá, MG, Brazil.
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1. Introduction and statement of the results

Hamiltonian systems are relevant for many physical studies. Let H(x, y)
be a real polynomial in the variables x and y. Then a system of the form

x′ = Hy(x, y) y′ = −Hx(x, y) (1)

is called a polynomial Hamiltonian system. Here the prime denotes deriva-
tive with respect to the independent variable t.
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Poincaré in [20] defined a center for a vector field on the real plane
as a singular point having a neighborhood filled with periodic orbits with
the exception of the singular point. Let p ∈ R2 be a singular point of an
analytic differential system in R2, and assume that p is a center. Without
loss of generality we can assume that p is at the origin of coordinates. Then
after a linear change of variables and a rescaling of the time variable (if
necessary), the system can be written in one of the following three forms

x′ = −y + P (x, y), y′ = x+Q(x, y), (2)

x′ = y + P (x, y), y′ = Q(x, y), (3)

x′ = P (x, y), y′ = Q(x, y), (4)

where P (x, y) and Q(x, y) are real analytic functions without constant and
linear terms, defined in a neighborhood of the origin. In what follows a
center of an analytic differential system in R2 is called linear type, nilpotent
or degenerate if after an affine change of variables and a rescaling of the time
it can be written as system (2), (3) or (4), respectively

The classification of centers for real planar polynomial differential sys-
tems started with the classification of centers for quadratic polynomial dif-
ferential systems, and these results go back mainly to Dulac [12], Kapteyn
[15, 16] and Bautin [4]. In [21] Vulpe provides all the global phase por-
traits of quadratic polynomial differential systems having a center. There
are many partial results for the centers of planar polynomial differential
systems of degree larger than two. For instance the linear type centers for
cubic systems of the form linear plus homogeneous nonlinearities were char-
acterized by Malkin [19], and by Vulpe and Sibirski [22]. For polynomial
differential systems of the form linear plus homogeneous nonlinearities of de-
gree greater than three the centers at the origin are not characterized, but
there are partial results for degree four and five for the linear type centers,
see for instance Chavarriga and Giné [5, 6]. Some results for higher degree
are known see for instance [14]. Recently Colak, Llibre and Valls [7, 8, 9, 10]
provided the global phase portraits on the Poincaré disk of all Hamiltonian
planar polynomial vector fields having only linear and cubic homogeneous
terms which have a linear type center or a nilpotent center at the origin,
together with their bifurcation diagrams. The complete classification of the
phase portrait of the nilpotent centers in this last case was given in [11].
This has been possible since the classification of the nilpotent centers of
system (2) when P and Q are homogeneous cubic polynomial was given in
[1]. For a general overview on the centers of planar polynomial differential
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systems see [17], and for a classification of the phase portraits of same classes
of other centers see [3] and the references quoted there. To know the phase
portraits of centers is useful for studying the number of limit cycles which
can bifurcate from their periodic orbits when they are perturbed, see for
instance [18] and the references cited therein.

In this work we classify the global phase portraits of all Hamiltonian
planar polynomial vector fields of degree three symmetric with respect to the
x−axis having a nilpotent center at the origin. We recall that the differential
system (1) is symmetric with respect to the x−axis if it is invariant under the
change of variables (x, y, t) → (x,−y,−t), sometimes this kind of systems
are called reversible. The classification will be done using the Poincaré
compactification of polynomial vector fields, see section 2. We say that
two vector fields on the Poincaré disk are topologically equivalent if there
exists a homeomorphism from one into the other which sends orbits to orbits
preserving or reversing the direction of the flow.

Our main results are the following ones.

Proposition 1. A Hamiltonian planar polynomial vector field of degree
three with a nilpotent center at the origin and symmetric with respect to the
x−axis, after a linear change of variables and a rescaling of its independent
variable can be written as one of the following five classes:

(I) x′ = y, y′ = −x3;

(II) x′ = y + δy3, y′ = −x3;

(III) x′ = y + x2y + ay3, y′ = −x3 − xy2;

(IV ) x′ = y − x2y + ay3, y′ = −x3 + xy2;

(V ) x′ = y + 2xy + ax2y + by3, y′ = −x3 − y2 − axy2;

where δ ∈ {−1, 1} and a, b ∈ R.

Proposition 1 is proved in section 3.

Theorem 2. The global phase portraits of the five families (I) − (V ) in
Proposition 1 are topologically equivalent to the phase portraits of Figure 1:

(a) 1.1 for systems (I), systems (II) with δ = 1, systems (III) with a ≥ 0,
systems (IV ) with a ≥ 1, systems (V ) with (a, b) ∈ R̃4, and systems
(V ) with a ≥ 1 and b = 0;

(b) 1.2 for systems (II) with δ = −1, and systems (III) with a < 0;
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(c) 1.3 for systems (IV ) with 0 < a < 1;

(d) 1.4 for systems (IV ) with a = 0;

(e) 1.5 for systems (IV ) with a < 0;

(f) 1.6 for systems (V ) with (a, b) ∈ R̃1;

(g) 1.7 for systems (V ) with (a, b) ∈ R̃2;

(h) 1.8 for systems (V ) with (a, b) ∈ R̃3;

(i) 1.9 for systems (V ) with (a, b) ∈ R̃5;

(j) 1.10 for systems (V ) with a < 0 and b = 0;

(k) 1.11 for systems (V ) where a < 0, b < 0 and 4(a− 1)2(a3 − a3 − ab−
8b)− 27b2 = 0;

(l) 1.12 for systems (V ) with b = 0 and 0 ≤ a < 1;

(m) 1.13 for systems (V ) with a < 1, b > 0 and 4(a − 1)2(a3 − a3 − ab −
8b)− 27b2 = 0;

(n) 1.14 for systems (V ) with a < 0 and b = a2;

(see the proof of Theorem 2 for the definitions of R̃1, R̃2, R̃3, R̃4, R̃5).

In paper [8] there is the classification of the 12 different phase portraits
of the cubic Hamiltonian systems with a nilpotent center at the origin and
without quadratic terms. So the phase portraits of systems (I)–(IV) are
already classified in [8], but it is unknown how many of the 12 different
phase portraits can be realized by systems that are symmetric with respect
to the x-axis. Theorem 2 shows that only 5 of the 12 phase portraits can
be realized by systems (I)–(IV). In fact, the phase portraits 1.1, 1.2, 1.3, 1.4
and 1.5 correspond to the phase portraits 1.1, 1.2, 1.9, 1.3 and 1.6 of [8].
The proof of Theorem 2 is given in section 4.

2. Preliminary results

In this section we summarize the Poincaré compactification that we shall
use for describing the global phase portrait of our Hamiltonian systems. For
more details on the Poincaré compactification see Chapter 5 of [13]. Let S2
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Figure 1: Global phase portraits of the vector fields in Theorem 2.

be the sphere of points (s1, s2, s3) ∈ R3 such that s21 + s22 + s23 = 1, called
the Poincaré sphere. Given a polynomial vector field

X(x, y) = (x′, y′) = (P (x, y), Q(x, y))

in R2 of degree d (where d is the maximum of the degrees of the polyno-
mials P and Q) it can be extended analytically to the Poincaré sphere by
projecting each point x ∈ R2 identified with the point (x1, x2, 1) ∈ R3 in the
Poincaré sphere using the straight line through x and the origin of R3. The
equator S1 = {(s1, s2, s3) ∈ S2 : s3 = 0} corresponds to the infinity of R2. In
this way we obtain a vector field X̄ in S2\S1. This vector field X̄ is formed by
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two copies of X: one on the northern hemisphere {(s1, s2, s3) ∈ S2 : s3 > 0}
and another on the southern hemisphere {(s1, s2, s3) ∈ S2 : s3 < 0}. The
local charts needed for doing the calculations on the Poincaré sphere are

Ui = {s ∈ S2 : si > 0}, Vi = {s ∈ S2 : si < 0},

where s = (s1, s2, s3), with the corresponding local maps

ϕi(s) : Ui → R2, ψi(s) : Vi → R2,

such that ϕi(s) = −ψi(s) = (sm/si, sn/si) = (u, v) for m < n and m,n 6= i,
for i = 1, 2, 3.

We extend X̄ to a vector field p(X) at the whole sphere S2 by taking
p(X) = vdX̄ . The expression for the corresponding vector field on S2 in the
local chart U1 is given by

u′ = vd
[
− uP

(
1

v
,
u

v

)
+Q

(
1

v
,
u

v

)]
, v′ = −vd+1P

(
1

v
,
u

v

)
; (5)

the expression for U2 is

u′ = vd
[
P

(
u

v
,
1

v

)
− uQ

(
u

v
,
1

v

)]
, v′ = −vd+1Q

(
u

v
,
1

v

)
; (6)

and the expression for U3 is u
′ = P (u, v), v′ = −Q(u, v). The expressions for

the charts Vi are those for the charts Ui multiplied by (−1)d−1, for i = 1, 2, 3.
Hence for studying the vector field X it is enough to study its Poincaré
compactification restricted to the northern hemisphere plus S1. To draw the
phase portraits we consider the projection, by π(s1, s2, s3) = (s1, s2), of the
closed northern hemisphere into the local disk D = {(s1, s2) : s21 + s22 ≤ 1},
called the Poincaré disk.

Finite singular points of X are the singular points Dπ ◦ p(X) in the
interior of D, and they can be studied using U3. Infinite singular points of
X are the singular points of Dπ ◦ p(X) contained in S1. Note that if s ∈ S1
is an infinite singular point, then −s is also an infinite singular point. Hence
to study the infinite singular points it suffices to look for them only at U1|v=0

and at the origin of U2.
Finally we mention without getting into too much detail an important

result that classifies the finite singular points of Hamiltonian planar polyno-
mial differential systems. For a detailed definition of the (topological) index
of a singular point see for instance Chapter 6 of [13], it can be computed
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easily using the Poincaré formula which takes into account the parabolic
sector, hyperbolic sector, and elliptic sectors at a singular point, for details
see page 18 of [13]. A vector field is said to have the finite sectorial de-
composition property at a singular point q if either q is a center, a focus or
a node, or it has a neighborhood consisting of a finite union of parabolic,
hyperbolic or elliptic sectors. We note that all the isolated singular points
of a polynomial differential system satisfy the finite vectorial decomposition
property, see [13].

Theorem 3 (Poincaré Formula). Let q be an isolated singular point having
the finite sectorial decomposition property. Let e, h an p denote the number
of elliptic, hyperbolic and parabolic sectors of q, respectively. Then the index
of q is (e− h)/2 + 1.

From Theorem 3 the following result follows easily.

Corollary 4. The indices of a saddle, a center and a cusp are −1, 1 and 0,
respectively.

To determine the possible number and local phase portraits of the finite
singular points of the systems we will use the Poincaré-Hopf Theorem for
vector fields in the 2−dimensional sphere.

Theorem 5. For every vector field on the sphere S2 with a finite number of
singular points, the sum of the indices of these singular points is 2.

We note that singular points with index 0 are more difficult to detect
because they do not contribute to the total index of the singular points
of the vector fields on the Poincaré sphere. To overcome this difficulty we
present the following proposition, but first we make a remark and give some
definitions.

If a singular point p of an analytic vector field X has the two real parts
of the eigenvalues of DX(p) non-zero then p is hyperbolic. If the eigenvalues
of DX(p) are purely imaginary, then p is either a center or a focus. If only
one eigenvalue of DX(p) is 0, then p is semi-hyperbolic. The hyperbolic and
semi-hyperbolic singular points are called elementary. If both eigenvalues of
DX(p) are 0 but DX(p) is not identically zero, then p is nilpotent. Finally,
if DX(p) is identically zero then p is linearly zero. The local phase portraits
of hyperbolic, semi-hyperbolic and nilpotent singular points can be studied
using, for instance, Theorems 2.15, 2.19 and 3.5 of [13], respectively. The
linearly zero singular points must be studied using the changes of variables
known as blow-ups, see for instance [2] and [13].
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Remark 1. Nilpotent singular points of Hamiltonian planar polynomial vec-
tor fields are either saddles, centers, or cusps (for more details see Theorem
3.5 of [13] and taking into account that Hamiltonian systems cannot have
foci).

We define energy levels of a Hamiltonian vector field as the level curves
of its Hamiltonian; and a hyperbolic saddle with a loop and a center inside
the loop as in Figure 2 will be called a center–loop.

Figure 2: A center–loop.

Proposition 6. Let Xε be a real Hamiltonian planar polynomial vector field
of degree three. Then Xε can be written as

x′ = a10x+ a01y + a20x
2 + a11xy + a02y

2 + a30x
3 + a21x

2y

+a12xy
2 + a03y

3,

y′ = b10x− a10y + b20x
2 − 2a20xy −

a11y
2

2
+ b30x

3 − 3a30x
2y

−a21xy2 −
a12y

3

3
+ εx.

(7)

Suppose that p is an isolated singular point of Xε different from the origin.
If a210 + a01b10 = 0 but a01 6= 0, then the following statements hold:

(a) If p is non–elementary, then it is nilpotent.

(b) If p is a non–elementary singular point of X0, then it is an elementary
singular point of Xε with ε 6= 0.

(c) If p is a cusp of X0, then for ε 6= 0 small enough such that εa01 < 0,
the origin of Xε is a linear type center and the local phase portrait of
Xε at p is a center–loop.

Proof. The proof of these proposition is similar to the one of Lemma 12
in [8] and it will be omitted here. In fact the unique difference with the
mentioned Lemma 12 of [8] is that the vector field of that lemma has no
quadratic terms, which do not affect the proof.
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3. Proof of Proposition 1

Without loss of generality we can assume that a Hamiltonian system of
degree three with a nilpotent center at the origin is given by

x′ = Hy, y′ = −Hx,

where

H(x, y) = y2/2 + a4x
3 + a5x

2y + a6xy
2 + a7y

3 + a8x
4 + a9x

3y

+ a10x
2y2 + a11xy

3 + a12y
4.

Therefore we have the following Hamiltonian system

x′ = y + a5x
2 + 2a6xy + 3a7y

2 + a9x
3 + 2a10x

2y + 3a11xy
2 + 4a12y

3,
y′ = −(3a4x

2 + 2a5xy + a6y
2 + 4a8x

3 + 3a9x
2y + 2a10xy

2 + a11y
3).

(8)
By hypothesis system (8) is invariant under the symmetry (x, y, t) → (x,−y,−t)
and so we have a5 = a7 = a9 = a11 = 0. Hence system (8) becomes

x′ = y + 2a6xy + 2a10x
2y + 4a12y

3,
y′ = −(3a4x

2 + a6y
2 + 4a8x

3 + 2a10xy
2).

(9)

Since systems (9) must have a center at the origin, by Theorem 3.5 of [13]
we must have a4 = 0 and a8 > 0. Therefore we obtain

x′ = y + 2a6xy + 2a10x
2y + 4a12y

3,
y′ = −(a6y

2 + 4a8x
3 + 2a10xy

2).
(10)

Case 1. Assume a6 6= 0. By the change of coordinates and reparametrization
of the time of the form

x→ αX, y → βY, t→ γτ, (11)

with α = 1/a6, β = 2
√
a8/a

2
6 and γ = a6/2

√
a8, systems (10) can be written

as
X ′ = Y + 2XY + 2

a10
a26
X2Y + 16a8

a12
a46
Y 3,

Y ′ = −Y 2 −X3 − 2
a10
a26
XY 2.

We obtain the normal form (V ).
Case 2. Assume a6 = 0 and a10 6= 0. By the change of coordinates and

reparametrization of the time as in (11) with α = 1/
√

2|a10|, β = −√
a8/a10,
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γ = −
√
|a10|/2a8, systems (10) can be written as

X ′ = Y ±X2Y ± 4
a8a12
a210

Y 3,

Y ′ = −X3 ∓XY 2.

We obtain the normal forms (III) and (IV ).
Case 3. Assume a6 = 0 and a10 = 0. By the change of coordinates and

reparametrization of the time as in (11) with α = β =
√

1/4a8 and γ = 1
systems (10) can be written as

X ′ = Y +
a12
a8
Y 3,

Y ′ = −X3.

If a12 6= 0 we can do another change of coordinates and obtain systems (II),
otherwise we obtain system (I).

In short we have proved Proposition 1.

4. Proof of Theorem 2

4.1. Global phase portrait of system (I)

Consider system (I)

x′ = y, y′ = −x3.

The origin is the only finite singular point of the system. Using (5) we see
that in the local chart U1 system (I) becomes

u′ = −1− u2v2, v′ = −uv3.

When v = 0 there are no infinite singular points on the local chart U1. In
U2 we use (6) and we get

u′ = v2 + u4, v′ = vu3. (12)

The origin is an infinite singular point of the system, whose linear part is
zero. So we need to do blow-ups to describe the local dynamics at this point.
We perform the directional blow-up (u, v) 7→ (u,w) with w = v/u2 and we
have

u′ = u4 + u4w2, w′ = −u3w(1 + 2w2). (13)
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We eliminate the common factor u3 between u′ and w′, and get the vector
field

u′ = u(1 + w2), w′ = −w(1 + 2w2). (14)

System (14) has the origin as its unique singular point. The eigenvalues of
the linear part at the origin are 1 and −1, so it is a saddle.

Going back through the changes of variables until system (12) as shown in
Figure 3, we have that the global phase portrait of system (I) is topologically
equivalent to the phase portrait 1.1 of Figure 1.

u u u

vw w

Systems (14) Systems (13) with
the common factor u3

Systems (12)

Figure 3: Blow-up of the origin of U2 of system (I).

4.2. Global phase portrait of system (II)

Consider systems (II)

x′ = y + δy3, y′ = −x3

where δ ∈ {−1, 1}. It is easy to see that (0, 0) is the unique finite singular
point of system when δ = 1. When δ = −1 the finite singular points are
E0 = (0, 0) and E± = (0,±1). We will study only the singular point E+

because the study of the other singular point is analogous. Since the singular
point E+ is nilpotent, using Theorem 3.5 of [13] we obtain that (0, 1) is a
saddle.

We will now investigate the infinite singular points of systems (II). We
distinguish between the cases δ = 1 and δ = −1.

4.2.1. Case δ = 1

In the local chart U1 system (II) is

u′ = −1− u2v2 − u4, v′ = −uv(v2 + u2).
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When v = 0 there are no infinite singular points on U1. In U2 system (I)
becomes

u′ = v2 + 1 + u4, v′ = vu3.

Again when v = 0 there are no infinite singular points on the local chart
U2. Therefore the global phase portrait of system (II) (with δ = 1) is
topologically equivalent to phase portrait 1.1 of Figure 1.

4.2.2. Case δ = −1

In the local chart U1 system (I) is

u′ = −1− u2v2 + u4, v′ = uv(u2 − v2).

When v = 0 the infinite singular points are P± = (±1, 0). The eigenvalues
of the linear part at P− are −1 and −4. So, it is an attracting node. On the
other hand, the eigenvalues of the linear part at P+ are 1 and 4. So it is a
repelling node.

Next we should check the origin of U2. In U2 system (II) becomes

u′ = −1 + v2 + u4, v′ = vu3.

When v = 0 the origin is not a singular point.
Now we will determine the global phase portrait according to this lo-

cal information. The two finite saddles must be on the boundary of the
period annulus of the center at the origin due to the symmetry of the sys-
tem. Therefore the global phase portrait of system (II) (with δ = −1) is
topologically equivalent to the phase portrait 1.2 of Figure 1.

4.3. Global phase portrait of systems (III)

Consider systems (III)

x′ = y + x2y + ay3, y′ = −x3 − xy2.

When a ≥ 0 the only finite singular point is the origin. When a < 0 the
singular points are the origin and E± = (0,±

√
−1/a). The eigenvalues of

the linear part at the singular points E± are ±
√
−2a/a. Hence they are

saddles.
We will now investigate the infinite singular points of systems (III). We

distinguish between the cases a > 0, a = 0 and a < 0.
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4.3.1. Case a > 0

On the local chart U1 systems (III) become

u′ = −1− 2u2 − u2v2 − au4, v′ = −uv(1 + au2 + v2).

When v = 0 there are no infinite singular points on U1. In U2, systems (III)
can be written as

u′ = a+ 2u2 + v2 + u4, v′ = vu(1 + u2).

Again when v = 0 there are no infinite singular points on U2. Therefore
the global phase portrait of systems (III) (with a > 0) are topologically
equivalent to the phase portrait 1.1 of Figure 1.

4.3.2. Case a = 0

Using (5) we see that in the local chart U1 system (III) becomes

u′ = −1− 2u2 − u2v2, v′ = −uv(1 + v2).

When v = 0 there are no infinite singular points on U1. In U2 we use (6) to
get

u′ = 2u2 + v2 + u4, v′ = uv(1 + u2).

When v = 0 the only infinite singular point is the origin, whose linear part
is zero. So we need to do blow-ups to describe the local behavior at this
point. We perform the directional blow-up (u, v) 7→ (u,w) with w = v/u
and we get

u′ = 2u2 + u2w2 + u4, w′ = −uw(1 + w2).

We eliminate the common factor u between u′ and w′, obtaining the system

u′ = u(2 + u2 + w2), w′ = −w(1 + w2).

The eigenvalues of the linear part at the origin are 2 and −1, hence it is a
saddle. Doing a similar analysis to the one done in system (I), we obtain
that the global phase portrait of systems (III) (with a = 0) is topologically
equivalent to the phase portrait 1.1 of Figure 1.

4.3.3. Case a < 0

In the local chart U1 systems (III) become

u′ = −1− 2u2 − u2v2 − au4, v′ = −uv(1 + au2 + v2).
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The infinite singular points are P± = (±
√

−a(1 +
√
1− a)/a, 0). The eigen-

values of the linear part at P+ are

√
−a− a

√
1− a

√
1− a

a
,

4
√

−a− a
√
1− a

√
1− a

a
,

which are negative (because a < 0). Hence it is an attracting node. On the
other hand, the eigenvalues of the linear part of the systems at P− are

−
√

−a− a
√
1− a

√
1− a

a
, −4

√
−a− a

√
1− a

√
1− a

a
,

which are positive (because a < 0). Hence it is a repelling node.
In U2 we use (6) to get

u′ = a+ 2u2 + v2 + u4, v′ = vu(1 + u2).

When v = 0 the origin is not a singular point because a < 0.
A similar analysis to the one done for systems (II) with δ = −1 implies

that the global phase portrait of systems (III) with a < 0 are topologically
equivalent to the phase portrait 1.2 of Figure 1.

4.4. Global phase portrait of system (IV )

Consider the systems (IV ), i.e.

x′ = y − x2y + ay3, y′ = −x3 + xy2.

When a ≥ 1 the only finite singular point is the origin. When 0 ≤ a < 1,
among the origin, we have four new finite singular points:

(
±
√

1

1− a
,±
√

1

1− a

)
.

It is easy to see that all of them are saddles. Finally when a < 0 in addition
to the previous singular points, we also have the points ±(0,

√
−1/a) which

are centers because the eigenvalues of their linear parts are purely imaginary.
We will now investigate the infinite singular points of systems (IV ). We

distinguish between the cases a ≥ 1, 0 ≤ a < 1 and a < 0.
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4.4.1. Case a ≥ 1

In the local chart U1 systems (IV ) can be written as

u′ = −1 + 2u2 − u2v2 − au4, v′ = −uv(−1 + au2 + v2). (15)

The infinite singular points are the roots of the polynomial −1+ 2u2 − au4.
Therefore, if a > 1 there are no infinite singular points on the local chart
U1. If a = 1 the points (±1, 0) are infinite singular points on U1. Using a
blow-up analysis we obtain the same result as in the system (I), hence the
points (±1, 0) of U1 have two hyperbolic sectors, see Figure 3.

In U2 systems (IV ) can be expressed as

u′ = a− 2u2 + v2 + u4, v′ = −vu(1− u2). (16)

Again when v = 0 there are no singular points on U2. Therefore the global
phase portrait of systems (IV ) with a ≥ 1 are topologically equivalent to
the phase portrait 1.1 of Figure 1.

4.4.2. Case 0 ≤ a < 1

In the local chart U1 systems (IV ) are given by (15). Again the infinite
singular points are the roots of the polynomial −1 + 2u2 − au4. Therefore,
if 0 < a < 1 there are the following four infinite singular points on U1

(
±

√
a(1 +

√
1− a)

a
, 0

)
,

(
±

√
a(1−

√
1− a)

a
, 0

)
.

All these points are nodes. On the other hand, if a = 0 there are only two
singular points (±

√
2/2, 0) on U1 and both are nodes.

In U2 systems (IV ) are given by (16). Therefore if 0 < a < 1 the origin
is not a singular point in U2.

To understand the global phase portrait in this case, let H be the Hamil-
tonian of systems (IV ). We have that the value of H on the four finite sin-
gular points is equal. We claim that all four points are on the boundary of
the period annulus of the center at the origin. If there were only two saddles
on the mentioned boundary, then a straight line passing through the origin
and sufficiently close to the saddles which are not on this boundary would
have at least six intersection points with the separatrices of these saddles,
which are on the same energy level, see Figure 4. But this is impossible
because H is only quartic. Hence the claim is proved. Therefore the global
phase portrait of systems (IV ) with 0 < a < 1 is topologically equivalent to
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the phase portrait 1.3 of Figure 1.

Figure 4: The straight line through the origin intersects the separatrices six times.

If a = 0 the origin of the chart U2 is an infinite singular point of the
system, whose linear part is zero, hence we need to do a blow-up to charac-
terize the local dynamics at this point. Doing the blow-up (u, v) 7→ (u,w)
with w = v/u and eliminating the common factor u we get the system

u′ = u(−2 + u2 + w2), w′ = −w(w − 1)(w + 1). (17)

When u = 0 the singular points of system (17) are the roots of the polyno-
mial −w(w−1)(w+1). Therefore we have three singular points. In this case
the origin is a saddle and the other singular points are nodes. Consequently
the origin of the local chart U2 has two elliptic and two parabolic sectors,
see Figure 5.

Figure 5: Local phase portrait at the origin of system (17).

Proceeding as in the previous case, using an analogous argument we
conclude that the global phase portrait of system (IV ) with a = 0 is topo-
logically equivalent to the phase portrait 1.4 of Figure 1.

4.4.3. Case a < 0

In the local chart U1 systems (IV ) are given by (15). Again the infinite
singular points are the roots of the equation −1+2u2−au4 = 0. Therefore,
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if a < 0, on U1 there are the two infinite singular points

(
±

√
a(1−

√
1− a)

a
, 0

)
.

All these points are nodes and the origin of U2 is not singular. Due to
the symmetry of the systems the global phase portrait of system (IV ) with
a < 0 is topologically equivalent to the phase portrait 1.5 of Figure 1.

4.5. Global phase portrait of systems (V )

Consider systems (V )

x′ = y + 2xy + ax2y + by3, y′ = −y2 − x3 − axy2. (18)

We now study the infinite singular points of these systems.

4.5.1. Infinite singular points

In U1 systems (V ) become

u′ = −1− 2au2 − 3u2v − bu4 − u2v2,
v′ = −uv(a+ 2v + bu2 + v2).

(19)

When v = 0 the candidates for singular points of systems (V ) are the roots
of the polynomial 1 + 2au2 + bu4. It is easy to see that when a = b = 0, or
b = 0 and a > 0, or a = 0 and b > 0, there are no singular points on the local
chart U1. When b = 0 and a < 0, the singular points are (±

√
−1/2a, 0).

The linear part of (19) when v = 0 is

(
−4 au −3u2

0 −au

)
.

Thus both of the eigenvalues of two singular points are negative if u < 0,
and positive if u > 0. Hence the points (−

√
−1/2a, 0) and (

√
−1/2a, 0) are,

attracting and repelling nodes, respectively.
When a = 0 and b < 0 the singular points are ( 4

√
−1/b, 0) and (− 4

√
−1/b, 0).

Proceeding as above we get that they are attracting and repelling nodes, re-
spectively.

When ab 6= 0 and b > a2 it is easy to see that there are no singular
points on the local chart U1. So we consider the cases a = b2 and b < a2.

Case 1: b = a2. If a > 0 there are no singular points on the local
chart U1. If a < 0 the singular points are (±1/

√−a, 0). We will study
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only the singular point (−1/
√−a, 0) because the study of the other singular

point is analogous. First we translate (−1/
√−a, 0) to the origin. Applying

Theorem 3.5 of [13] we obtain that the phase portrait of the singular point
(−1/

√−a, 0) consists of one hyperbolic and one elliptic sector. Doing blow-
ups we get that the local phase portrait of (−1/

√−a, 0) is the one described
in Figure 6.

Figure 6: Local phase portrait at the origin of system (19) for b = a2 and a < 0.

Case 2: b < a2. If a > 0 and b > 0 again there are no singular points on
U1. If a > 0 and b < 0 there are two singular points

(
±

√
−b(−a+

√
a2 − b)

b
, 0

)
.

The eigenvalues of the linear part of the system at these two points are

4

√
−b
(
a+

√
a2 − b

)√
a2 − b

b
,

√
−b
(
a+

√
a2 − b

)√
a2 − b

b

and

−4

√
−b
(
a+

√
a2 − b

)√
a2 − b

b
, −

√
−b
(
a+

√
a2 − b

)√
a2 − b

b
,

respectively. Hence these points are attracting and repelling nodes respec-
tively. Similarly, if a < 0 and b < 0 we have two singular points

(
±

√
−b(−a+

√
a2 − b)

b
, 0

)

and these points are attracting and repelling nodes respectively.
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Finally, if a < 0 and b > 0 there are four singular points

P1± =

(
±

√
b(−a+

√
a2 − b)

b
, 0

)
, P2± =

(
±

√
−b(a+

√
a2 − b)

b
, 0

)
.

It is easy to see that the P1+ and P2− are attracting nodes and P1− and P2+

are repelling nodes.
Now we study the origin of U2 of systems (V ) which in U2 write as

u′ = b+ 2au2 + 3uv + v2 + u4, v′ = v(au+ v + u3).

If b 6= 0 the origin is not singular. If b = 0 we see that the origin is
singular and it is degenerate, hence we need blow-up to understand the local
behavior at this point. Doing the blow-up (u, v) 7→ (u,w) with w = v/u and
eliminating the common factor u we get the systems

u′ = u(2a+ 3w + u2 + w2), w′ = −w(a+ 2w + w2). (20)

When u = 0 the candidates for singular points of systems (20) are the roots
of the polynomial −w(a + 2w + w2). When a > 1 the only singular point
of these systems is the origin, and it is a saddle. In summary, going back
through the changes of variables the origin of U2 consists of two hyperbolic
sectors, see Figure 3. When a = 1, the origin is a singular point of the
system, whose linear part is zero. We see that doing the blow-up analysis
the origin has two parabolic and two hyperbolic sectors as in Figure 7.

Figure 7: Local phase portraits of the origin of system (20) for a = 1.

When a < 1 we have three singular points. In addition to the saddle at
the origin, the points (0,−1 ±

√
1− a) are repelling nodes. Consequently,

this time the origin of U2 has two elliptic sectors and two parabolic sectors,
see Figure 5.

In short we have Tables 1 and 2.
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Parameters Infinite singular points in chart U1

a = b = 0
b = 0 and a > 0 There are no singular points
a = 0 and b > 0

b = 0 and a < 0 One attracting node and one repelling node
a = 0 and b < 0

b = a2 and a > 0
b > a2 There are no singular points

b < a2 and a, b > 0

b = a2 and a < 0 Two singular points with one hyperbolic and one
elliptic sector

b < a2, a > 0 and b < 0 One attracting node and one repelling node
b < a2 and a, b < 0

b < a2, a < 0 and b > 0 Two attracting nodes and two repelling nodes

Table 1: Infinite singular points in the local chart U1.

Parameters The origin of the chart U2

b 6= 0 There are no singular points

b = 0 and a > 1 Two hyperbolic sectors

b = 0 and a = 1 Two hyperbolic and two parabolic sectors

b = 0 and a < 1 Two elliptic and two parabolic sectors

Table 2: The origin of the local chart U2.

4.5.2. Finite singular points

Now we investigate the finite singular points of systems (V ). The ex-
plicit expressions for the finite singular points of these systems in terms of
the parameters a, b are complicated, and therefore it is hard to analyze their
existence and their local phase portraits. For this reason we take a different
approach. We first find the maximum number of finite singular points al-
lowed by these systems. Then using the Poincaré Formula for the index of
a singular point of a planar vector field, we count the indices of the infinite
singular points of the systems that we have found in subsection 4.5.1 on the
Poincaré sphere. The next step is to determine the possible number and
local phase portraits of the finite singular points of these systems using the
Poincaré-Hopf Theorem.

Doing the resultant of x′ and y′ of system (18) with respect to the variable
x, eliminating a common factor y3, and performing the change of variables
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y 7→ √
z we get the cubic C

b(a2 − b)2z3 + (a4 − a3 − 4a2b+ 10ab+ 3b2)z2

+ (−2a2 + 10a+ 3b− 8)z + 1 = 0.
(21)

Assume (a2 − b)b is not zero. The discriminant of the cubic C is

D = −(4(a− 1)2(a3 − a2 − ab− 8b)− 27b2)(−8 b+ 3 a3 − 4 a2)2.

When −8b+ 3a3 − 4a2 6= 0, the sign of D is the sign of

4(a − 1)2(a3 − a2 − ab− 8b)− 27b2.

We know that if D > 0, then the cubic C has 3 real roots, if D < 0, it has
only 1 real root and if D = 0 it has either 1 triple real root or 1 real and 1
double root. In this way we consider the following curves, see Figure 8.

C1 : 4(a− 1)2(a3 − a2 − ab− 8b)− 27b2 = 0, ( )

C2 : (a2 − b)b = 0, ( )

C3 :− 8 b+ 3a3 − 4a2 = 0. ( )

It is easy to see that in regions R1, R2, R6, R8, R9, R12 and R14, bounded
by curves C1, C2 and C3, the cubic has three real roots and in the other
regions the cubic has only one real root, see Figure 8. The sign of these
roots follow in Table 3.

Region Number of positive and negative real roots of C
R1, R12, R14 one negative and two positive roots

R2 three positive roots
R3, R4, R5 one positive root

R6 one positive and two negative roots
R7, R10, R11, R13 one negative root

R8, R9 three negative roots

Table 3: Number of positive and negative real roots of C

From Table 3 we obtain the bifurcation diagram shown in Figure 9 for
systems (V ).

We should also analyze the discriminant of cubic C when the parameters
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a

b

C1

C1

C2
C2

C2

C3

R1

R2

R3 R4

R5
R6

R7

R8

R9

R10

R11

R12

R13

R14

Figure 8: Curves C1 − C3 and regions R1 −R14.

a and b are on the curves

L12 = {(a, b) ∈ R2 : b = 0, a < 0},
L34 = {(a, b) ∈ R2 : b = 0, a ≥ 1},
L35 = {(a, b) ∈ R2 : b = 0, 0 ≤ a < 1},
L15 = {(a, b) ∈ R2 : b = a2, a < 0},
L23 = {(a, b) ∈ C1 : a < 0, b < 0},
L45 = {(a, b) ∈ C1 : a < 1, b > 0}.

We will only present the discriminant of the cubic C on the curve L12. The
study of the discriminant of the cubic restricted to the curves L15, L34 and
L35 is performed in a similar way, so we omit it. The results are shown in
Table 3. On the curves L23 and L45 the discriminant is very long so, on
these curves we will do a different study by using Proposition 6.

When (a, b) belongs to L12 the cubic C given by (21) becomes

a3(a− 1)z2 − 2(a− 1)(a− 4)z + 1 = 0. (22)

Now the discriminant is given by −4(3a−4)2(a−1). Therefore equation (22)
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b

R̃1

R̃2

R̃3

R̃4

R̃5

L12

L23

L34L35

L45

L15

Figure 9: Bifurcation diagram for System (V ).

has two real roots when a < 1 (a 6= 0), and has no real roots when a > 1.
Therefore, on the curve L12 there are always two real roots. The number
and sign of these roots follow in Table 4.

Curves Number of positive and negative real roots of C
L12 two positive roots
L35 one positive root and one negative root
L34 there are no roots
L15 one positive root and one negative root

Table 4: Number of positive and negative real roots of C

Proposition 7. Systems (V) have, among the origin, at most two non-
elementary singular points and they exist when the parameters a and b belong
to the curve C1.
Proof. We need to show that equations (18) and the determinant of the
Jacobian matrix on systems (V ) cannot vanish simultaneously at more than
two points besides the origin. The mentioned determinant is

∣∣∣∣∣
2 y + 2 axy 1 + 2x+ ax2 + 3 by2

−3x2 − ay2 −2 y − 2 axy

∣∣∣∣∣ .

We compute the Gröbner basis for these three polynomials and obtain a set
of eight polynomial equations. We equate these eight polynomials to zero,
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eliminating a factor y, and for finding their solutions it is enough to consider
the following three equations

− 27b2 + 4(a− 1)2(a3 − a2 − ab− 8b) = 0,

9b(2a− b)y2 + 2(−8 + 8a+ 2a2 − 2a3 + 9b) = 0,

2(28 + a(2a − 1− 2a2) + 9b+ 27x) + 9(2(a3 − a2)− 7b− b2)y2 = 0.

(23)

Observe that the first equation of (23) corresponds to the curve C1. The
second equation provides at most two possible solutions for y, and from the
last equation for every possible y solution there is at most one x solution.
So the proposition is proved.

In the following subsections we will describe the global phase portraits of
systems (V ) for the parameters a and b belonging to the regions and curves
mentioned above. See Figure 9.

4.5.3. Region R̃1

In the region R̃1 the infinite singular points on the Poincaré sphere are
four nodes in U1, see Table 1 (and also the corresponding points on V1),
hence each point has index 1. Moreover, the origin of U2 is not a singular
point (see Table 2). Hence all the infinite singular points are in U1 and V1.

Now we analyze the finite singular points of systems (V ). Among the
finite singular points we only know that the origin of U3 is a center with index
1. Hence the known singular points have total index 10 on the Poincaré
sphere. By Theorem 5, the remaining finite singular points must have total
index -8. By Proposition 7 and Table 3 systems (V ) have in region R̃1 the
origin (a center) and four finite hyperbolic singularities or centers in U3.
Therefore by Corollary 4 the four hyperbolic singularities must be saddles.
Hence we obtain a global phase portrait topologically equivalent to 1.6 of
Figure 1.

4.5.4. Region R̃2

In the region R̃2 the infinite singular points on the Poincaré sphere are
two nodes in U1 (and also the corresponding points on V1). Hence each
point has index 1. The origin of U2 is not a singular point. Among the finite
singular points we only know that the origin of U3 is a center with index 1.
Hence, the known singular points have total index 6 on the Poincaré sphere.
By Theorem 5, the remaining finite singular points must have total index
-4. By Proposition 7 and Table 3, systems (V ) have in the region R̃2 the
origin as a center and six finite singularities which are either hyperbolic or
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centers. By Theorem 5 these six finite singularities are two centers and four
saddles. Therefore the global phase portrait is topologically equivalent to
1.7 of Figure 1.

4.5.5. Region R̃3

With respect to the infinite singular points there is no change between
the regions R̃2 and R̃3. On the other hand among the origin, there are
only two finite singular points, see Table 3. As before these singularities are
either hyperbolic, or centers. Therefore the two finite singular points are
two saddles. The global phase portrait is topologically equivalent to 1.8 of
Figure 1.

4.5.6. Region R̃4

In the region R̃4 there are no finite and infinite singular points besides
the origin, see Tables 1, 2 and 3. Therefore the global phase portraits are
topologically equivalent to 1.1 of Figure 1.

4.5.7. Region R̃5

In the region R̃5 there are no infinite singular points, see Tables 1 and
2. Among the finite singular points we only know that the origin of U3 is a
center with index 1. Hence, the known singular points have total index 2 on
the Poincaré sphere. By Theorem 5, the remaining finite singular points, if
any, must have total index 0. By Proposition 7 and Table 3, systems (V )
have in the region R̃5 the following finite singular points: the origin which is
a center and four points which are either hyperbolic, or centers. Therefore
these four singular points are two saddles and two centers. Hence the global
phase portraits are topologically equivalent to 1.9 of Figure 1.

4.5.8. Curve L12

In the curve L12 the infinite singular points on the Poincaré sphere are
two nodes in U1 (and also the corresponding points on V1), hence each sin-
gular point has index 1. The origin of U2 has two elliptic and two parabolic
sectors, so this origin has index 2 by the Poincaré formula. Among the finite
singular points we only know that the origin of U3 is a center with index 1.
Hence the known singular points have total index 10 on the Poincaré sphere.
By Theorem 5 the remaining finite singular points must have total index -8.
On the curve L12 the systems have the following singular points: the origin
which is a center and four points which are either hyperbolic, or centers, see
Table 4 and Proposition 7. So we have four saddles. Hence we obtain that
the global phase portraits are topologically equivalent to 1.10 of Figure 1.
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4.5.9. Curve L23

In the curve L23 the infinite singular points on the Poincaré sphere are
two nodes in U1 (and also the corresponding points on V1), hence each point
has index 1. Moreover, the origin of U2 is not a singular point, see Table
2. Hence all the infinite singular points are in U1 and V1. Among the finite
singular points we only know that the origin of U3 is a center with index 1.
Hence, the known singular points have total index 6 on the Poincaré sphere.
By Theorem 5 the remaining finite singular points must have total index -4.

We know that systems (V ), among the origin, have at most six finite
singular points. By Proposition 7 at most two of them are non-elementary
(and so nilpotent singular points, due to statement (a) of Proposition 6).
Therefore, due to the symmetry of the systems, there are the following
possibilities: (i) four saddles and two centers, or (ii) two saddles and two
cusps. Due to statement (c) of Proposition 6, only the case (ii) will produce
a system compatible with the phase portraits of the regions R̃2 and R̃3 after
a small perturbation. Consequently, the global phase portraits in this case
are topologically equivalent to 1.11 of Figure 1.

4.5.10. Curve L34

On the curve L34 there are no infinite singular points in the local chart
U1 and the origin of the local chart U2 has two hyperbolic sectors when
a > 1, and two hyperbolic and two parabolic sectors when a = 1 (see Tables
1 and 2). By Table 3 systems (V ) have no finite singular points except the
origin. Consequently, the global phase portraits in this case are topologically
equivalent to 1.1 of Figure 1.

4.5.11. Curve L35

On the curve L35 there are no infinite singular points in the local chart
U1. The origin of the local chart U2 has two elliptic and two parabolic
sectors, see Tables 1 and 2. So this origin has index 2 by the Poincaré
formula. Among the finite singular points we only know that the origin of
U3 is a center. Hence the known singular points have total index 6 on the
Poincaré sphere. By Theorem 5, the remaining finite singular points must
have total index -4. By Table 3 systems (V ) have two finite singular points
and by Proposition 7 they are either hyperbolic singularities, or centers.
Therefore these two finite singularities are saddles. Hence the global phase
portraits are topologically equivalent to 1.12 of Figure 1.
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4.5.12. Curve L45

On the curve L45 there are no infinite singular points, see Tables 1 and 2.
Among the finite singular points we only know that the origin of U3 is a
center. Hence the known singular points have total index 2 on the Poincaré
sphere. By Theorem 5 the remaining finite singular points, if any, must have
total index 0.

We know that, besides the origin, systems (V ) have at most six finite
singular points, and by Proposition 7 at most one of them is non-elementary
(and so nilpotent due to statement (a) of Proposition 6). Therefore due to
the symmetry of the systems, there are the following possibilities: (i) no
more finite singular points, (ii) two cusps, (iii) two saddles and two centers,
or (iv) two saddles, two centers and two cusps.

Case (iv) cannot occur because by Proposition 6, after a small pertur-
bation, each cusp will produce two singular points, leading to an excess of
singular points. For the remaining cases, due to Proposition 6, only the case
(ii) will produce a system compatible with the phase portraits of the re-
gions R̃4 and R̃5 after a small perturbation. Consequently, the global phase
portraits in this case are topologically equivalent to 1.13 of Figure 1.

4.5.13. Curve L15

On the curve L15 there are two infinite singular points with one hyper-
bolic and one elliptic sector in the local chart U1, so they have index 1 by
the Poincaré formula. The origin of the local chart U2 is not a singular
point, see Tables 1 and 2. Among the finite singular points we only know
that the origin of U3 is a center. Hence the known singular points have total
index 6 on the Poincaré sphere. By Theorem 5 the remaining finite singular
points must have total index -4. By Table 3 systems (V ) have two finite
singular points and by Proposition 7 they are either hyperbolic, or centers.
Therefore these two singularities are saddles and we obtain the global phase
portraits topologically equivalent to 1.14 of Figure 1.
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