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Topology analysis of global and local RBF transformations for image registration

Roberto Cavoretto, Alessandra De Rossi, Hanli Qiao

Department of Mathematics “G. Peano”, University of Torino, via Carlo Alberto 10, I–10123 Torino, Italy

Abstract

For elastic registration, topology preservation is a necessary condition to be satisfied, especially for landmark-based

image registration. In this paper, we focus on the topology preservation properties of two different families of radial

basis functions (RBFs), known as Gneiting and Matérn functions. Firstly, we consider a small number of landmarks,

dealing with the cases of one, two and four landmark matching; in all these situations we analyze topology preservation

and compare numerical results with those obtained by Wendland functions. Secondly, we discuss the registration

properties of these two families of functions, when we have a larger number of landmarks. Finally, we analyze

the behaviour of Gneiting and Matérn functions, considering some test examples known in the literature and a real

application.

Keywords: Scattered data interpolation, Gneiting functions, Matérn functions, landmark-based image registration,

topology preservation.

2010 MSC: 65D05, 65D07, 68U10.

1. Introduction

Image registration is a crucial step to get on further research in many scientific fields, such as medical image

processing, image fusion and remote sensing. In medical images, 2D and 3D registrations are necessary in order

to observe the evolution of a pathology or make full use of advantages of the complementary information. There

are many references that deal with the role of registration and its applications in medical image processing, for an

overview, see [29, 27, 23, 12]. Moreover, specific applications to medical image registration involving Magnetic Res-

onance Imaging (MRI) and Computer Tomography (CT) are considered in [23, 12, 31, 30]. Registration is also one

of the basic stages of image fusion, which is the process of combining multiple information from a set of images.

Effective image fusion can usually be fulfilled after accurate registration; in particular, in [20, 26, 4, 21] some appli-

cations of registration in image fusion with related connections are analyzed from different viewpoints. For remote

sensing, registration is the first step on use of remote sensed images, see [11, 19, 15]. Hence, research for image

registration is meaningful and necessary in many real-life applications. More specifically, in image registration we

study the differences between a pair of images, where the objects are placed in the same scene but they are analyzed

considering different periods of time, devices and/or perspectives, see [6, 28, 32, 33, 38] for a survey. In [24] Maintz

and Viergever classify registration methods by nine criteria formulated in [35]. The classical problem of registration

consists in finding an appropriate transformation between two data sets. A lot of techniques can solve this problem,

and in [33] we can find a detailed description of the mathematical and computational methods used. From [38] we

know that the main techniques of image registration should consider four steps, i.e., feature detection and matching,

transform model estimation, image resampling and transformation. In the third step, a mapping by Radial Basis Func-

tions (RBFs), which initially were applied for interpolation of irregular surfaces, is introduced. The word “radial”

stands for the property that values of these functions at each point only depend on the distances from their center

points rather than the specific locations [7, 14, 36]. This feature can be used to express the deformation for landmark
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based image registration, and each landmark can be deemed as their center. A variety of RBFs has been studied for

elastic image registration and deformation, and thin plate spline, multiquadrics, inverse multiquadrics and Gaussian

functions are analytically been compared from viewpoints of locality, solvability and efficiency. Nevertheless, all

these RBFs have no compact supports, hence if one landmark changes the whole registration result might also be

subjected to a significant change. This is a drawback for a very local deformation of images. However, the use of

Compactly Supported Radial Basis Functions (CSRBFs) can overcome this disadvantage. In particular, in [16] the

use of Wendland functions in image registration is introduced, while in [1, 8, 9] other techniques involving compactly

supported basis functions, such as Gneiting functions, were applied and the numerical results were compared with

those obtained by Wendland functions. Results show that Gneiting functions have lower errors and smoother trans-

formed images, also in real-life cases. Moreover, Gneiting functions have better performance with fixed parameter

than other CSRBFs.

For an elastic transformation scheme, topology preservation is a major requirement. In [37] topology preservation

of various CSRBFs is analyzed in three cases, i.e., one, two and four landmark matching. In this paper, we evaluate

the topology preservation of Gneiting and Matérn functions. Although Matérn functions are well known in the statis-

tics literature [13, 25, 34], as far as we know, excepting [10], there is no work focuses on applying them to image

registration. We study and evaluate the properties of such functions in topology preservation based on a small number

of landmarks. Specifically, we analyze topology preservation using two criteria: the locality parameter of the RBFs

and the positivity of the determinant of Jacobian matrix. Moreover, for the different transformations we also compute

the errors committed. In addition, we study their behaviour focusing on a larger number of landmarks in case of land-

mark shift, scaling, contraction and expansion, and finally we compare the numerical results with the ones obtained

by standard techniques, such as Wendland functions. Furthermore, we analyze and compare the performance of some

RBFs in real medical images. In particular, we report some registration results, showing the applicability to a real

case and discussing the different possible choices of the shape parameter associated with the RBFs.

The paper is arranged as follows. In Section 2, we introduce two kinds of Gneiting and three examples of Matérn

functions. Sections 3-5 give the analysis about the topology preservation under the two criteria mentioned above,

dealing with the cases of one, two and four landmark matching, respectively. We also show some numerical results

of Gneiting and Matérn functions and compare them with Wendland functions. In Section 6 we evaluate the perfor-

mances of Gneiting and Matérn functions in four test cases, shift and scaling of a square and contraction and expansion

of a circle, using a large number of landmarks. Section 7 deals with a real MRI application. Finally, in Section 8 some

conclusions are given.

2. Gneiting and Matérn functions

In this paper, we consider 2D registration case. At first, we briefly introduce the transformation scheme of image

registration based on landmarks. Given a set of source landmark points SN={x j ∈ R
2, j = 1, 2, . . . ,N}, and the

corresponding pair of target landmark points TN={t j ∈ R2, j = 1, 2, . . . ,N}, generally one has to find a transformation

F : R2 → R
2 that satisfies the following constraint

F(x j) = t j. (1)

The transformation with landmarks based on RBFs has the following form

F(x) = x +

N
∑

j=1

α jΦ(‖ x − x j ‖),

where Φ is a RBF, α j = (α j1, α j2), and ‖ · ‖ denotes the Euclidean norm. Generally, each coordinate of the transfor-

mation is calculated separately, therefore the transformation can be described as Fk(x) = x +
∑N

j=1 α jkΦ(‖ x − x j ‖),
k = 1, 2. The coefficients α jk have to be computed, and the unique solvability is a necessary condition to be satisfied.

However, we know that Fk(x j) = tk j has a unique solution if the functionΦ is strictly positive definite on R
2 (see e.g.

[7, 36, 13]).

CSRBFs and globally supported RBFs have their own benefits for image registration. CSRBFs can guarantee the

locality of deformation, whereas small bending energy can be obtained by globally supported RBFs. In the following

we will use some of the most popular compactly supported Gneiting functions and globally supported Matérn ones as

transformation formulas.
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2.1. Gneiting’s functions

Starting with Wendland functions and applying the turning bands operator, Gneiting obtained a family of com-

pactly supported functions [17]. Following [13], we can start with a function ψs that is strictly positive definite and

radial on R
s for s ≥ 3, and applying the turning bands operator results

ψs−2(r) = ψs(r) +
rψ′s(r)

s − 2
, (2)

which is strictly positive definite and radial on R
s−2. For example, starting with the Wendland function ψ4,1(r) =

(1 − r)l+1
+ [(l + 1)r + 1] and applying the turning bands operator we obtain the functions

τ2,l(r) = (1 − r)l
+

(

1 + lr − (l + 1)(l + 4)

2
r2

)

, (3)

which are strictly positive definite and radial on R
2 provided l ≥ 7/2. We list some specific C2(R) functions from this

family for two choices of l, i.e.,

τ2,7/2(r)
.
=

(

1 − r

c

)7/2

+

(

1 +
7

2

r

c
− 135

8

(

r

c

)2
)

, (4)

and

τ2,5(r)
.
=

(

1 − r

c

)5

+

(

1 + 5
r

c
− 27

(

r

c

)2
)

, (5)

where c is the shape parameter used to define the width or the support size of transformations and (·)+ is the truncated

power function. We evaluate the performances of Gneiting functions in image registration and compare the image

registration properties with ψ3,1 = (1 − r
c
)4
+(4 r

c
+ 1). Such function is strictly positive definite in R

s, for s ≤ 3, and

commonly used in approximation problems.

2.2. Matérn functions

Matérn functions are quite common in the statistics literature and they have recently received a great deal of

attention. The following formula is the general form of Matérn functions [18],

M(r | v) =
21−v

Γ(v)
rvKv(r), (6)

where Kv is the Modified Bessel Function of the second kind of order v. The Fourier transform of the Matérn functions

is given by the Bessel kernels

M̂(w) =

(

1 + w2
)−β

> 0,

where β = v+ s
2
, and s is the dimension of the space, here s = 2. From the above Fourier transform, Matérn functions

are strictly positive definite and radial on R
s for all s < 2β, which guarantees the unique solvability of coefficients.

The three specific Matérn functions we consider here are

M1/2 = M

(

r | 1

2
, c

)

=
2

1
2

Γ( 1
2
)

(

r

c

)
1
2

K 1
2

(

r

c

)

.
= e−r/c,

M3/2 = M

(

r | 3

2
, c

)

=
2−

1
2

Γ( 3
2
)

(

r

c

)
3
2

K 3
2

(

r

c

)

.
=

(

1 +
r

c

)

e−r/c,

M5/2 = M

(

r | 5

2
, c

)

=
2−

3
2

Γ( 5
2
)

(

r

c

)
5
2

K 5
2

(

r

c

)

.
=

(

1 +
r

c
+

1

3

r2

c2

)

e−r/c,

where c has the same meaning as a parameter of Gneiting functions mentioned in Subsection 2.1.
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3. Topology preservation in one-landmark matching

Topology preservation is a necessary requirement for image registration. To preserve topology, the necessary

condition is the continuity of the function Φ and the positivity of the determinant of Jacobian matrix generated by F

at each point. In this section, we briefly recall some results contained in [5, 10]. We consider the situation of one

landmark matching where the source landmark p is shifted by ∆x along the x-axis direction and by ∆y along the y-axis

direction to the target landmark q. The coordinates of the transformation are

F1(x) = x + ∆xΦ(||x − p||), (7)

F2(x) = y + ∆yΦ(||x − p||),

where Φ is any RBF. From [16] we know that in 2D case the condition to keep positivity of the determinant is

∆
∂Φ

∂r
> − 1
√

2
(8)

with ∆ = max(∆x,∆y) and r = ||x − p||. This shows that the transformations defined by different RBFs preserve

topology if inequality (8) holds. As mentioned in Section 1 the support size of RBFs can determine the width of

registration. Precisely, the larger support size is, the larger deformation field is and vice versa. Therefore, if we could

find the minimum value of support size under the condition (8), the deformation field would be the smallest in which

topology preservation occurs. In particular, the smallest support size satisfying the constraint (8) is called optimal

locality parameter. In next subsections, we will compare the optimal locality parameters of ψ3,1, τ2,7/2, τ2,5, M1/2,

M3/2 and M5/2.

The optimal locality parameters of different transformations depend on ( ∂Φ
∂r

)min. Through calculations, we get

the results showed in Table 1. As we mentioned before, small locality parameter means the influence area at each

landmark is small. In fact this is beneficial for local deformation of images. For each isolated landmark, these

conditions are valid only if no other landmark is placed within the radius. For landmarks with overlapping support

area, calculation of optimal locality parameter is quite complex. In Section 5, we will study the behaviour of these

transformations in this case. But in one landmark matching, if the distance among landmarks is large, the landmarks

space is sparse. For this reason, we say that having a smaller optimal locality parameter is better. Table 1 shows

that the first three CSRBFs, i.e. ψ3,1, τ2,7/2 and τ2,5, have optimal parameters larger than the three Matérn functions

considered. Hence, in this point, M5/2 performs very well and M1/2, M3/2 are better than CSRBFs. Nevertheless, ψ3,1

is better than τ2,7/2 and τ2,5 because the optimal locality parameter is smaller.

ψ3,1 τ2,7/2 τ2,5 M1/2 M3/2 M5/2

c > 2.98∆ c > 5.09∆ c > 6.26∆ c > 1.10∆ c > 0.52∆ c > 0.3960∆

Table 1: Optimal locality parameters of different RBFs.

Some numerical results about topology preservation in this case can be found in [5, 10]. We observe that if locality

parameter c is much smaller than the optimal one, the deformed image will deeply be misrepresented above all around

the shifted point. Conversely, if the parameter is very large, the image will be deformed in the whole field.

4. Topology preservation for limited deformations: theoretical and numerical study

The computation of the optimal support value is much more complicated when several landmarks influence the

same region. For simplicity, we first consider the case of two single landmarks [37].

Let P = {(0, 0), (d, l)} be two landmarks in the source image and suppose that they are sent in Q = {(0,∆), (d, l−∆)}
in the target image, where d and l denote the horizontal and vertical distances between the two landmarks of the

source image, whereas ∆ is the displacement along vertical direction. To simplify the comparison we assume that the

displacement for both landmarks is the same, i.e. ∆, but in opposite direction. In this model, when either the two

landmarks are very close, or the distance is very large, the topology might be difficult to preserve after deformation.
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In this case, the locality parameter c is chosen large enough to ensure the influence regions of the two landmarks

intersect each other. On the other hand, small locality parameters result in a non-preserving topology similar to the

one-landmark matching case. Moreover, we assume ∆ < max(d, l) to guarantee existence of the optimal locality

parameter, essential condition to have the topology preservation.

Let us now consider components of a generic transformation F : R2 → R
2 obtained by a transformation of two

points, i.e.,

F1(x) = x + α1,1Φ(||x − P1||) + α1,2Φ(||x − P2||),

and

F2(x) = y + α2,1Φ(||x − P1||) + α2,2Φ(||x − P2||).

We acquire coefficients α1,1, α1,2, α2,1 and α2,2 so that the transformation transmits points P1 and P2 in Q1 and Q2,

respectively. To do that, we require that

F1((0, 0)) = 0, F1((d, l)) = d

and

F2((0, 0)) = ∆, F2((d, l)) = l − ∆.

Solving these two systems of two equations in two unknowns, we get

α1,1 = 0, α1,2 = 0, α2,1 =
∆

1 − Φ
(√

d2 + l2
) , α2,2 = −α2,1.

It follows that the determinant of the Jacobian matrix is

det (J(x, y)) = 1 + α2,1

∂Φ
( √

x2 + y2/c
)

∂y
+ α2,2

∂Φ
( √

(x − d)2 + (y − l)2/c
)

∂y
, (9)

and its minimum value is occurred at the midpoint between P1 and P2, i.e.,
(

d
2
, l

2

)

, when ∆ > 0 and the intersection

of the influence regions of two landmarks does not turn out to be negligible. We thus obtain the optimal locality

parameter when

det

(

J

(

d

2
,

l

2

))

= 0. (10)

Obviously, one can observe that

∂Φ
( √

x2 + y2/c
)

∂y

∣

∣

∣

∣

∣

∣

∣

∣

x = d
2
, y = l

2

= −
∂Φ

( √

(x − d)2 + (y − l)2/c
)

∂y

∣

∣

∣

∣

∣

∣

∣

∣

x = d
2
, y = l

2

,

so we get

det

(

J

(

d

2
,

l

2

))

= 1 + 2α2,1

∂Φ
( √

x2 + y2/c
)

∂y

∣

∣

∣

∣

∣

∣

∣

∣

x = d
2
, y = l

2

. (11)

4.1. Gneiting τ2,7/2

To find the optimal value of the parameter c, using Gneiting function τ2,7/2, we obtain (11) and compute the value

of α2,1, i.e.,

α2,1 =
∆

1 −














1 −
√

d2 + l2

c















7/2 













1 +
7

2

√
d2 + l2

c
− 135

8

d2 + l2

c2















.
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Setting r =
√

x2 + y2, we evaluate (4) at x = d
2

and y = l
2

∂Φ
( √

x2 + y2/c
)

∂y

∣

∣

∣

∣

∣

∣

∣

∣

x = d
2
, y = l

2

= −99

32

l

c2















1 −
√

d2 + l2

2c















5/2 













8 − 15

√
d2 + l2

2c















. (12)

Substituting then (12) in (11), we obtain

det

(

J

(

d

2
,

l

2

))

= 1 − 99

16c2

∆l















1 −
√

d2 + l2

2c















5/2 













8 − 15

√
d2 + l2

2c















1 −














1 −
√

d2 + l2

c















7/2 













1 +
7

2

√
d2 + l2

c
− 135

8

d2 + l2

c2















. (13)

From (10) it follows that the optimal parameter c for the Gneiting function τ2,7/2 is the solution of the equation (13),

providing

d2 + l2

c2
< 1.

4.2. Gneiting τ2,5

We look for the optimal value of the parameter c, using Gneiting function τ2,5. Then we compute α2,1, obtaining

α2,1 =
∆

42
z

c2
− 175

z3/2

c3
+ 315

z2

c4
− 294

z5/2

c5
+ 140

z3

c6
− 27

z7/2

c7

,

where, to simplify notation, we set z = d2 + l2.

Evaluating (5) at x = d
2

and y = l
2
, we derive

∂Φ
( √

x2 + y2/c
)

∂y

∣

∣

∣

∣

∣

∣

∣

∣

x = d
2
, y = l

2

= −21

2

l

c2

(

4 − 7

2

(d2 + l2)1/2

c
− 3

d2 + l2

c2
(14)

+
19

4

(d2 + l2)3/2

c3
− 2

(d2 + l2)2

c4
+

9

2

(d2 + l2)5/2

c5

)

.

Replacing now (14) in (11), we get

det

(

J

(

d

2
,

l

2

))

= 1 −
21∆l

(

4 − 7

2

z1/2

c
− 3

z

c2
+

19

4

z3/2

c3
− 2

z2

c4
+

9

2

z5/2

c5

)

42z − 175
z3/2

c
+ 315

z2

c2
− 294

z5/2

c3
+ 140

z3

c4
− 27

z7/2

c5

. (15)

From (10) we deduce that the optimal parameter c for the Gneiting function τ2,5 is obtained by finding the solution of

the equation (15), provided that

d2 + l2

c2
< 1.

4.3. Matérn M1/2

From (7), the optimal locality parameter c can be derived as

α2,1 =
∆

1 − e−
√

d2+l2/c
,
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and

∂Φ
( √

x2 + y2/c
)

∂y

∣

∣

∣

∣

∣

∣

∣

∣

x = d
2
, y = l

2

= − l

c
√

d2 + l2
e−
√

d2+l2

2c . (16)

According to (11), the determinant of Jacobian matrix generated by M1/2 is given by

det

(

J

(

d

2
,

l

2

))

= 1 − 2l∆e−
√

d2+l2/2c

c
√

d2 + l2
(

1 − e−
√

d2+l2/c

) . (17)

4.4. Matérn M3/2

Similarly, according to (7) the determinant of its Jacobian matrix can be calculated as follows

α2,1 =
∆

1 −
(

1 +
√

d2+l2

c

)

e−
√

d2+l2/c

,

and

∂Φ
( √

x2 + y2/c
)

∂y

∣

∣

∣

∣

∣

∣

∣

∣

x = d
2
, y = l

2

= − l

2c2
e−
√

d2+l2

2c . (18)

Now we obtain the Jacobian determinant of M3/2, i.e.,

det

(

J

(

d

2
,

l

2

))

= 1 − l∆e−
√

d2+l2/2c

c2

(

1 −
(

1 +
√

d2+l2

c

)

)

e−
√

d2+l2/c

. (19)

4.5. Matérn M5/2

Considering the same process of calculation used in the previous subsections, the determinant of Jacobian matrix

of (7) can be described as

α2,1 =
∆

1 −
(

1 +
√

d2+l2

c
+ d2+l2

3c2

)

e−
√

d2+l2/c

,

and

∂Φ
( √

x2 + y2/c
)

∂y

∣

∣

∣

∣

∣

∣

∣

∣

x = d
2
, y = l

2

= − l

6c2

(

1 +

√
d2 + l2

2c

)

e−
√

d2+l2

2c . (20)

Based on (11), we can get the determinant of M5/2 Jacobian matrix as follows

det

(

J

(

d

2
,

l

2

))

= 1 −
l∆e−

√
d2+l2/2c

(

1 +
√

d2+l2

2c

)

3c2

(

1 −
(

1 +
√

d2+l2

c
+ d2+l2

3c2

)

e−
√

d2+l2/c

) . (21)
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4.6. Analysis

Figure 1 shows the behaviour of the optimal locality parameter c by varying ∆, for d and l fixed. In both cases

we may note that function τ2,5 needs much larger supports to preserve the topology property than other RBFs that

we evaluated. With ∆ larger, the value of support size of τ2,5 increases significantly, especially in the first case when

d = l = 32. The functions ψ3,1 and τ2,7/2 have very similar behaviour. In fact, the latter have relative smaller optimal

support size, whereas Matérn functions need much smaller supports than these CSRBFs. For instance, when ∆ = 29,

for M1/2 and M3/2, c is less than 100 and for M5/2 c is less than 50. For other functions, c is more than 100 and less

than 150, exception for τ2,5 whose value of c is larger than 1000. We obtain the same result as Figure 6 shows us.
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Figure 1: In (a), we show the optimal locality parameter c in the two-landmark matching case by varying ∆ with

d = l = 32, while in (b) those with d = 32 and l = 64.

Let us now consider a uniform grid 257 × 257 whose deformation is given by the displacement of two landmarks.

By varying the displacement of such points, we can compare results by two criteria [37]:

1. The number of points where the determinant of the Jacobian is negative. Such number indicates the size of the

region with violated topology preservation.

2. The average of the negative Jacobian determinants. This parameter represents the severity of topology violation.

So the more the value is negative, the more the transformation might be bent or broken compared to the original

structure.

Figures 2-5 point out the point number where the determinant is negative and the average of negative determinants,

both of them computed by varying values of c. In particular, Figure 2 represents the matching case of very large

deformation (d = l = 32, ∆ = 28). When c is small, for example c = 45, except for M5/2, all other functions result

in severe topology violations. M1/2 and M3/2 have a smaller number of points in which det(J(x, y)) < 0 than ψ3,1,

τ2,7/2 and τ2,5. This means the violation fields of M1/2 and M3/2 are smaller. On the contrary, ψ3,1 presents the largest

number of points in which det(J(x, y)) < 0 and a relatively larger average in modulus. Moreover, this graph shows that

ψ3,1 violates the topology preservation in the largest areas, and its violations turn out to be relatively slight compared

with τ2,7/2 and τ2,5. Among the considered CSRBFs, τ2,5 violates the smallest area, but it presents a small mean value

in modulus and therefore we have a more significant topology violation in a slightly smaller region. When c is large,

such as c = 120, M3/2 and M5/2 can preserve topology well, since the number of points in det(J(x, y)) < 0 is almost

equal to zero, so there is almost no field violation. We can observe that, when c is larger, the negative number of

points of det(J(x, y)) of ψ3,1 is smaller and, when c = 120, it has a negative number points smaller than τ2,7/2 and τ2,5.

A diametrically opposite situation happens when c = 45. In this case, ψ3,1 has a larger violation area.

Figure 3 depicts the case of a relatively large deformation (d = 32, l = 64, ∆ = 32). For small supports, such as

c = 60, all Matérn functions preserve topology, whereas the CSRBFs ψ3,1, τ2,7/2 and τ2,5 have violation areas. Among

them, τ2,7/2 and τ2,5 do not preserve the topology of a small region, oppositely ψ3,1 has much smaller violation area.
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Furthermore, by increasing support we have a more extended topology non-preservation using τ2,7/2 and τ2,5, whereas

for other functions we have a progressive improvement, up to obtain much small regions in the case of ψ3,1.

Finally, Figures 4-5 refer to the case of ∆ < 0. When d = 8, l = 0 and ∆ = −8 there is no topology violation

for the RBFs we considered. Instead, if ∆ = −16, a quite different situation occurs. M5/2 has a very large number of

negative points of det(J(x, y)) and, increasing the number of support size, the violation region increases significantly

until c = 130. This means that in this case M5/2 violate image in very large regions, but we can see that it is stable

and has relative large average in modulus which means its violation turns out to be slight. All the other RBFs have

relative small negative points. Among them, M1/2 has the smallest average, therefore it has the most severe violations.

Moreover, the functions τ2,7/2 and τ2,5 have more slight violation than M1/2 but more severe than ψ3,1.
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Figure 2: In the two-landmark case we show: the number of points where there is no topology preservation by varying

the support with d = 32, l = 32 and ∆ = 28 in the left figure; the average of the negative Jacobian determinants by

varying the support with d = 32, l = 32 and ∆ = 28 in the right figure.
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Figure 3: In the two-landmark case we show: the number of points where there is no topology preservation by varying

the support with d = 32, l = 64 and ∆ = 32 in the left figure; the negative Jacobian determinants by varying the

support with d = 32, l = 64 and ∆ = 32 in the right figure.

4.7. Numerical results

We consider a grid [0, 1] × [0, 1] and then compare results obtained by the grid distortion in the shift case of two

landmarks {(0.375, 0.350), (0.625, 0.55)} in {(0.375, 0.5), (0.625, 0.4)}, respectively. We report Figure 6 using c = 0.5
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Figure 4: In the two-landmark case we show: the number of points where there is no topology preservation by varying

the support with d = 8, l = 0 and ∆ = −8 in the left figure; the average of the negative Jacobian determinants by

varying the support with d = 8, l = 0 and ∆ = −8 in the right figure.
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Figure 5: In the two-landmark case we show: the number of points where there is no topology preservation by varying

the support with d = 8, l = 0 e ∆ = −16 in the left figure; the average of the negative Jacobian determinants by varying

the support with d = 8, l = 0 and ∆ = −16 in the right figure.

as support size for CSRBFs and relative small shape parameters for Matérn functions. In fact, they are c = 0.1 for

M3/2 and M5/2. We observe that Gneiting functions present, unlike other functions, a good topology preservation in

the areas where there is no any influence of the modified landmarks, but a severe distortion in the region of landmarks’

influence. This outcome is in agreement with the results obtained in the previous section where from Figure 2 we noted

that Gneiting functions present a smaller number of points having a negative Jacobian determinant, but at these points

the average turns out to be a negative number smaller than that of other functions. Oppositely, Matérn functions can

preserve topology well in the region and slight distortion of landmark’s influence, even if in this case the whole image

is deformed slightly. When support size is relatively large, for instance c = 0.5, we can see the severe deformation of

the whole image as the Figure 7 shows us.

5. Topology preservation for more extended deformations

In this section, we evaluate topology preservation of RBFs for four landmarks. We divide this section into two

parts. In the first part, we discuss topology properties with very large supports such that they are able to cover the

whole domain. In this case, the influence of each landmark extends on the entire image, thus generating global
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(a) Wendland ψ3,1, c = 0.5
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(b) Gneiting τ2,5, c = 0.5
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(c) Matérn M3/2, c = 0.1
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(d) Matérn M5/2, c = 0.1

Figure 6: Deformation results of two-landmarks matching; the source landmarks are marked by a circle (◦), while the

target ones by a star (∗).

deformations. For this aim, we consider four inner landmarks in a grid, located so as to form a rhombus at the center

of the figure, and we suppose that only the lower vertex is downward shifted of ∆ [37]. The landmarks of source

and target images are P = {(0, 1), (−1, 0), (0,−1), (1, 0)} and Q = {(0, 1), (−1, 0), (0,−1 − ∆), (1, 0)}, respectively, with

∆ > 0. In the second part, we study the specific case that the distance between two landmarks is very small. This

means that the two deformed fields will be intersected, thus topology violation will occur. For analyzing the properties

of RBFs in this situation, we analytically compare the results of numerical experiments among these RBFs.

5.1. Global deformation for four landmarks

Let us now consider components of a generic transformation F : R2 → R
2 obtained by a transformation of four

points P1, P2, P3 and P4, namely

F1(x) = x +

4
∑

i=1

α1,iΦ(||x − Pi||),

F2(x) = y +

4
∑

i=1

α2,iΦ(||x − Pi||).
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Figure 7: The whole deformation results of two-landmarks matching for Matérn functions M1/2 (left), M3/2 (center)

and M5/2 (right) with c = 0.5; the source landmarks are marked by a circle (◦), while the target ones by a star (∗).

The x-axis coefficients matrix is obtained as (22), so that the transformation sends Pi to Qi, with i = 1, . . . , 4,





























1 α β α

α 1 α β

β α 1 α

α β α 1


















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








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












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





α1,1

α1,2

α1,3

α1,4





























=





























0

0

0

0
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








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







(22)

and the y-axis coefficients matrix has the following form:










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

1 α β α
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α β α 1
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




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




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
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
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
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






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







(23)

where α = Φ

( √
2

c

)

and β = Φ
(

2
c

)

. The solutions of the systems (22) and (23) are

α1,1 = 0, α1,2 = 0, α1,3 = 0, α1,4 = 0, (24)

and

α2,1 =
β2 + β − 2α2

(1 − β)[(1 + β)2 − 4α2]
∆, α2,2 =

α

(1 + β)2 − 4α2
∆, (25)

α2,3 = −
1 + β − 2α2

(1 − β)[(1 + β)2 − 4α2]
∆, α2,4 = α2,2.

For simplicity, we denote Φi = Φ(||(x, y) − Pi||/c), i = 1, . . . , 4.

The determinant of the Jacobian matrix is

det (J(x, y)) = 1 +

4
∑

i=1

α2,i

∂Φi

∂y
. (26)

In this case, the influence of each landmark occurs on the whole image, hence the support c we choose is very large

to fulfill this aim. Since computation of the Jacobian matrix determinant in four landmarks is complex, we use Taylor

expansion and consider || · ||/c to be infinitesimal so that omit terms of higher order to approximate functions.

For complexity of calculations, we use Taylor expansion and omit higher order terms to approximate RBFs which

we evaluate in above sections. The process to calculate them is:

• Step 1: using Taylor expansion to approximate RBFs.
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• Step 2: calculating α and β so that coefficients can be obtained using the approximations in Step 1. In this

step, through calculation we obtain the approximations

α2,1 ≈ −α2,2 ≈ α2,3 ≈ −α2,4.

In fact, for example, being β ≈ 2α − 1, we have

α2,1 ≈
β2 + β − 2α2

(1 − β)[(1 + β)2 − 4α2]
∆

≈ 4α2 − 4α + 1 + 2α − 1 − 2α2

(1 − 2α + 1)[(1 + β)2 − 4α2]
∆

= − 2α(1 − α)

2(1 − α)[(1 + β)2 − 4α2]
∆

= − α

(1 + β)2 − 4α2
∆ = −α2,2.

• Step 3: using the approximation in Step 1 to approximate the first derivatives of different RBFs, then com-

puting ∂Φi

∂y
.

• Step 4: calculating the determinants of different RBFs using formula (26).

Through the four stages, we get the following determinant of different Jacobian matrices:

det (J(0, y))ψ3,1
= det (J(0, y))τ2,7/2

= det (J(0, y))τ2,5
≈ 1 − 0.6402∆

(

y2 + 1 − y

√

y2 + 1

)

, (27)

det (J(0, y))M1/2
≈ 1 − 2.4142∆















−1 +
y

√

y2 + 1















, (28)

det (J(0, y))M3/2
≈ 1 − 1.7071∆

(

y2 + 1 − y

√

y2 + 1

)

, (29)

det (J(0, y))M5/2
≈ 1 − 2.5607∆

(

y2 + 1 − y

√

y2 + 1

)

. (30)

Further details on numerical experiments and some explanations on this studied case, where only one landmark is

moved, can be found in [37, 10, 5].

5.2. Analysis of the locality parameter

In this part, we discuss the influence of locality parameter when distances among landmarks are small. To an-

alytically compare the numerical results, the source landmarks we choose are {(0.5, 0.65), (0.35, 0.5), (0.65, 0.5),

(0.5, 0.35)} and the target ones are {(0.5, 0.65), (0.45, 0.5), (0.55, 0.5), (0.5, 0.35)}. Deformation occurs in x-axis di-

rection. We note that the distance between two horizontal landmarks is only 0.3. The landmarks are very close and

when deformation occurs in horizontal direction, violation occurs very easily. In previous sections, we evaluated

optimal locality parameter to preserve topology after deformation using different RBFs. But in this case, the optimal

locality parameter not only depends on the transformed functions but also depends on the position of the landmarks.

The locality parameter we choose can not be larger than the deformed radius between the two landmarks: 0.15,

otherwise, the two deformed field could be intersect.

Figure 8 shows the results when c = 0.1, which is smaller than the radius, and c = 0.5. We can observe that τ2,5

for c = 0.1 has much severe violation. This means that, in order to preserve topology, c has to be larger than 0.1.

We observe that the intersection field of ψ3,1 is smaller than τ2,5 when c = 0.5. M3/2 has larger intersection field than

any other RBF. This happens because they do not have compact support and deformation of each landmark affects the

whole image. When c = 0.1, M1/2 has a good performance: in fact, it can preserve topology well without intersecting

deformation.
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(a) Wendland ψ3,1, c = 0.1
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(b) Gneiting τ2,5, c = 0.1
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(c) Matérn M1/2, c = 0.1
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(d) Matérn M3/2, c = 0.1
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(e) Wendland ψ3,1, c = 0.5

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(f) Gneiting τ2,5, c = 0.5

Figure 8: Deformation results of four landmarks; the source landmarks are marked by a circle (◦), while the target

ones by a star (∗).

6. Experimental results for simple objects using a large number of landmarks

In this section, we consider two pairs of schematic models for simple objects. They are square shift and scaling,

which are discussed in [2], and circle contraction and expansion, which are evaluated in [22]; see also [3] for further

test models. These experiments simulate classic medical cases, such as specific parts of images shift or scaling, either
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shrink or grow.

6.1. Properties of various RBFs in square shift and scaling

Square shift and scaling of simple objects are considered in this subsection. We denote with X the set of 40 ×
40 points of a regular grid superimposed on the source images. In shift case, we use 64 landmarks and 4 quasi-

landmarks to transform the grid. In scaling model, we use 64 landmarks to evaluate the deformation of the various six

transformations, which are considered in the above sections.

For analyzing the behaviour of these transformations in both of cases, we use the root mean square error (RMSE)

as the test rule, which has the following form

RMSE =

√

∑

x∈X ‖ x − F(x) ‖2
2

∑

x∈X
. (31)

In both of cases, the maximum displacement among landmarks is 0.1, therefore based on Table 1, we start with the

optimal locality parameters of the six functions: 0.3, 0.509, 0.626, 0.11, 0.052 and 0.0396 to choose the smallest

number of support size such that all the registration results are good as Figures 9 and 10 show us.

RBFs RMSEs

ψ3,1 c = 0.4 7.7628E-002

τ2,7/2 c = 3.3 8.7123E-002

τ2,5 c = 1.1 8.3158E-002

M1/2 c = 0.14 8.2196E-002

M3/2 c = 0.083 8.4720E-002

M5/2 c = 0.05 7.8272E-002

RBFs RMSEs

ψ3,1 c = 0.4 6.5634E-002

τ2,7/2 c = 0.9 7.5910E-002

τ2,5 c = 0.9 6.7772E-002

M1/2 c = 0.14 6.3797E-002

M3/2 c = 0.083 7.0689E-002

M5/2 c = 0.067 8.8005E-002

Table 2: Comparison of errors among different transformations in square shift (left) and square scaling (right).

In Table 2, we can observe that based on topology preservation condition, in shift case, ψ3,1 and M5/2 have very

similar RMSEs which are smaller than the rest of RBFs. The other RBFs perform similar RMSEs with various

c. Unlike ψ3,1 and Matérn, Gneiting functions need much larger c to obtain good registration results in shift case.

Moreover, we observe that the Wendland ψ3,1 has a limited but larger deformation close to the shifted square, while

in the rest of the image the result is smoother and not deformed. In square scaling, M1/2 has the smallest RMSEs

and relatively smaller c compared with the other RBFs. This means that it has a good similarity after registration.

However, Figure 10 shows that M1/2 achieves a smooth registration result. In this case, ψ3,1, τ2,7/2 and M3/2 give

larger deformations and higher errors.

6.2. Properties of various RBFs in circle contraction and expansion

Other two test examples are circle contraction and expansion respectively. As already mentioned above, we still

denote with X the set of 40 × 40 points of a regular grid superimposed on the source images. In both of cases, we use

20 source and target landmarks and 40 quasi-landmarks.

Similarly as the first two cases, when these functions are chosen to obtain good registration results with the

smallest support size, the RMSEs are very similar (see Table 3). In view of the support size taken, we can see that in

circle contraction τ2,7/2 needs a value of c much larger than other functions. Best results are obtained using the Matérn

family. In particular, M1/2 has small RMSEs in these schematic models with smooth registration results.

7. Real application to medical brain images

In this section, we evaluate registration results in two magnetic resonance brain images, which are displayed in

Figure 13 (a)-(b). The pixels of the image is 256 × 256 and we choose 18 source landmarks marked by circle (◦)
and the corresponding 18 target landmarks marked by star (∗). To acquire the results, we compare the images after

registration obtained by using various RBFs. For brevity, we report only the most significant images. The results of
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(a) Wendland ψ3,1, c = 0.4
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(b) Gneiting τ2,7/2, c = 1.2
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(c) Matérn M1/2, c = 0.14
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(d) Matérn M3/2, c = 0.083

Figure 9: Deformation results of square shift; the source landmarks are marked by a circle (◦), while the target ones

by a star (∗).

RBFs RMSEs

ψ3,1 c = 0.4 5.0239E-002

τ2,7/2 c = 5 5.3654E-002

τ2,5 c = 0.7 4.9016E-002

M1/2 c = 0.1 4.0929E-002

M3/2 c = 0.083 4.9917E-002

M5/2 c = 0.04 4.4990E-002

RBFs RMSEs

ψ3,1 c = 0.4 3.8372E-002

τ2,7/2 c = 0.55 3.9521E-002

τ2,5 c = 0.7 3.6212E-002

M1/2 c = 0.1 3.3222E-002

M3/2 c = 0.083 3.9398E-002

M5/2 c = 0.04 3.4984E-002

Table 3: Comparison of errors among different transformations in circle contraction (left) and circle expansion (right).

Figure 13 show that in this medical brain case, the shape parameter should be slightly larger than in test cases. We can

observe that among these transformations, M3/2 gives the best registration result; in particular, we remark that Matérn

functions performs better with large shape parameters c and a relatively big number of landmarks. Good results are

also obtained using the Gneiting family but they are not so good as Matérns are. This is probably due to the oscillating

behaviour of Gneiting functions. Specifically, the best outcome is achieved by τ2,7/2 with c = 5. A very similar good
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(a) Wendland ψ3,1, c = 0.4
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(b) Gneiting τ2,7/2, c = 0.9
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(c) Matérn M1/2, c = 0.14
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(d) Matérn M5/2, c = 0.067

Figure 10: Deformation results of square scaling; the source landmarks are marked by a circle (◦), while the target

ones by a star (∗).

performance for this function was previously obtained in the test case of circle contraction, see Table 3.

8. Conclusions

In this paper, we at first evaluated the performances of topology preservation for ψ3,1, τ2,7/2, τ2,5, M1/2, M3/2 and

M5/2 in one, two and four landmarks. For the isolated landmark model, Matérn functions have the smallest optimal

locality parameter. In particular, if no other landmark is placed within the radius, M5/2 has the best performance

among these RBFs. In two landmarks matching, with fixed landmarks, the number of optimal locality parameter c of

Gneiting functions increases significantly when the displacements increase. On the other hand, Matérn functions need

smaller optimal locality parameters. Generally, Matérn functions in this case violate images in smaller regions and

their violations are slighter if we refer to the two criteria defined in Subsection 4.6. Conversely, Gneiting functions

have much smaller averages when locality parameter is small, therefore Gneiting functions violate topology severely.

When displacement is large with the opposite direction, we found numerical results for the Matérn family are better

than the ones obtained with the other RBFs. More precisely, M1/2 achieves better accuracy than M3/2 and M5/2.

However, in general, except M5/2, all the other RBFs we evaluated can preserve topology well because the number of
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(a) Wendland ψ3,1, c = 0.4
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(b) Gneiting τ2,5, c = 0.7
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(c) Matérn M1/2, c = 0.1
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(d) Matérn M5/2, c = 0.04

Figure 11: Deformation results of circle contraction; the source landmarks are marked by a circle (◦), while the target

ones by a star (∗).

negative points is very small. In four landmarks case, a large value of c must be chosen to obtain a smooth deformation.

In this case, M1/2 has the best performance. In the second part of the paper, we analyzed the performances of these

RBFs in some test cases involving a large number of landmarks. The appropriate c is chosen, also considering the

analysis of the parameters done in topology preservation study. Numerical experiments show again that M1/2 gives the

best registration results among Matérn functions. Also Gneiting functions with large shape parameters can perform

well but deformations sometimes significantly affect the trasformed image. These deformations are localized perhaps

because of the oscillating behaviours of such functions. However, we can state that for all RBFs we obtain similar and

quite low RMSEs. Finally, results deriving from test cases are confirmed in this medical MRI application. This real

situation shows applicability of the schemes analyzed in the paper.
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Figure 12: Deformation results of circle expansion; the source landmarks are marked by a circle (◦), while the target

ones by a star (∗).
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(f) M1/2, c = 5

Figure 13: The two MRI brain images with related landmarks are given in (a) and (b); registration results are from (c)

to (f). The source landmarks are marked by a circle (◦), while the target ones by a star (∗).
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