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Abstract

Recently sixteen 3-dimensional differential systems exhibiting chaotic motion
and having no equilibria have been studied, and it has been graphically observed
that these systems have a period-doubling cascade of periodic orbits providing
a route to chaos. Here using new results on the averaging theory we prove
that these systems exhibit, for some values of their parameters different to
the ones having chaotic motion, either a zero—Hopf or a Hopf bifurcation, and
graphically we observed that the periodic orbit starting in those bifurcations is
at the beginning of the mentioned period—doubling cascade.
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1. Introduction and statement of the main results

In general the equilibria of a chaotic nonlinear system play an important
role in its dynamics. In fact, one of the most important methods for obtaining
3-dimensional chaotic systems is the Shilnikov’s method [1], which using a ho-
moclinic orbit from the intersection of the stable and unstable manifolds of a
saddle-focus equilibrium point with specified eigenvalues, provides the existence
of a horseshoe in the neighborhood of this orbit and, consequently the existence
of chaotic motion.

However some particularly important natural phenomena are described by
nonlinear systems having no equilibria. Such as, the Noose-Hover oscillator [2],
the Wei system [3] and the Wang—Chen system [4]. These nonlinear systems
present chaotic behavior that cannot be detected by Shilnikov’s method.

The increasing interest in finding examples of simple chaotic flows without
equilibria have been motivating many researchers in recent times, see for in-
stance [5, 6, 7, 3, 8]. The theoretical and practical importance of these systems
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converted this subject in a new attractive research direction. Although there is
still little knowledge about the characteristics of such systems.

In this paper we shall study the existence of zero-Hopf bifurcations in 3-
dimensional systems, and graphically we will show that such bifurcations some-
times are the starting bifurcation of a rout to chaos. In general a zero-Hopf
bifurcation is a codimension-two bifurcation of a 3-dimensional autonomous dif-
ferential equation with a zero-Hopf equilibrium, and a zero-Hopf equilibrium of
a 3-dimensional autonomous differential equation is an equilibrium point having
two purely conjugate imaginary eigenvalues and a zero eigenvalue. Due to the
lack of a general theory describing all the possible kinds of bifurcations that an
unfolding of a zero-Hopf bifurcation can produce, most of the systems exhibit-
ing these kind of bifurcations must be studied directly. In this paper we use
averaging theory for detecting periodic solutions bifurcating from a zero-Hopf
equilibrium. Furthermore, using Theorem 3 we were able to detect periodic
solutions in very degenerate cases, for instance when the first averaged equation
has a continuum of zeros.

In 2013 Jafari et al [5] have reported a catalogue of seventeen elementary
three dimensional chaotic flows. This catalogue contains most of the elementary
examples known of such systems and it includes the systems of the Noose-Hoover
oscillator, the Wei system and the Wang—Chen system, listed there as system
(1), (2) and (3), respectively. In [5] the authors used their own custom software
to search for the algebraically simplest three-dimensional chaotic systems with
quadratic nonlinearities and no equilibria. The search was inspired by the ob-
servation that each of the previously known examples of such systems contains
a constant term (here represented by a), and that if the constant is set to zero,
the resulting system is non-hyperbolic (the equilibria have eigenvalues with real
part equal to zero). The method used to find these systems is that proposed in
[9].

In this paper we use recent results on averaging theory for studying the zero-
Hopf and the Hopf bifurcation of sixteen systems from the seventeen of [5], all
of them have a parameter a € R. The averaging method could provide informa-
tion about periodic solutions in all systems presented in [5] with the exception
of their system SNE 14, because the present results on the averaging theory
applied to such system do not provide any information about their periodic so-
lutions. This is the reason that such differential system is not considered here.
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Each of the systems (1)—(10) have an equilibrium that undergoes a zero-Hopf
bifurcation at @ = a* = 0, and no equilibria for a > 0. Each of the systems
(11)—(16) have an equilibrium that undergoes a Hopf bifurcation at some a = a*.
The limit cycle, which appears in this Hopf bifurcation, later on produces a
period-doubling cascade, and finally a chaotic attractor with no equilibria, i.e.
the equilibrium point which exhibits the Hopf bifurcation disappears before the
chaotic attractor appears.

In this paper these sixteen chaotic flows are studied. Jafari et al [5] have
reported numerically a period doubling cascade of periodic orbits originating
the route to the chaotic motion in these systems. Here we graphically observe
that the first periodic orbit performing the period doubling bifurcation detected
by Jafari et al emerges in those systems at a zero-Hopf or Hopf bifurcation. This
helps to understand the mechanism of chaos in these systems, and the objective
of this paper is to show the existence of these zero-Hopf or Hopf bifurcations
using the averaging theory.

One of the contributions of this work is to show that in many cases the peri-
odic solutions that generate (via period-doubling) the chaotic attractor started
with a periodic orbit coming from a zero—Hopf or a Hopf bifurcation. Using a
suitable formulation of the averaging theory this paper complement the study
of the zero—Hopf bifurcation started in [10].

The next theorem shows that the systems considered exhibit a zero—Hopf bi-
furcation at @ = 0. Although we can check that these systems have no equilibria



when a > 0.
Theorem 1. The following statements hold.

(7) The differential systems (1)—(10) exhibit a zero—Hopf bifurcation at a = 0,
more precisely for a > 0 sufficiently small they have a periodic orbit which
tends to a zero-Hopf equilibrium when a — 0.

(#i) All the periodic solutions emerging in the zero—Hopf bifurcation are non-
hyperbolic, with the exception of the differential system (2) that has a
hyperbolic periodic solution.

(#i7) All the periodic solutions in the zero—Hopf bifurcation emerge around the
zero-Hopf equilibrium point located at the origin of coordinates, with the
exception of system (10), which has the periodic solution emerging from
the zero-Hopf equilibrium point (1,0,0).

Another interesting aspect of some differential systems provided in [5] is
that some of them have equilibria only if the parameter a belongs to convenient
intervals. In these intervals a Hopf bifurcation occurs and a periodic solution
emerge in the system, but as a increases the equilibria disappear and the isolated
periodic solution coming from the Hopf bifurcation starts its cascade of period-
doubling. The differential systems having this behaviour are (11)—(16), in fact
for a < 5/36 system (11) has the equilibria

Py = (% (5 +v/25 — 180a) , 0, 1—18 (5+ V25— 180a)> :

such that when a = 0 the origin (P-) is an equilibrium point with eigenvalues
A1,2 = +i and A3 = —1. Similarly, if a < 0 system (12) has the equilibria

)

, £
2

Pi:<j:

if @ = —196 the equilibrium point P} becomes a Hopf equilibrium with eigen-
values \; o = 44+/7 and A3 = —8. System (13) has the equilibria

Py = (+v=a,0,£v—a),

for a < 0. When a = —25/16 the equilibria P, is a Hopf equilibrium with
eigenvalues \; o = +iv/2 and A\3 = —5/4. System (14) has the equilibria

Py = (+v=a,0,0),

for a < 0 and for a = —25 the equilibria P. becomes a Hopf equilibrium with
eigenvalues \; o = +iv/5 and A3 = —2. System (15) is considered after the
statement of Theorem 2. Finally, system (16) has the equilibria

Py = <% (5 +v/25 — 130a) , 0, 1—13 (5425 — 130a)> ,

for a < 5/26 and when a = —560/1849 the equilibrium point P_ is Hopf equi-
librium with eigenvalues A\ 2 = +iv/3 and A3 = —69/43.



Theorem 2. Consider the differential systems (11)~(16). The following state-
ments hold for € # 0 sufficiently small with ag > 0.

(i) Let a = age®. System (11) has a Hopf bifurcation at a = 0 and a periodic
solution emerges from the origin of coordinates of this system.

(ii) Let a = —196 + ase?. System (12) has a Hopf bifurcation at a = —196
and a periodic solution emerges from the equilibrium point (—7,—7,0).

25 25
(7i1) Let a = ~16 + axe?. System (13) has a Hopf bifurcation at a = BT and

5 5
a periodic solution emerges from the equilibrium point <_Z’ 0, Z)
(iv) Let a = —25 + age?. System (14) has a Hopf bifurcation at a = —25 and
a periodic solution emerges from the equilibrium point (—5,0,0).

(v) Let a = % + ase?. System (15) has a zero-Hopf bifurcation at a = 8

4 4
and a periodic solution emerges from the equilibrium point <€’ 5 5)
560

560
N L =_ 7 2, 1 H ; ) =——0"
(vi) Leta 1349 + age®. System (16) has a Hopf bifurcation at a 1840

10 10 10
d jodic soluti th ilibri nt | ——,——,——|.
and a periodic solution emerges from the equilibrium poin < B 13 43>
To illustrate graphically the relation between the periodic solutions provided
by Theorem 2 and the chaotic attractors presented in [5] we shall use system
(16) as an example. First we observe that for a < 5/26 the system has the
following equilibrium point

po = (11—3 (5 — V25 —130a), % (5 — 25 —130a), % (5— 25— 130a)> )

560
Taking a = 1349 + age? and ¢ > 0 sufficiently small system (16) has a

periodic solution as stated by Theorem 2(vi). In this case the equilibirum point

T 560

po exists only if 0 < e < 22—3 &799 ~ 0.54. For instance, taking ag = ——— +2

and e = 0.002 it can be seen that the solution of system (16) starting at (1, —91, 0)
converges to the periodic solution, see Figure 1. Increasing the value of €, for
instance ¢ = 0.251 and € = 0.511, the periodic solution increases its size and still
remains stable, see Figures 2 and 3 respectively. For all the previously values of
¢ the point pg is an equibilibrium point of system (16). However, for ¢ = 0.691
and € = 0.97 the system has no equilibria and we can see that the periodic
solution starts its cascade of period-doubling, see Figure 4 and 5. Taking e =1
the system has a strange attractor as it is reported in [5], see Figure 6. These
solutions were plotted for 0 < ¢ < 1000.
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Figure 5 Figure 6
In the next section we present the proofs of our results.

2. The averaging theory

The averaging theory is one of the classical tools for studying the solutions
of the nonlinear dynamical systems, and in particular their periodic solutions
[11]. Here it will be used for proving Theorems 1 and 2.

We consider the differential systems in the normal form for applying aver-
aging theory

x =Fo(t,x) + eF1(t,x) + e2Fa(t, x) + °F3(t, x) + *F(t, x, ¢), (17)

with x in some open Q subset of R", ¢ € [0,00), € € [—¢£0,0]. We assume F;
and F for all ¢ = 1,2,3 are T—periodic in the variable ¢. Let x(¢, z,0) be the
solution of the unperturbed system

X = Fo(t, X)

such that x(0,2z,0) = z. We define M (¢, z) the fundamental matrix of the linear
differential system
. OFy(t,x(t,z,0
g = OFoltxttn0)
x

The displacement map of system (17) is defined as
d(z,e) = x(T,z,¢) — z. (18)
In order to have d(z,e) well defined we assume that

(H) For |e| # 0 sufficiently small, there exists an open set U C €2 such that
for all z € U the solution x(t,z, ) is defined on the interval [0,#, .)) with
tize) >T.



This hypothesis is always true when the unperturbed system has a manifold of
T-periodic solutions in U. Writing the displacement map (18) in power series
of € we obtain

d(z,e) = go(z) +eg1(z) + e2gy(z) + 53g3(z) +e'g(z, €),
where for i = 0,1,2,3 we have

gi(z) = M(T,2) Y2 (19)

il
being

vo(t, z) =x(¢,2,0) — z,

vi(t,z) :M(t,z)/0 M(r,2)"'Fy(1,x(7,2,0))dr,

t
2(t.2) <M(t.) [ M(r2) | 2Fa(rx(r,2.0) + 25 rx(rx 0y (:2)
0
0?F, 9
+ W(T, x(7,2,0))y1(7,2)” | dr,
¢ = OF,
yvs(t,z) =M (t,z) M(t,z) 6F;5(1,x(7,2,0)) + GK(T,X(T, z,0))y1(7, z)
0
0°F, 5 OF,
+ SW(T, x(71,2,0))y1(r,2)° + 3K(7‘, x(7,2,0))y2(7,2)

O*F
+ 3Y2 (7-7 Z)T 8X20

(1,x(7,2,0))y1 (7, Z)3‘| dr.

(1,x(71,2,0))y1 (7, 2)

03F,
ox3

The functions g1, g2 and gz will be called here the averaged functions of system
(17).

We say that system (17) has a periodic solution bifurcating from the point
zy if there exists a branch of solutions z(e) for the displacement function such
that d(z(e),e) = 0 and z(0) = zo.

Now we will state the theorem about the existence of periodic solutions of
system (17). The methodology used here was introduced for studying systems
such that the unperturbed part has a sub-manifold of T-periodic solutions, see
for instance [12] and [13]. Here we write the result in a way that make it more
adaptable and easy to apply. This result has been used for studying bifurcation
of periodic orbits into the Lorenz and FitzHugh-Nagumo system [14]. In [15]
this formulation is presented in a more general way. Assume m < n, and let
7 :R™ xR*™™ — R™ and 7t : R™ x R*™™ — R® ™ denote the projections
onto the first m coordinates and onto the last n — m coordinates, respectively.



For a point z € U we also consider z = (a,b) € R™ x R"~™. Cousider the graph
Z={z4=(,B(a)):acV}cCU, (20)
where V is an open set of R” and 8: V — R™ ™ is a C* function.

Theorem 3. Let r € {0,1} such that g, is the first nonzero averaged function.
In addition to hypothesis (H) assume that

(i) The averaged function g, vanishes on the graph (20). That is g.(za) = 0
forallaeV.

(#3) The Jacobian matriz

AOC FOC
Dg(za) = <Ba Aa>

where Ao = Damgr(2a), Do = Dymgr(2a), Ba = Damtg,(za) and Ay =
Dyt g,(24). Satisfies det(Ay) # 0 for all a € V.

We define the functions

fi(a) =— FaAglﬁLgv%l(za) + 78r11(Za),

_ 1 1 827Tgr ongr i1

2(a) = — AL g (2a),

32 1 - B 1 -
t2(a) == A7 ( S (@a)2(0)? + 27— (2070 (a) + 2wigr+2<a>> .

(Za)72 (0‘)2 + (za)y2() + T8 12(2a),

Then the following statements hold.

(a) If there exists a* € V such that fi(a*) = 0 and det (Df1(a*)) # 0 then
for |e| # 0 sufficiently small, there is an initial condition z(e) € U such
that z(0) = z~ and the solution x(t,z(g),e) of system (17) is T-periodic.

(b) Assume that f1 = 0. If there exists a* € V such that fa(a*) = 0 and
det (D fa(a*)) # 0, for |e| # O sufficiently small there is an initial condi-
tion z(e) € U such that z(0) = z,+ and the solution x(t,z(e),e) of system
(17) is T-periodic.

Consider r € {0, 1}, @ = z and the hypothesis (H). Thus the result of the
above theorem follows even assuming that g, = 0. In this case we take 7 and
71 as the identity and the null operator respectively and no assumptions about
A,. Then we have the following corollary.

Corollary 4. Forr € {0, 1} assume that g, = 0. If there exists z* € Q such
that gr4+1(z*) = 0 and Dgr+1(2*) # 0 then there exists a T-periodic solution
x(t,z(e),e) for system (17) such that z(0) = z*.



The averaging theory allows to find periodic solutions for periodic non-
autonomous differential systems. However here we are interested in using it
for studying the periodic solutions bifurcating from a zero-Hopf equilibrium
point of the autonomous differential systems (1)—(16). The algorithm for doing
that is the following.

(1)

(i)

(iii)

(iv)

(v)

First we must identify the conditions for which these systems have a zero-
Hopf equilibrium. In this paper the zero-Hopf equilibrium usually happens
when a = 0.

We translate the zero-Hopf equilibrium point at the origin the origin of
coordinates and scale the system with a small parameter € when it is nec-
essary, because the zero-Hopf and the Hopf bifurcation and the averaging
theory needs a such small parameter.

We write the system in the cylindrical coordinates (p, 8, z) where (z,y, z) =
(pcosb, psinb, z).

We take the angular variable 6 as the new independent variable of the

differential system. Obtaining a 2-dimensional periodic non-autonomous
d dz

system d—g =g = e in the variable #. In this way the differential

system is written into the normal form for applying to it the averaging

theory for obtaining the periodic solutions.

Going back through the change of variables we get the periodic solutions
bifurcating from the zero-Hopf equilibrium.

3. Proof of Theorem 1

The proof of Theorem 1 for systems (1)-(4) and (6)-(10) can be obtained
using Corollary 4 with r = 0 which is equivalent with the classical averaging
theory as we shall see. We start proving Theorem 1 for system (10).

Proof of Theorem 1 for system (10). We take a = aze? with az > 0 and & > 0
sufficiently small. First we translate the point p = (1,0,0) to the origin of
coordinates then we use the change of variables

19X v10Y 19v10Y
(:l?,y,Z) =€ (T +ZaX7 TvTC) )

into the differential system (10) writes

X=— % " %5 ((10X n 3\/EY) (19X +92) — 90a2) :

y_3X € ((10X + 3v10Y) (19X + 9Z) — 90az)
V10 57v10 ’

(21)

10



Z zée (90a2 - (10X + 3\/@/) (19X + 92)) .

Using the cylindrical change of variables (X,Y,Z) = (p cosf, psin 0,,2) where
p > 0, system (21) writes

1
b =315° (—18&2 (3\/10 sind + 10 cos 9) +9pz (6\/10 sin(26) + cos(26) + 19)

+19p% cos § (6\/Esin(20) + cos(20) + 19)) ,
3 €
== 4=
V10 1710p
(3@0030 — 10sin 9) ,

1
i =gze (90a2 —p (3\/Esin9 +10 cose) (19p cos b + 92)) .

(p (3\/1—031119 + 10 cos 0) (19pcosf + 92) — 90a2)

This differential system can be reduced to the normal form for applying the
averaging theory. Taking 6 as the new independent variable we obtain the
differential system

! :58@ g (p (6\/Esin(20) + cos(26) + 19) (19pcosf + 9z)

—18ay (3\/Esint9 +10 cos@)) + 0(?),

o
T 243

p

V10 (90@2 —r (SMSinG + 10 cos 0) (197 cos 0 + 92)) + O(e?),

here the derivatives are taken with respect to 6. Using (19) we write the func-

1 10
tions g0 = 0 and g1 (Z) = \/I—O’n <§pz7 ﬂg (18@2 — 19p2)> . The averaged func-

/2
tion g; has the solutions z1 = £ (3 %,0 . The result follows by taking

r = 0 and z* = z; and applying Corollary 4. The periodic solution is non-

20
hyperbolic. The eigenvalues of the Jacobian matrix Dgi(z4 ) are :t?i‘ /az. O

Proof of Theorem 1 for systems (1)-(4) and (6)-(9). The proof of Theorem 1
for systems (1)-(4) and (6)-(9) is similar to the proof of Theorem 1 for system
(10). It can be done using Corollary 4 with » = 0 and analogous computations.
The reader can check in Theorem 1.1 of [10] the proofs for these systems using
classical first order averaging. The authors also provide approximations for the
periodic solutions found. O

Now we prove Theorem 1 for system (5). This proof is not provided in [10]
because the classical averaging theory does not provide information for this case.
We shall prove this result using statement (b) of Theorem 3.

11



Proof of Theorem 1 for system (5). Using the change of variables (z,y,z) =
e(z 4y, —y, —22) the differential system (5) writes
; 1 2 2
X=—2Y+§d@—d’+42%
Y =2X, (22)
1
2:255(—a2+}ﬂ-—4z2y
Using the cylindrical change of variables (X,Y,Z) = (p cos @, psin 0,2) where
p > 0, system (22) becomes
1
p =e5 cosf (ag — p?sin? 6 + 422) ,
sin @ (ag — p2 sin? 0 + 422)
2p

% :5% (—as + p*sin® 0 — 427) .

0=2—¢

)

This differential system can be reduced to the normal form for applying averag-
ing theory. Taking 6 as the new independent variable we obtain the differential
system

,sinf cos 6 (a2 — p?sin? 0 + 422)2

1
! =e— cosf (ag — p*sin? 0 + 427) +
p =e—cos (ag p°sin z) € 16,

4
3 sin? 6 cos 0 ((lg — p?sin? 6 + 422)3
© 642

+0(eh),

, sind(az — p?sin® 0 + 42’2)2
16p

1
2 =e7 (—as + p?sin® 0 — 42%) + ¢ (23)
3sin2 0 (—az + p? sin? 6 — 422)3
€

64p2 + 0,

here the derivatives are taken with respect to 6. Using (19) we write the func-
tions

go(z) =(0,0),

2
az ~p 2

= _—— ——2
g1(z) ﬂ(O, 5 T2 Z>

1
g2(z) = (07 57722 (2(12 —p’ 4+ 822)> ,
e
() (55,
+1152pz% — 192p22% — 208p°22 + 15p%z2,

(24a§(p + 2) + 4az (—7p3 4 4823 + 96p2? — 12p22) + 8p° + 3842°
T

1608p

(3p (8 (15 — 327°) a3

12



+4 (647% — 23) azp® + (5 — 6477) p*) — 1282 (9a3 — 18azp* + 10p*)
+92162° (p* — az) + 48p2” ((60 — 2567°) as + (12872 — 47) p?)
1843227 + 1152 (5 — 327%) pz*) ).

2 _
Consider the graph Z = {za = (o, B(a)) : Bla) = QTQCLQ and o > \/2(12}.

For all @ > y/2as the averaged function g;(z,) = (0,0). Then taking r = 1
in Theorem 3 we compute the bifurcation functions fi(«a) = 0 and fo(a) =

2 2
-2
%\/ %. For a* = \/2a2 we have fa(a*) = 0 and the derivative of fo

goes to infinity at o*, so it is a simple zero of fy. Thus applying statement (b)
of Theorem 3 we have that system (23) has a periodic solution bifurcating from
point z} . Consequently, going back through the change of variables we have the
existence of a periodic solution of system (5). O

4. Proof of Theorem 2

Proof of Theorem 2 statement (). Using the change of variables (x,y, z) = 5(X—|—
Z,-Y + Z,2Z) the differential system (11) writes

X=—v+ 1£0(5a2 —2(X + 2)(5Y — 142)),
Y =X+ 1%(2(X + Z)(5Y — 14Z) — 5as), (24)

Z=Z+ 130(2()( + Z)(5Y — 14Z) — 5ay).

Using the cylindrical change of variables (X,Y,Z) = (p cos @, psin 0,2) where
p >0, system (24) becomes

p :f—og(cost‘) — sin6) (5az + 28pz cos§ — 10psinf(pcos b + z) + 2827) ,

0 =1+ %(sin@ + cosd) (75a2 — 28pzcosf + 10psinf(pcosb + z) — 2822) ,
P
Z=z+ 16—0(2(5psin9 — 14z)(pcosf + z) — baz).
This differential system can be reduced to the normal form for applying the
averaging theory. Taking 6 as the new independent variable we obtain the

differential system

0 :%(cos& — sin®) (5az + 282 + 28pz cosf — 10psin(p cos b + z))

L2 (cos — sinB)(sin 6 + cos 6)
100p
+28pzcos )’ + O(e?), (25)

(5a2 — 5p* sin(26) + 282% — 10pzsin§

13



2 =z+e (75a2 — 2822 — 28pzcosf + 10psinf(pcosd + z))
(p — z(sin 6 + cos b)) L2 (sinf + cos0)(—p + zsind + z cos 9)
10p 1002
(5a2 — 5p* sin(26) + 282% — 10pz sin § + 28pz cos 0)2 + O(e%),

here the derivatives are taken with respect to 6. Using (19) we write the func-
tions

go(z) = (0, (1 —¢77) 2),

gi(z) = <% (™= 1)z (Tlp+42 (1 +€*7) 2)

e — 1
( 3 27 A 3 27 2
W(—25(12p+10p +28 (%™ + ei7) 28 — 94627 p2?) |

g2(z) = <_ 78%2% (156 (=714 71" — 957) p* + 28 (127 — 195¢"™ + 68¢°™) 2>

+3 (1591 — 6474€>™ + 4883¢'™) pz) + (52005720

26002860000
(—284 + 284€®™ + 57) p* + (¥ (4823 — 2226¢°™ + 806€°™) — 3403) 2*
8453760 + 38584 (e°™ (1308320 + 1767897¢*™ — 1169940¢*™ + 90712€°™)
—1996989) pz° — (759163 + 666540¢*™ — 1872448¢%™ + 446745¢°")

100011p%2” + 8000880 (™ — 1) (1 + €™) (4799 + 10883€>™) p°z) ,

e3™ a3z sinh(7) 1 9
6956415121500 (e2™ — 1) p°
10,2 38646750675000,2 ( (e Jr

+ 61590200¢>™ (e*™ (1258803 — 454104€>™ — 409955¢'™ + 230724¢°™)
—625468) 2° + 1764476¢>™ (5™ (61818120 + 35320311e®™ — 60289650¢"™
+256360e°™) — 37105141) pz* — 500055¢°™ (—41423181 — 3714436¢"™
+16341616€°™ + 19305793¢%™ + 9490208¢'°™) p?z* — 3216040 p* 22
sinh(7)(153644891 — 120359184 sinh(27) + 31576438 cosh(2r))
—204805250e>" (—784488 + 784488¢°™ + 610137 p*z) + (—2403375
(€™ — 1) p* + (—13030 + 21489¢*™ — 4988¢°™ — 4147¢™ + 676¢'7) 23
357e?™ — 986¢°™ pz? sinh(7) (19421 — 3834 sinh(27) + 12388 cosh(27))

2
11310€2™ (—1627 + 1627¢2™ — 63757) p22) — ) .
3107 ( s ™) 7% 56135002

Consider the graph Z = {z, = (a, f(a)) : f(a) =0 and a > 0}. For all @ > 0
the function go(z,) = (0,0) then taking r = 0 in Theorem 3 we compute the

bifurcation functions fi(a) = 0, and fo(a) = % (10(71627r (e*™ —2) + 957 +
T1)az — (284627 (€27 = 2) = 57+ 284) 0?).

14



bas 3857
For o = /222 (1 h ) =0
o \/ 2 ( +28462”(62“—2)—57r+284) we have fz(a”)

and Dfy(a*) # 0. Thus applying statement (b) of Theorem 3 we have that
system (25) has a periodic solution bifurcating from point z,«. Consequently,
going back through the change of variables we have the existence of a periodic
solution to system (11). O

Proof of Theorem 2 statement (ii). First we translate the point (—7,—7,0) to
the origin of coordinates. Then we use the change of variables (z,y, z) = 5(8X+

Z, X +\T7Y - Z/7,-8 (ﬁY + Z)) the differential system (12) writes

X = —V7Y + 5% (7a2 - 4(336X2 _08VTXY + 128X 7 + 98Y2 — 27V Z
+ 722)),

YV =VIX + —

3976+/7
+ 722) - 105a2), (26)

(60 (336X2 —08VTXY + 128X 7 + 98Y2 — 27V Z

Z=—_872+ % (4 (336)(2 —08VTXY + 128X 7 + 98Y2 — 2VTY Z + 722>
- 7a2>.

Using the cylindrical change of variables (X,Y,Z) = (,0 cosf, psin G,z) where
p > 0, system (26) becomes

s & ~ _ _
b =353 (4pz (mogﬁ sin(26) — 3031 cos(26) 3241)
+ 2807 (V7(5095in6 + 299sin(30)) — 2303 cos8 — 49 cos(36) )
+ 7 (ag — 422) (49 cosf — 15v/7sin 9) ),
6 =V7— 278632;) (4956 + 15VT cos) (7 (a2 — 4 (319 + 22)) — 476 cos(20)
—512pz cos 0 + 8V/Tpsin (49p cos 0 + z)) ,
i=— 824 75—1 (=Taz + 476p% cos(20) + 868p2 + 2822 + 512pz cos
— 8VTpsinf(49p cos § + z)) .

This differential system can be reduced to the normal form for applying the
averaging theory. Taking 6 as the new independent variable we obtain the
differential system

/

p (2807 (V7(509 5in6 + 2995in(30)) — 2303 cos6 — 49 cos(36) )

1>
278327
+dpz (1009ﬁ sin(26) — 3031 cos(26) — 3241) +7 (ag — 422)

15



(49 cosf — 15v/7sin 9)) + O(?), (27)

2 =— % — ﬁ%p ((49 (\/?p—i—zsine) + 15ﬁzcost9) (ag —4 (31p2+22)

7 — 4762 cos(20) — 512pz cos O + 8/7psin 6(49p cos 6 + z)) + 0O(e%),

here the derivatives are taken with respect to 6. Using (19) we write the func-
tions

go(z) = (O7 (1 — emﬂ/ﬁ) z) ,
_ 327 _ 16w
o7 (7 —1) 22 1541 (1—e ) pz %
37346 182896 " 168355768

gi(z) =

16w

(97 = 1) (9020967 p (4724p% — 23as) + 14889282 + 8e V7 22
(7509965 + 186116z))> ,

g2(z) = (Hi(2), Hz(2)) .

where the functions H; and Hs are provided in the appendix.

Consider the graph Z = {z, = (o, f(a)) : f(a) = 0 and « > 0}. For all a >
0 the function go(z.) = (0,0) then taking r = 0 in Theorem 3 we compute the
bifurcation functions fi(«) = 0, and

327
TVT 167
fa(a) :JW& (18957467 (23a; — 47240%) — 94787 (2305 — 47240%)

+e 7 (26128V7r (23az — 176840%) — 94787 (230, — 47240%) ) ).

The bifurcation function fs has the positive solution

32n 16w
o 23az (¢ 7 (26128v/7r — 94787) + 189574 V7 — 94787 )
o ==

327 167
2\ e V7 (115511888y/7m — 111943447) + 223886894e v7 — 111943447
~0.0288042/az,

such that D fa(a*) = —0.002a2 # 0. Thus applying statement (b) of Theorem
3 we have that system (27) has a periodic solution bifurcating from point z},.
Consequently, going back through the change of variables we have the existence
of a periodic solution to system (12). O

Proof of Theorem 2 statement (ii7). After translating the point (—5/4,0,5/4)
to the origin of coordinates we use the change of variables (z,y,z) = E(Y +
41

57 Z
Z, Vil V2X)Y — F)’ then the differential system (13) writes
£ (32005 + 12v/2X (32Y + 13Z) — 320V + 20Y Z + 6252°)

X =—V2Y + ,
912+/2

16



£ (—320az — 12v2X(32Y 4 13Z) 45 (64Y? — 4Y Z — 1252%))

1140 ’
(28)

Y =V2X +

52 € (320a2 + 12v/2X (32Y + 13Z) — 320Y2 4 20Y Z + 62522)
4 1140 '

Z:

Using the cylindrical change of variables (X,Y,Z) = (p cos @, psin 0,2) where
p > 0, system (28) becomes

& ) L N
P =9120 (5 (64(12 + 125z ) (5\/5 cos ) — 8sin 9) + 32p°sin ( 73\/§bm(29)
+20 cos(20) + 100) + 2pz (—287\/5 sin(26) + 430 cos(26) + 35())) ,

6=v2+— (5\/5 sin @ + 8 cos 9) (320as + 6252 + 4p (5sinf(z — 16psin6)

9120p
+3v/2cos0(32psinf + 132))) ,
. Sz € . . .
i=- + 1140 (4p (5 sinf(z — 16psin 0) + 3v/2 cos §(32psin 6 + 132))

+ 3200 + 625z2) .

This differential system can be reduced to the normal form for applying the

averaging theory. Taking 6 as the new independent variable we obtain the
differential system

/

p ( — 2560a2sin 6 + v/2 cos § (1600as + 3125p 2% — 1148p> 2 sin 6

g
9120v/2
—1168p2) + T00p%z + 4p? (292\/5 cos(30) + 50sin 0 (16 — 25222)
e
83174400/2p
(1600as + 3125p"2* — 1148p%2 sin 6 — 1168p°) + 700p°z + 4p°

(292\/5 cos(30) + 50sin 0 (16 — 250222) + 5 cos(20)(32sin 0 + 43pz)))

+5c0s(20)(32sin 6 + 43pz)) ) + (—2560a2 sin 6 4+ V2 cos 0

+ (sin9 (1600az + 3125p*22 + 2336p% cos(26) + 736p?) + 20v/2 cos §
(64az + 125p"2% + p® sin 0(32sin 0 + 43p2)) + 2p°2(287 cos(26) + 337))
+0(e%), (29)

5z £1024
=4 =" ((10ay + p? (6V2sin(20) — 5 ) + 5p? cos(20) ) — 16pz
V) 36480\/5;)2(( 2 p( (26) ) prcos( )) r

(—780a2 sin 6 + 6v/2 (200as — 141p%) cos 6 + p? (1265 sin§ + 525 sin(30)
15342 cos(39))) 118750523 (13 sinf — 20v/2 cos 9) + 2pt22

2

(1221V25in(26) — 4875 cos(26) + 5515 + m

( (sin 6 (1600az

17



+3125p 2% + 2336p% cos(20) + 736p%) + 20v2 cos 0 (64as + 125p" 27

+p? sin 0(32sin 0 + 43pz)) + 2p°2(287 cos(26) + 337)) (p (5\/§z sin 6
(249605 + 4875p" 2% — 4048p%) — 242 cos 0 (1600as + 3125p"2% — 1128p%)
+12psin(260) (407p%2% + 1024) + 10v/2p cos(26) (512 — 975p%27)
—8400v/2p%zsin(30) — 17088z cos(39)) +10v2(1024a5 + 1103p*2

- 512,02))) L O,

here the derivatives are taken with respect to 6. Using (19) we write the func-
tions

go(z) = (0, (1 — e;_wﬁ) z) ,

<p3z (—956256_57%\/5,02 1 95625v/2pz — 1212642 + 121264)
gi(z) =

)

2558160

157

e 2v2

51 51 -
_ " (eavs —1) (22528 V5 (153ay — 1120%) — 3538125v/2,° 23
153489602 (62 ’ eVs (1530 7) V2p°z

1563V ptz? (235875x/§pz - 240416)) ) ,

g2(2) = (11(2), 12(2)) -

where the functions I; and I, are provided in the appendix. Consider the
graph Z = {2z, = (o, () : B(a) = 0 and o > 0}. For all @ > 0 the function
g0(zo) = (0,0) then taking » = 0 in Theorem 3 we compute the bifurcation
functions fi(a) =0, and
_ 5w
e 2v2
633798675

+145357V2 (306az - 1310%) ) ).

fa(c) (44096 (153aa; — 1120%) 4 8e2vza (5512 (1120% — 153a)

The bifurcation function f5 has the positive solution

34az (¢33 (14585127 — 2756) -+ 2756

e2v7 (19040851/2r — 617344) + 617344

such that Dfs(a*) &~ —0.47ae # 0. Thus applying statement (b) of Theorem
3 we have that system (29) has a periodic solution bifurcating from point z},.
Consequently, going back through the change of variables we have the existence
of a periodic solution to system (13). O

18



Proof of Theorem 2 statement (iv). First we translate the point (—5,0,0) to the

X
origin of coordinates, then using the change of variables (z,y,2) =¢| — % +
Y Z . . .
ﬁ 3 X +Y +Z,/5X —/5Y — 27 | the differential system (14) writes
- (2v5+5) ) 2
X_—\/Ey—gm (20 (V5+6) X2~ 1000, — 20 (V5 6) ¥
12X (80Y +1257 + 2\/52) n (250 _ 4%5) YZ+ 8522) ,
. 2v/5—5
y —yx e 2V5-0) (20 (\/3+ 6) X2 ~ 100a; — 20 (\/3 ~6)v?
1800v/5
+ox (80Y 11257 + 2%52) + (250 - 4\/5) YZ+ 8522) : (30)

1
Z=—22+ ¢ (20 (\/5 + 6) X2 — 1000y + 2X (soy £ 1257 + 2\/32)

—20 (\f - 6) Y2+ (250 - 4\/3) YZ+ 8522) .

Using the cylindrical change of variables (X,Y,Z) = (p cosf, psin 0,2) where
p >0, system (30) becomes
€

= (5 (2002 = 1722) (V5 +2) cosf — (V5 —2) sin )
—2v/5p? (3 (\/5 + 10) sin(36) + (37f - 50) sinf — 3 (\/5 - 10) cos(36)
+ <37\/5 + 50) cos 9) —2pz (240 sin(26) + 129v/5 cos(26) + 260)) ,

6 =v/5 — m ((2v5-5)cost — (2v5+5) sin6) (1200* — 100a;

+2p (10\/5p cos(26) + cos 6 (80psin9 + (2\/5 + 125) z)
+ (125 _ 2\/5) 2sin 9) + 85z2) ,

PR 4i50 (7100(12 £120p7 + 2p (10\/3,0 cos(26) + cosd (80psin @
+(2v5+125) 2) + (125 - 2V5) zsin ) + 8522).

)

This differential system can be reduced to the normal form for applying the
averaging theory. Taking € as the new independent variable we obtain the
differential system

/

p :m (5 (20@2 — 1722) ((\/5+ 2) cosf — (\/5 — 2) sin9) — 2v/5p?
(3 (\/g + 10) sin(36) + (37\/5 - 50) sinf — 3 (\/g - 10) cos(36) + cos

19



(37\/5 + 50)) —2p2 (240 sin(26) + 129v/5 cos(26) + 260)) +O(e%),

2 =— 2\2/52 + 45006\/3,0 (10p—|— (2\/5—0— 5) zsinf + (5 — 2\/5> zcos@) (12Op2
~ 100as + 8522 + 2p (10\/5;)008(29) + cosd (80psin9 n (NB n 125) z)
+ (125 - 2v5) zsing) ) — 2 ((2v5- 52};;;30;0(\2[£+ 5)sind) (105

— (2v5+5) zsin0 + (2V5 — 5) 2 cos0) (1200* — 100az + 8522 + 2 sin
(125 — 2\/5) +2p (10\/5pc0s(29) + cosf (80psin9 + (2\/5 + 125) z)))2
+0(°),

here the derivatives are taken with respect to 6. Using (19) we write the func-

tions

Sl

N—

g1(2) _< c_~ (1 - 647%) (14068—«%p (10a2 + (\/5_ 12) ,02) +34 (1 + eT")
(

TeVE (123\/5+ 520) p+ 170 (1 + e) (2\/3+ 1) p
g2(z) = (J1(2), J2(2)) -

where the functions J; and Js are provided in the appendix.

Consider the graph Z = {z, = (o, f(a)) : f(a) =0 and « > 0}. For all a >
0 the function go(z) = (0,0), then taking » = 0 in Theorem 3 we compute the

bifurcation functions fi(«) = 0, and

87
e Vs 9 an
= \/g -
fa) = ((956\/5 + 5625) a? + 2e (10 (123\/5 + 520) as
(95675 + 5625 ) a?) + % ((956v/5 + 5625) a? + 1807V/5 (8az — 190%)

~10 (123\/5 + 520) ag) ~ 10 (123\/5 + 520) ag) :

The bifurcation function fo has the positive solution a* =

10ay (687’% (1447v/5 — 123/5 — 520) — 123v/5 + 2¢ ¥ (123V/5 + 520) — 520)
eF (3420mv/5 — 956+/5 — 5625) — 9561/5 + 2¢ V5 (9561/5 + 5625) — 5625

~ 0.369082,/az,

20



such that Dfa(a*) &~ —0.0laz # 0. Thus applying statement (b) of Theorem
3 we have that system (27) has a periodic solution bifurcating from point z},.
Consequently, going back through the change of variables we have the existence
of a periodic solution to system (12). O

Proof of Theorem 2 statement (v). First we translate the equilibrium point
(4/5,4/5,4/5) to the origin. Then using the change of variables (z,y,z2) =

e (Z —2V,VBX +Y +2Y, (—V3) X +Y + Z) the differential system (15) writes

. 1 e(3X2 —2V3X(Y —22) - 3Y(Y +4Z2))
X =— 2 (43Y) + ™ ,
v :M% + is (—X2 CVBX(Y —22) + Y(Y + 42)) : (31)

. 72
Z =¢ (a2—2(X2+Y2)+7>‘

Using the cylindrical change of variables (X,Y,Z) = (,0 cosf, psin 09,2) where
p >0, system (31) becomes

p :Zp (—psin(39) +V/3pcos(36) + 42) )

0 =2V £ (VBaz = psin(30)) — peos(39))

52
z =€ (a2—2p2—|—7>.

This differential system can be reduced to the normal form for applying the
averaging theory. Taking 6 as the new independent variable we obtain the
differential system

y :5p5 (—psin(30) + V/3pcos(30) + 4z)

163

5e (2a2 —4p2+22)
7 = + O(e?),
W ()

here the derivatives are taken with respect to 6. Using (19) we write the func-
5rz 5 (2az — 4r% + 2?)

23’ 43

tion g has the solutions z4+ = + (w, / %,O). The result follows by taking

+0(e?),

tions go = 0 and g(z) =« < ) The averaged func-

r = 0 and z* = z; and applying Corollary 4. The eigenvalues of Dg;(zy) are

. asg
+15, /[ —. O
V%6

Proof of Theorem 2 statement (vi). First we translate to the origin of coordi-
nates the point (—10/43,—10/43,—10/43). Then using the change of variables
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X Y X 3Y
(z,y,2) = 5(X+ Z, -5 + \/—i +Z,——= — \/_— + Z) the differential system

2 2
(16) writes
—V3Y + 45—0 (—13X2 +26V3XY + 86X 7 + 13Y2 + 86\/§YZ) ,

Y =V3X + 45—0 (13\/§X2 1 26XY — 86V3XZ — 13V3Y2 + 86YZ) o (32)

. 69
Z=-5%+1 = (
Using the cylindrical change of variables (X,Y,Z) = (pcos 0, psin 9,2') where
p > 0, system (32) becomes

40ay — 43 (X? +Y?) +5227).

P _€E (13\/_psm(39) — 13pcos(30) + 862)

0=V3+ (13,0 (sin(30) + v3 cos(39)) - 86x/§z) ,

. 69 1 9 9
z_Ez+6<a2+E(52,z —43p )>

This differential system can be reduced to the normal form for applying the
averaging theory. Taking 6 as the new independent variable we obtain the
differential system

o= 40\/_ (13\/_,osm(39) — 13pcos(30) + 86z ) + ﬁ (13;)(005(39)
3sm(39)) — 862’) (13p (Sin(39) + \/gcos(SO)) - 86\/32) +0(£%)
2 =— %gz 5160 (43\/— (40az — 43 (p* +22%)) + 897,oz(sin(39) (33)

+ \/§COS(39))) + ﬁzoo (13,0 (344 (2822 — 5as) (sin(39) + \/gcos(?)@))
+1849p2(sin(30) + /3 cos(36)) — 2092 (3 sin(60) + /3 cos(69)))
—4v/32(41697p2 + 795072% — 36980a2)) +O(e%),

here the derivatives are taken with respect to 6. Using (19) we write the func-
tions

go(z) = <0 (1 — 646‘1/3_77) z) ,

1849 . w
Togo (1= e 005 o (552 (400, — 43p2) — 8622)

4613 e —15(92V3n)
< i >43 )

1849e™ a3 184\/_7r) ( 1s4f7r
e

266008808721600 (11640097 (240 (46\/§7T B 43) “
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+1965122) — 3003145026 (46\/§7r - 43) P2+ 45396995982pz)

+22089¢ 5% (130634 (400 — 43p7) — 2456883p2) + 172180314824

46V37 92

L2 645676180592 + 4557 " 2(2432365p — 738100162)) ,

o~ 13 (230V3m)

18437m
a3 — 1 — 184 )
446414827786341650812800 (e ( (60 (39 V3r — 1849 ) a
+7580922) 67198199239699961442 + 69703216719171814113816°

.+ 67860377243786125751610p2% — 10446454479~

1383w
(70137521867896\/§7r — 252393774165) ) — 4245723465¢ T 2
(175587701015104as + 61893p(10033543p. + 6661987422))

23037

—69703216719171814113816e =~ p® + 4007045420213118625657562>

£1951360992537417972¢ 4 22(79833p + 3205092)

—336382138219685488¢ 4 22(144417p + 15882912)) ) .

Consider the graph Z = {z, = (a, () : B(a)) =0 and o > 0}. For all @ > 0
the function go(z.) = (0,0), then taking » = 0 in Theorem 3 we compute the
bifurcation functions fi(«) = 0, and

| 1849e~

F2(®) = —3508800

(™ (46v/3r — 43) + 865 —43) a (40a; — 4302) .

10

4;2 we have fo(a*) = 0 and Dfa(a*) # 0. Thus applying
statement (b) of Theorem 3 we have that system (33) has a periodic solution
bifurcating from point z%. Consequently, going back through the change of
variables we have the existence of a periodic solution to system (16). O

For o* = 2

5. Conclusions

In this paper we use recent results in averaging theory (Theorem 3) for
studying the zero-Hopf and the Hopf bifurcation of the sixteen 3-dimensional
differential systems provided by Jafari et al [5] in 2013. These systems have
equilibria only for a certain choice of the parameter a, and we show that under
some conditions a periodic solution emerges in either a zero-Hopf or a Hopf
bifurcation exhibits by the system and after the equilibria disappear. Moreover,
we show graphically that the periodic orbit which is born in such bifurcations
is the origin of a period doubling cascade which originates the chaotic motion
in those differential systems.

Here we illustrated how the averaging theory is useful for studying the peri-
odic orbits which bifurcate from a zero-Hopf or from a Hopf equilibrium point.
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The averaging method here presented does not provide information on the pe-
riodic solutions of system SNE 14 of [5], in the future we shall try to improve
the averaging theory in order to apply it that differential system.

Appendix

Here we present the coordinate functions of gy that appears in the proof of
statements (i7), (i7i) and (iv) of Theorem 2.

13541a9p Tasp _32x% 899522 597507923asz
H1 (Z) = — +e V7 -
14840704  568v/7 40086032p  47083369573856
703742848467097925p2%2  3392361662905917 0%z 189618713a922
31898417885852553728 116684360646408632 10586680965168p

+e,487;r < 42083a522 4684031387785123 1820956889005487[),22)

 9319261413p 33980150313748576 | 115614906197860608
P 13541azp | 4046213933apz  15991921p°  23113407207573p%
14840704 6557112770432 85334048 195893744016656
| 47497703966367az | 15991921p°  4421mp® 1626416V 14
78588870014419072 85334048 32667 1048694353p
967

2479453732% 19453239836¢ V7 23 45877191435540374951287pz>
13482014602168p ~ 118452839157093 * 2993773813265605489598976
1966020376082088641360420514523  89976430564062929487p%2
21759296009409979593131149751776 * 1011920113914411773456

n i < 17392* 808830574644123 112649333870939p22>

_74243848p * 6482324361591568  12499380049315264
n 80z 30634024 B 6272329328873z
14913732967p  7986095211566962 ) 7

E&(Z)::€§g<__ 2040903 13593232675a52>  8622181081asz
806731394p2  H7374T3674128p ' 2254007514836
121148255304709p2% 9933070595407p22> ._%g.< 2040942z
171407026014574  207368691364912 8067313942
17031asp  12143784230186761asz®  354453085049431as22
927544 ' 316096608568406160880p% | 207977542804816233p
8622181081asz  97masz  54536545p° 244579197088790172°
T 2254007514836 ' 34797 14724761  595620109778216080404p2
2241981246652203077322844014682*
~ 102793760349089735962832109971811p
1162381655451863236723385832%  253261733610700641411573827 22
T 2690539476878912070359141040  740098259404736722171720962
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9933070595407p%2  157357637mp’2 17031asp
207368691364912  17043621/7 > 927544
- <_ 653124039a523 4436646543253a22>  269509153422410091 23
9704487615928p2  3790211250695408p = 3488889456265123064
_56593678003503976pz2> -2 (_ 1004634a52> B 90029282°
102098815565607553 132200451845p2  104396130769p2
1622347976424 N 42924541078z3> 0z < 93459a52>
4620818852783p = 14145448347415 390522640482

1551641925 702538776903684672% 13482603739860752'3)

2679089255082 a 12331001516837560228p * 21873915086301712
" —oix 222327526a22° _ 227003953222 654448536652
5718920087111p%  448946020761p  19753624913484p

_ 10995241746040359223 " 703608436890712p22 54536545p°
1113807488504463291 3708743077506621

14724761
:’)2325366*12«8?"z5+ Ciover (2002772 7425730478421
3232536 7 27

513860232972 32463122538p2 ' 829169874099651)

L(2) 16 (14535v2m — 2756) p  2310379625p°2%  19807570229+/2p2
Z)=a —
' ? 4142475 61603278561 584130307695

n (383757256080000a2 Sy (1353367360104125\/5/32 n 257897855245984))

157w 51
e 2vz p322 e Vip?z ((
- 951929337 17889294354 2)
S0519616652301580 ~ 18475687048500 \ (2519298375050 + 1788920435482

57
8e 2v2p
2 _ 392 ( 4 — 2121 ))
p* — 302700az (8465372 87502) ) T 307306039612375

(8415(12 (49013145\/§pz + 32779864) — 848p° (810462369\/§pz + 238117880))

8 20581329390625p" z*
633798675 (1904085\/5” B 617344) P 8867327467299l084
1734375¢ 2 T2t T75e” 2 p023 (172743752 + 100984041/2)
72939328 374185614528
N 25e Vi p823 (376440625pz — 2932796621/2) N 19290332956039821304250523
2259931934304 533122291332257583195361/2
12415915880034901p°22  114200436283/2p*~ e=5V2m 55,2
926192972508922800 3154303661553 297952783603200

(1589668853472 — 625pz (18770709375pz + 4278131824\/5)) :

L(z) = o e 40832a3z 49408v2  252934685856925p°2°
z)=e —_— — —
2 1049427p2 "7\ 828495p  2721386433710736

25



20064998592791/2p22 964627 925690614976 2908160+/2p
450364467232845 165699 7101967672845 51863787

55275508906250%2°  34754363309100099424750°2*

98525860747776 47388648118422896284032+/2

_ 115148537639610717947p%%  196462205001224732v20°2> [ 2734y/2r
88107811281801317041200 4154612210222995125

43605
18720891867514208 \ de~ %2

- 62221625 0
158821303067832735> g 2) 3970532576695818375p2(38 983600

a3 — 5350azp> (13391448585291\/5,02' + 24183667316248)

+p! (68542401952527177\@)2 + 117005574171963800))

257

62\/5
+62901143205120

Tk (162501300000a2 + p? (35625,02 (2487684375pz

N

256+/2 (604095 — 568002 .
+ 1986367162\/5) + 10845743592224)) | 256v/2 (60409a; ”) .,

o

259318035
pl23 (23782250 (2055650625 p2 + 1197920846+/2) + 63652108192902)
25213764854307496
T227503° 2 e Ve pa? (0% (205pz (—1072261547055142
o
2090163 25891303549681251000 7

+5052665o15015625\/§pz) + 21417809054549248\/5) — 1648200a;

157

e 2vZpz?
3695137409700
agpz — 342014627020V 2as + 426831261472+v/2p% — 18184717070p3z)

(2177119524375pz n 379694102864\/5)) + (765285440625

12671875e~10V27 56,5 25¢7 275 pP 24 (48584868752 + 2058207116/2)
109408992 1807945547432 ’

e VB 22
= 3397781520000p
—2465 (3703027\/5 + 5698606) z) — 6211800 (193\/5 - 210) ag)

17722324487957040> 5
1807v/5 (8az — 19p2) — 10 (123 5 + 520
5742033134098080960000p ( V5 (8a2 — 19p°) VBt )aQ

+ (956\/3 + 5625) p2) 121204422522 (962336 (4577\/5 + 1890) as

J1(z) (p (21 (2005165908\/5 + 3889750015) P

-3 (10806179752\/5—) + 24675585383) p2) + 32597624002 (3 <83295503384\/5

195313187411) p? — 10105 (13907113\/5 + 9542762) a2) + (7\/5 + 2) A

26



156788319704681160 + 8383108 (1115434951621\/5 + 1966086632830) pz>

6_%2
e (376000 (12 (148795 + 149) p + 798495z ) + 3p?
+2340848160000p( @2 V5 + p+ V52z) +3p

(—47 (238651676\/5 + 506116445) 2 + 240 (30405896\/5 + 66489385) p))

4
e V&
+ raaoizons (215 (882 (1285 + 520) p + (1460295 + 155618) =)

—3p? <6321 (956\/5 + 5625) p+ (48206680\/5 + 75128363) z))

287
289 (Tv5 +10) e Vs 24 17e-4Vom,3
B (I5H10)e e oo (1930 (TV5 +6) =

10584000 2302020000
247w 167
17 (36215 + 6202) e~ V5 2° e Vs 22
—3 (107371 5 148485) ) —
Vot p 163966000 12519360000,

(—23 (2645856\/5 + 4997225) 0% — 31905601522 + 13600 (3499\/5 + 4766) pz) :

J. e 5332597292442567 (40250 (5v/5 + 36
2(Z)_312940805808345412320000,)2( Z( ( + )

a2 + 690 (22687r\/5 — 25255 + 27760) asp? + 3 (4223690\/5 — 17388 (379\/5
+410)7r n 7544115) p4) + 315385039867317120° (735 (35 - 11\/5) as + ,02)
(14247f . 32740) 15098608062 ((295448712792\/5 + 3357245264653> 0
300730 (723208\/5 - 1530333) ag) 1507164822 (a2464830 (14106353\/5
7298387900) +21 (16273193039599\/5 + 23844169989280) p2) + (1583932x/5

—3899715)5034148358610325 + (1249367048959\/5 - 5521411126760) pz4>

871

234727024 — — < 2 __ (24230500 (5V/5 + 36) a3 + 14835029 (140 (5552
3532806900002 > 2p

—505\/5);) + (31424\/5 n 72755) z) +21p° (430 (844738\/5 n 1508823) P

_23 (30613883\/5 n 55472705) z)) n 99;25 - (735 (11\/5 - 35) as + (32740

e V5 22
— 14247 5) 2) (235 (42 (272816 5 172415)
v)e*) + 2048242140000,2 \“72 v P

15185 (2630\/5_) - 6993) z) +6p? (47 (26214378\/5 + 238047761) 2~ 35p

_ 16m
e~ V5 22

(3003707835 + 736870135 ) ) ) — 5552069610000,

(13340a2 (14(133175

27



79586\/5_)),0 + 765 (217\/5 - 1104)z) +p (710440,)2 (2887157\/5 + 12737871)

479373 (94964\/_ - 408025) 2% + 46 (322207806\/5 + 5283539111) pz))

247w

ng(ﬁi? (406 (5 (17%5 - 72) as +3 (51\/5 + 602) p2) 48874 (14\/5

674\/5}23 \/_
14(( 4
4776135840000p2 (50 303480v5

+ 23965123) o2 — 2550 (76\/5 - 105) ag) 1102535 (2092\/5 - 4827) 22 4 476

- 45) 22 4 1575 (1677 - 274\/5) pz) +

287

289¢VE (24— TVB) 25 17¢ VE 24
105840007 2771042400002

(12665 (146f - 205) 2 — 10496 (424\/5 - 3405) p) .

(17544628\/5 - 103898005) pz) +

Acknowledgements

We thank to the reviewers for their comments and suggestions which help
us to improve this paper. The first author is supported by CNPq grant num-
ber 248501/2013-5. The second author is partially supported by a FEDER-
MINECO grant MTM2016-77278-P, a MINECO grant MTM2013-40998-P, and
an AGAUR grant number 2014SGR-568.

References

[1] C. P. Silva, Shil’'nikov’s theorem-a tutorial, IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications 40 (10) (1993) 675
682.

[2] H. Posh, W. Hoover, F. Vesely, Canonical dynamics of the nosé oscillator:
Stability, Order, and Chaos. Phys. Rev. A 33 (1986) 4253.

[3] Z. Wei, Dynamical behaviors of a chaotic system with no equilibria, Physics
Letters A 376 (2) (2011) 102-108.

[4] X. Wang, G. Chen, Constructing a chaotic system with any number of
equilibria, Nonlinear Dynamics 71 (3) (2013) 429-436.

[5] S. Jafari, J. Sprott, S. M. R. H. Golpayegani, Elementary quadratic chaotic
flows with no equilibria, Physics Letters A 377 (9) (2013) 699-702.

[6] V.-T. Pham, S. Vaidyanathan, C. Volos, S. Jafari, Hidden attractors in a
chaotic system with an exponential nonlinear term, The European Physical
Journal Special Topics 224 (8) (2015) 1507-1517.

[7] S. Vaidyanathan, C. Volos, Analysis and adaptive control of a novel 3-d
conservative no-equilibrium chaotic system, Archives of Control Sciences

25 (3) (2015) 333-353.

28



8]

[14]

[15]

Z. Wei, R. Wang, A. Liu, A new finding of the existence of hidden hy-
perchaotic attractors with no equilibria, Mathematics and Computers in
Simulation 100 (2014) 13-23.

J. C. Sprott, Elegant chaos: algebraically simple chaotic flows, World Sci-
entific, 2010.

T. Carvalho, R. D. Euzebio, J. Llibre, D. J. Tonon, Detecting periodic or-
bits in some 3d chaotic quadratic polynomial differential systems, Discrete
and continuous dynamical systems series B 21 (2016) 1-11.

J. A. Sanders, F. Verhulst, J. A. Murdock, Averaging methods in nonlinear
dynamical systems, Vol. 59, Springer, 2007.

A. Buic4, J. Giné, J. Llibre, A second order analysis of the periodic solutions
for nonlinear periodic differential systems with a small parameter, Physica
D: Nonlinear Phenomena 241 (5) (2012) 528-533.

J. Llibre, D. D. Novaes, Improving the averaging theory for computing
periodic solutions of the differential equations, Zeitschrift fiir angewandte
Mathematik und Physik 66 (4) (2015) 1401-1412.

M. R. Candido, J. Llibre, New results on averaging theory and applications,
Zeitschrift fiir angewandte Mathematik und Physik 67 (4) (2016) 95-106.

M. R. Céndido, J. Llibre, D. D. Novaes, Persistence of periodic solutions for
higher order perturbed differential systems via lyapunov-schmidt reduction,
Nonlinearity (2017) to appear.

29



