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Abstract

The computational efficiency and the stability of Continuous Galerkin (CG)

methods, with Taylor–Hood approximations, and Hybridizable Discontinuous

Galerkin (HDG) methods are compared for the solution of the incompress-

ible Stokes and Navier–Stokes equations at low Reynolds numbers using direct

solvers. A thorough comparison in terms of CPU time and accuracy for both

discretization methods is made, under the same platform, for steady state prob-

lems, with triangular and quadrilateral elements of degree k = 2 − 9. Various

results are presented such as error vs. CPU time of the direct solver, error

vs. ratio of CPU times of HDG to CG, etc. CG can outperform HDG when

the CPU time, for a given degree and mesh, is considered. However, for high

degree of approximation, HDG is computationally more efficient than CG, for

a given level of accuracy, as HDG produces lesser error than CG for a given

mesh and degree. Finally, stability of HDG and CG is studied using a manu-

factured solution that produces a sharp boundary layer, confirming that HDG

provides smooth converged solutions for Reynolds numbers higher than CG, in

the presence of sharp fronts.
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1. Introduction

Incompressible fluid flow problems are encountered in everyday life and have

utmost practical importance. The applications range from meteorology and

weather forecasting, to aerodynamics and magneto-hydrodynamics. Over the

past decades, there have been a lot of developments in Computational Fluid5

Dynamics (CFD) to obtain the numerical solutions of a wide variety of prob-

lems. Finite volume and Finite element methods are often used in this context.

Over the years, Continuous Galerkin (CG) finite elements [1] underwent a lot

of development and their usage for incompressible Navier–Stokes equations was

greatly improved. The major drawback of CG methods is the stability issues10

they pose in convection dominated problems.

Discontinuous Galerkin (DG) finite elements are a class of finite elements,

which can offer both local conservation and stability properties with appropriate

weak formulations. The original DG method was introduced to solve linear hy-

perbolic equations [2], and later developed for the solution of the Navier–Stokes15

equations [3]. Ever since, many DG methods have been proposed for discretizing

second-order self-adjoint operators. Some of them are Interior Penalty Methods

(IPM) [4], Local Discontinuous Galerkin (LDG) methods [5] and Compact Dis-

continuous Galerkin (CDG) methods [6]. In spite of being more stable and the

ability to handle adaptive algorithms with little implementation overhead, DG20

methods are often criticized for having a higher number of Degrees of Freedom

(DOFs) compared to the CG counterpart. The linear systems arising from DG

methods are considerably larger and less sparse. Moreover, at high order ap-

proximation, static condensation improves the computational efficiency of CG

methods. The applicability of a technique similar to static condensation to those25

DG methods is crippled due to the coupling of interior nodes of an element with
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Figure 1: Comparison of velocity DOFs between CG and HDG.

the neighbouring element nodes.

With the introduction of a numerical technique called hybridization [7], the

shortcomings of the DG methods were addressed. The Hybridizable Discontin-

uous Galerkin (HDG) method was proposed in [8] in the framework of second30

order elliptic problems. Thereafter, it was extended to other physical phe-

nomenon [9, 10, 11, 12, 13, 14, 15, 16]. The hybridization in HDG allows the

use of a technique similar to static condensation in CG, both of them leading to

a significant reduction in the number of DOFs in the final system for high-order

computations.35

Figure 1 highlights the fundamental difference between the velocity DOFs of

CG and HDG methods: the blue nodes correspond to interior nodes in CG and

to local elemental DOFs in HDG, whereas the red nodes represent boundary

DOFs in CG, and the so-called global DOFs in HDG. For the pressure field,

the CG approximation has again interior and boundary DOFs, with the same40

structure as figure 1 but with a lower degree, whereas in HDG global DOFs

correspond to a single scalar DOF per element. The hybridization in HDG

(static condensation in CG) enables to express local (interior) DOFs in terms of

global (boundary) DOFs, leaving only the last ones to be solved. Hence, in the

final condensed system of equations, HDG has more DOFs than CG for velocity,45

due to the duplication of vertexes in 2D (edge nodes in 3D), but it has less DOFs

for pressure. Compared to other DGmethods such as IPM or CDG, which do not
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allow static condensation, HDG has much less DOFs. Reference [12] highlights

four distinctive features of HDG methods over other DG methods namely, (i)

reduced DOF count, (ii) optimal convergence, (iii) superconvergence and (iv)50

unified treatment of boundary conditions. The reduction of the number of DOFs

is due to the hybridization, as already discussed. Second, for fluid flow problems,

HDGmethod provides an approximate velocity, pressure and gradient of velocity

converging with optimal order of k+ 1 in L2-norm for a smooth solution, where

k is the polynomial order of approximation used to represent the components55

of the solution. Since, HDG shows optimal convergence for gradient of velocity,

in addition to the property that the mean of the velocity inside each element

converges with order k + 2, it is possible to do an element-by-element post-

processing, to obtain a new approximation of velocity which converges with an

order of k + 2. The computational overhead for post-processing is very small60

as it is done at the elemental level. However, this property of superconvergence

can only be noticed in the diffusion regime. In convection-dominated problems,

superconvergence cannot be guaranteed, even though numerical experiments

show that the post-processed solution provides improved accuracy in most cases.

Other DG methods have also been recently developed, like Multi-scale Dis-65

continuous Galerkin (MDG) method [17] and Embedded Discontinuous Galerkin

(EDG) method [18], aiming to reduce the number of DOFs in a DG discretiza-

tion. Unlike HDG method, neither MDG nor EDG method has superconver-

gence properties.

In spite of HDG having multiple desirable properties, its performance com-70

pared to CG and other DG methods is still under study. A comparison for

steady state convection–diffusion equation in diffusive regime can be found at

[19]. Reference [20] presents a first comparison study between CG and HDG for

a two-dimensional elliptic problem. In that work, CPU times for solving the lin-

ear system are compared for polynomials of degree up to fourteen, for triangular75

and quadrilateral elements. Later, [21] extended the work to 3D and studied

the performance with direct and iterative solvers. A comparative study between

space-time DG and space-time HDG methods for incompressible Navier–Stokes
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problem is presented in [22]. A scalability study of HDG in compressible flows

is made in [23], while a theoretical floating point operations (FLOPS) count for80

CG, CDG and HDG for second order elliptic problem is given in [24]. Reference

[25] compares CG and HDG for linear elasticity problems, and concludes that

HDG of degree k is as efficient as CG of degree k+1. A comparison between CG,

CDG and HDG for wave problems can be found at [26]. A target based adaptive

formulation is compared between hybridised and standard DG methods in [27].85

A comparison was made between HDG and DG methods on DOFs count and

number of non-zeros in the linear system arising from Poisson problem in [28].

The present work focuses on the computational performance between CG,

with Taylor-Hood elements, and HDG for Stokes and Navier–Stokes incompress-

ible flows. Previous work of [21] concluded that the effective pre-conditioning90

strategies has to be developed for HDG discretization to have a competitive

iterative solver performance compared to CG. Hence, only direct solvers are

considered in the present work. The comparison study of the CPU times is car-

ried out at low Reynolds regimes, to avoid the need of stabilization techniques,

specially in the case of CG, that may affect the convergence and accuracy. The95

study made in [29] using different formulations of HDG for Stokes concluded

that velocity-pressure-gradient formulation provides the best approximation for

the same computational complexity and hence, the same is used in the present

work. The CG and HDG formulations considered are described in section 3.

Some details of the implementation, and a theoretical count of the number of100

DOFs in 2D and 3D, are presented in sections 4 and 5, respectively. 2D nu-

merical tests are used to assess the computational efficiency of HDG and CG,

in terms of accuracy and CPU time for the solution of the linear system, in

section 6. The variation of the condition number of the matrix with the degree

of approximation is also studied. Finally, in section 7, the stability of CG and105

HDG for the solution of the Navier-Stokes equations at high Reynolds number,

in the presence of sharp fronts, is compared with a manufactured numerical test.

Note that in this section, only robustness of the discretizations are compared

and not the CPU times. The aim of the stability study is to compare the regimes
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where stabilised formulations are necessary for both CG and HDG.110

2. Notation

Most of the algebra presented in this text is expressed in symbolic (also

frequently referred to as direct, intrinsic or absolute) notation, very similar to

the one employed in [30]. The usual matrix and indicial notation are sometimes

employed in specific cases.115

Throughout the text, italic Latin or Greek lowercase letters (a, b, . . . α, β, . . .)

denote scalar quantities, bold italic Latin or Greek lowercase letters (a, b, . . .α,β, . . .)

denote vectors and bold italic Latin or Greek capital letters (A,B, . . .) denote

second-order tensors in a Euclidean space.

Rectangular and single-column matrices built of tensor components on or-120

thogonal Cartesian frames are expressed by boldface upright Latin or Greek

letters (A,B, . . .a,b . . .ρ,λ . . .). The scalar products used in the present paper

are (·, ·)D and 〈·, ·〉B , which represent the L2 scalar product in any domain D,

and the L2 scalar product over any boundary B, respectively.

In the following, the domain Ω is assumed to be divided into nel elements,

Ωe, with the boundaries ∂Ωe,

Ω̄ =

nel⋃
e=1

Ω̄e, Ωe ∩ Ωk = ∅ for e 6= k.

The union of the nfc faces, Γf , is denoted as125

Γ =

nel⋃
e=1

∂Ωe =

nfc⋃
f=1

Γf .

Along the text Pk and Qk denote the finite element spaces of degree k for

triangles and quadrilaterals, respectively. In particular, Taylor-Hood elements

consider degree k for velocity and degree k − 1 for pressure and are denoted by

Pk/Pk−1 and Qk/Qk−1.
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3. The CG and HDG discretization of the incompressible Navier–130

Stokes equations

Let Ω ⊂ Rd be the domain with boundary ∂Ω divided into Dirichlet, ∂ΩD,

and Neumann, ∂ΩN , boundaries and d the dimension of the space. The steady

state incompressible Navier–Stokes equations can be written as

div (u⊗ u)− div (−pI + ν gradu) = f in Ω, (1a)

divu = 0 in Ω, (1b)

u = uD on ∂ΩD,

(−pI + ν gradu)n = t on ∂ΩN , (1c)

where u is the velocity, p is the kinematic pressure, ν is the kinematic viscosity,

f is the body force, uD is the prescribed velocity on the Dirichlet boundary,

∂ΩD, and t is the prescribed pseudo traction on the Neumann boundary, ∂ΩN .

The next subsections recall the basics on the CG and the HDG discretizations135

considered in this work.

3.1. CG formulation

The CG weak form of the equilibrium equations, (1a) and (1c), and the

incompressibility condition, (1b), is: find uh ∈ [Vhc (Ω)]d and ph ∈ Vh(Ω) such

that uh = uD on ∂ΩD and

(δu, (graduh)uh)Ω + (grad δu,−phI + ν graduh)Ω − (δu,fh)Ω − 〈δu, th〉∂ΩN
= 0,(2a)

− (δp,divuh)Ω = 0,

for all δu ∈ [Vhc (Ω)]d, such that δu = 0 on ∂ΩD, and for all δp ∈ Vh(Ω), where

discrete spaces are defined as

Vhc :=
{
v ∈ H1(Ω) ; v|Ωe

∈ Pk(Ωe)
}
, Vh :=

{
v ∈ L2(Ω) ; v|Ωe

∈ Pk(Ωe)
}
.

Equation (2a) is obtained after using the identity div (u ⊗ u) = u (divu) +

(gradu)u and setting divu = 0.
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If the problem is a pure Dirichlet one, that is ∂Ω = ∂ΩD and ∂ΩN = ∅, the140

pressure is determined up to a constant. In this case, the mean of the pressure

in Ω is set to a prescribed value to ensure uniqueness of the solution.

The weak form is discretized with mixed Taylor–Hood approximations [31],

with degree k for the velocities, u and δu, and degree k − 1 for the pressures,

p and δp, satisfying the so-called LBB condition [32] for stability. The residual

of the Navier–Stokes equations, after spatial discretization, can be expressed as

follows,

r (u,p) ≡

K + C(u) G

GT 0

u

p

−
f + t

0

 = 0. (3)

In the equation (3), K, G and C(u) represent the viscosity, discrete gradient

operator and convective matrices, respectively, while f contains the body force

vector. The nodal values of velocity and pressure are represented by u and p,145

respectively. The elemental matrices used to compute the global system are

presented in Appendix A.

The CG formulation, with Taylor–Hood approximations of order k for ve-

locity and k − 1 for pressure, leads to errors of order k in H1 norm for velocity

and in L2 norm for pressure and, consequently, errors of order k+ 1 in L2 norm150

are expected for the velocity solution.

Computational efficiency in terms of CPU times is studied with numerical

examples that do not present sharp fronts, aiming for a fair comparison of the ac-

curacy. In the stability study, no stabilised formulations are considered for CG,

as the aim is to compare the robustness without any stabilisation techniques.155

3.2. HDG formulation

The HDG formulation of the Navier-Stokes equations (1) — see [33] for a

detailed derivation — is: find uh ∈ [Vh]d, ph ∈ Vh, Lh ∈ [Vh]d×d, ûh ∈ [Λh]d
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and ρ ∈ Rnel satisfying the local problem in every element Ωe,

(δL,Lh)Ωe
+ (div δL,uh)Ωe

− 〈δLn, ûh〉∂Ωe
= 0, (4a)

− (grad δu,uh ⊗ uh)Ωe
+ (δu,div (−νLh + phI))Ωe

+ 〈δu, (ûh ⊗ ûh)n+ τ (uh − ûh)〉∂Ωe
− (δu,f)Ωe

= 0,
(4b)

− (grad δp,uh)Ωe
+ 〈δp, ûh · n〉∂Ωe

= 0, (4c)

1

|∂Ωe|
〈ph, 1〉∂Ωe

= ρe, (4d)

for e = 1, . . . , nel, and the global problem

nel∑
e=1

〈δû, (−phI + νLh)n+ τ (ûh − uh)〉∂Ωe
= 〈δû, t〉∂ΩN

, (5a)

〈ûh · n, 1〉∂Ωe
= 0 for e = 1, . . . , nel, (5b)

ûh = P2(uD) on ∂ΩD,

for all δu ∈ [Vh]d, δp ∈ Vh, δL ∈ [Vh]d×d and δû ∈ [Λh]d, such that δû = 0 on

∂ΩD, where the discrete space, Λh, is defined as

Λh :=
{
v̂ ∈ L2(Γ) ; v̂|Γi

∈ Pk(Γi)
}
,

Pk is the space of polynomials of degree less or equal to k, and P2(uD) is the L2

projection of the Dirichlet data into the approximation space on ∂ΩD. Equa-

tions (4a) and (4b) include the variation and the discretized form of the newly

introduced variable L, which independently approximates gradu. Following

[12], τ is a positive parameter, and it is usually taken as

τ ≈ ν

h
+ |u|,

where h is the element characteristic length. Even though the so-called stabi-

lization parameter has some influence on the accuracy of the HDG solution, the

method is very robust to variations of τ , see [9, 34]. Nevertheless, as will be seen

in the numerical tests in section 7, this parameter may have an important effect160

in the stability properties of the HDG method, to alleviate or remove numerical

oscillations in the presence of sharp fronts.
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(a) Local problem

û ρ
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Figure 2: Representation of the nodes for the discretization of the HDG.

The salient feature of HDG is the introduction of an independent approxima-

tion for the trace of the velocity, û, on the mesh skeleton, Γ. The introduction

of this trace velocity defines two types of problems, namely local and global.165

The local problem corresponds to the solution of Navier–Stokes equations inside

each element with û as Dirichlet boundary condition. However, a Navier–Stokes

problem with Dirichlet boundary condition on all the boundary is not solvable

unless a condition on pressure is imposed. Hence, a new variable, ρe ∈ R, is

introduced as the mean of the pressure on the boundary of each element.170

Figure 2a shows a representation of the nodes for the discretization of the

local variables, in blue, the nodes on the skeleton of the mesh Γ for trace vari-

ables, in red, and the mean pressure, represented by a green dot. Note that

the mean of the pressure, ρe, is not a physical node and it is just a scalar value

defined for each element, Ωe.175

The local problem for each element (4) allows expressing the velocity, uh,

the gradient of the velocity, Lh, and the pressure, ph, in the element, in terms

of the trace of the velocity, ûh, on the mesh skeleton and the mean of the

pressure at the element, ρe. Therefore, ûh and ρ can be regarded as actual

unknowns of the problem, that are determined with the global problem (5). The180

global problem corresponds to the discretization of the so-called conservativity
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condition, that is, the conservation of the numerical pseudo-tractions across

interior faces, together with the Neumann and Dirichlet boundary conditions,

and the solvability condition (5b) for the Dirichlet data in the local problems.

In the case of a pure Dirichlet problem, that is ∂Ω = ∂ΩD, the mean of the185

pressure ρe is set to a constant in, for instance, a single element, closing the

problem with an unique solution.

The discretization of local and global problems (4)-(5) leads to a discrete

residual of the form

r =



Aûû 0 Aûu AûL Aûp 0

Aρû 0 0 0 0 0

Auû + Cuû(û) 0 Auu + Cuu(u) AuL Aup 0

ALû 0 ALu ALL 0 0

Apû 0 Apu 0 0 AT
ρp

0 −1 0 0 Aρp 0





û

ρ

u

L

p

λ


−



t

0

f

0

0

0


= 0.

(6)

The nodal values of ûh, uh, Lh and ph are represented by û, u, L and p,

respectively. The constraints (4d) are applied using the Lagrangian multiplier λ.

The dashed lines inside the matrix separates the global and local problems. The190

elemental matrices used to compute the system are again presented in Appendix

A.

The equations below the dashed line in (6) correspond to the discretization

of the local problems (4). In the linear case, for the Stokes equations, these

can be solved element-by-element to define the so-called local solver, i.e., the195

expression of the local variables u(e), L(e) and p(e) (where (e) denotes the nodal

values for element Ωe) in terms of global variables û and ρe. Replacement of the

local solver for each element in the global equations (5), i.e., in the equations

above the dashed line in (6), leads to a system of equations involving only the

global variables û and ρ. Figure 2b represents the nodes corresponding to the200

actual DOFs of the global problem of HDG. After the global problem is solved,

the solution inside each element, u(e), L(e) and p(e), can be computed with the

local solver.
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Remark 1. Equation (4d) must be scaled by the perimeter of the element,

|∂Ωe|, to get a symmetric system, in the case of Stokes problem, after conden-205

sation of the local variables. Another possibility is choosing the average of the

pressure inside each element, which must be scaled by the area of the element.

In the non-linear case, for the Navier-Stokes equations, the solution of the non-

linear system with Newton-Raphson leads to a linear system of equations to

be solved in each iteration. This linear system can be solved analogously to210

the Stokes solution, that is, the local equations are solved element-by-element,

to express the local variables in terms of global variables, leading to a smaller

linear system of equations involving only trace variables and the mean of the

pressure in the elements.

The HDG formulation provides a numerical solution with optimal conver-

gence of order k + 1 in L2 norm for the velocity, uh, the pressure, ph, and also

for the approximation of the gradient, Lh. In addition, the mean of the veloc-

ity is each element, (uh, 1)Ωe
, is super-convergent with errors of order k + 2.

Hence, a new super-convergent approximation of velocity, u∗h, can be computed

by solving a new problem in each element: find u∗h ∈
[
Vh∗

]d
such that

(grad δu∗, gradu∗h)Ωe
= (grad δu∗,Lh)Ωe

,

(u∗h, 1)Ωe
= (uh, 1)Ωe

,

for all δu∗ ∈
[
Vh∗

]d
and e = 1, . . . , nel, where Vh

∗is a richer space with one poly-215

nomial degree more than Vh, i.e. Vh∗ =
{
v ∈ L2 (Ω) ; v|Ωe ∈ Pk+1 (Ωe) , for e = 1, . . . , nel

}
.

The super-convergent velocity, u∗, converges asymptotically with a rate of k+2

in the L2 norm for a mesh with uniform degree, k, see [35]. Convergence prop-

erties for the non-uniform degree are discussed in detail in [36, 37]. The com-

putational overhead in computing the super-convergent solution, u∗h, is small.220

This solution can be used to define a reliable and inexpensive error estimator

for HDG velocity approximation, uh, see [33].
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4. Implementation

In all the results presented in subsequent section, the shape functions that are

used to approximate the variables inside each element are generated using Fekete225

nodal distributions [38] for triangular elements and Gauss–Lobatto points [39,

p. 888] in the case of quadrilateral elements. The shape functions are computed

using Jacobi polynomials discussed in detail in [40]. All the meshes are generated

using EZ4U [41, 42, 43], which is a high order mesh generator, and Gmsh [44]

is used to post process the results.230

The non-linear system of equations is linearised using Newton–Raphson

method. Relative incremental and residual norms are used as convergence cri-

teria with a tolerance of 10−12.

The in-house code is implemented in FORTRAN. Only direct solvers are

considered in the present work. Harwell Subroutine Library (HSL) [45] routines235

MA57d and MA41d [46] are used for solving symmetric and unsymmetric sys-

tems, respectively. Both solvers use Approximate Minimum Degree (AMD) [47]

reordering algorithm to reorder the linear system of equations. MC75d [48] is

used to estimate the condition number of the tangent stiffness matrices, κ(A).

Let w and z be generic vector and scalar fields, respectively, defined over Ω.240

Their error norms are computed as follows,

||ew||L2(Ω) =

[∫
Ω

(wex −wnum) · (wex −wnum) dΩ

]1/2

,

||ez||L2(Ω) =

[∫
Ω

(zex − znum)2 dΩ

]1/2

,

where suffixes ex and num stand for exact and numerical values.

All tests were performed on machine equipped with 24 Intel(R) Xeon(R) E5-

2620 v2 2.10-2.60 GHz processors and 64 GB of RAM running OpenSUSE 13.1

(x86_64) using a serial implementation. The code was compiled using gfortran245

4.8.1.
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4.1. Static condensation

Static condensation is used in both CG and HDG methods in the present

work: the DOFs that are not shared by neighbouring elements can be expressed

in terms of remaining DOFs of the element, hence reducing the global DOFs of250

the system. In the case of CG, interior nodes are not shared by other elements

and, therefore, they can be expressed in terms of boundary nodes of the element.

In the case of HDG, all the local DOFs are approximated independently inside

each element, consequently, they can be expressed in terms of global DOFs.

Let δxm and δxs be the incremental master and slave DOFs in a linearised255

system. In the case of CG, master and slave DOFs correspond to boundary

and interior DOFs respectively, while in HDG, they represent local and global

DOFs, respectively. A typical linearised system of equations can be written in

the form,

Amm Ams

Asm Ass

δxmδxs
 = −

rm

rs

 . (7)

The matrix Ass is block diagonal and its inverse is well defined. Hence, δxs can260

be expressed in terms of δxm in an element-by-element fashion as,

δx(e)
s =

[
−A(e)

ss

]−1

A(e)
smδxm −

[
A(e)
ss

]−1

r(e)
s . (8)

Note that (e) represents the elemental matrices. Replacing δxs from equa-

tion (8) into the first of the (7) equations and assembling into the global system

results in the following,

(
Amm −AmsA

−1
ss Asm

)
δxm = −rm + AmsA

−1
ss rs.

As the matrices are condensed on elemental basis, the computational over-265

head is negligible. In the case of a problem with very high DOF count, this

numerical technique can save significant CPU time in solving the system of

equations, specially for high degree approximations.
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Table 1: Analytical expressions for number of DOFs in HDG and CG.

Method 2D

Triangular Quadrilateral

HDG(Pk/Qk) (3k + 4)nel (4k + 5)nel

CG(PkPk−1/QkQk−1)
(

9k−9
2

)
nel (6k − 5)nel

3D

Tetrahedral Hexahedral

HDG(Pk/Qk)
(
3k2 + 9k + 7

)
nel

(
9k2 + 18k + 10

)
nel

CG(PkPk−1/QkQk−1)
(
4k2 − 28k

3 + 41
6

)
nel

(
12k2 − 18k + 10

)
nel

5. Count of DOFs

A theoretical count of the approximate number of DOFs, for both HDG270

(Pk or Qk) and CG (PkPk−1 or QkQk−1), is presented. Table 1 presents the

number of DOFs in terms of the number of elements, nel. These formulas have

been derived using the relations proposed in the appendix of [24] to express

the number of nodes and faces in terms of the number of elements. The main

assumption used in this analysis is uniform structured meshes with very large275

number of elements. The ratio of number of DOFs of HDG to CG is plotted

against the degree of approximation, k, in figure 3 in 2D and 3D spaces. In

both cases only the number of DOFs after static condensation are taken into

account.

It is evident from the figure 3a that HDG has less DOFs than CG for both280

triangular and quadrilateral elements when k > 5 in the case of 2D. This is due

to the fact that, even though HDG has more DOFs for velocity, the pressure

DOFs are condensed to a single scalar unknown per element, while in CG only

interior pressure DOFs can be condensed out. Hence, at high-order approxima-
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Figure 3: Comparison of DOFs between HDG (Pk/Qk) and CG (PkPk−1/QkQk−1).

tions, HDG tends to have lesser DOFs than CG. On the other hand, for 3D,285

HDG has less DOFs than CG only for very high degrees: k = 12 for hexahe-

dral and k = 19 for tetrahedral meshes of elements. In this case, both types

of elements have more nodes along the edges than vertices in the correspond-

ing 2D case, hence more velocity DOFs are repeated in HDG. However, the

post-processed solution of HDG (Pk−1/Qk−1) with degree k − 1 has the same290

order of convergence as CG (PkPk−1/QkQk−1) solution of degree k for velocity.

Accordingly, a plot is presented in figure 4, comparing the ratio of number of

DOFs of HDG (Pk−1/Qk−1) to CG (PkPk−1/QkQk−1). The ratio favours HDG

when k > 4 in the case of 2D and, in the case of 3D, k > 6 and k > 12 for

hexahedral and tetrahedral elements, respectively.295

Table 2 shows the various quantities of interest regarding the linear system

of equations for Stokes problem. The number of DOFs of the system is denoted

by ndof and number of non-zeros of the global stiffness matrix matrix and its

factor by nnz(A) and nnz(L), respectively. Since, Stokes problems leads to

a symmetric matrix, only lower triangular part of the matrix is stored. All300
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Figure 4: Comparison of DOFs between HDG (Pk−1/Qk−1) and CG (PkPk−1/QkQk−1).

the numbers are provided only for free DOFs excluding DOFs corresponding to

Dirichlet boundary. From the table, it can be verified that the number of DOFs

of HDG is less than CG for k > 5, as deduced from theoretical count in fig. 3a.

Nevertheless, the number of non-zeros in the global matrix and its factor are

very similar for k = 4 and perhaps, HDG system leads to fewer entries from305

k ≥ 5. At higher degrees the entries in the factors of CG systems are almost 1.5

times more than HDG systems. This can favour the HDG systems when using

the direct solvers.

It is also worth noting that HDG matrices have a regular block sparsity

pattern that is beneficial for the direct solver, see [20] for the Laplace equation.310

Consider a mesh with triangular elements: each face has contributions from

4 other faces, as shown in figure 2b. Hence, each row in the final system of

HDG has 5 blocks of equal size for velocity DOFs. In figure 5, the sparsity

pattern of matrices of HDG and CG are shown for a regular mesh with 32

triangular elements. The blue DOFs correspond to velocity-velocity, the black315

DOFs correspond to pressure-pressure, in the case of CG, and the red ones are
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Table 2: Comparison of DOFs (ndof), number of non-zeros (nnz) in global stiffness matrix

(A) and its factor (L) for Stokes problem with nel = 2048 triangular elements.

k CG(PkPk−1) HDG(Pk) k CG(PkPk−1) HDG(Pk)

ndof

2

9 029 20 095

6

45 634 44 159

nnz(A) 69 641 313 267 2 007 486 1 556 131

nnz(L) 133 866 1 484 136 9 389 209 7 225 163

ndof

3

18 178 26 111

7

54 786 50 175

nnz(A) 400 191 535 279 2 812 691 2 014 687

nnz(L) 1 955 880 2 437 997 12 741 010 9 000 060

ndof

4

27 320 32 127

8

65 938 56 191

nnz(A) 801 236 816 427 3 752 616 2 532 379

nnz(L) 3 755 471 3 751 615 17 006 063 11 344 166

ndof

5

36 482 38 143

9

73 090 62 207

nnz(A) 1 337 001 1 156 711 7 827 261 3 109 207

nnz(L) 6 276 872 5 347 337 21 918 136 13 959 296

velocity-pressure, in the case of CG, and velocity-mean pressure, in the case of

HDG.

6. Comparison of computational efficiency

6.1. Kovasznay flow320

The benchmark problem Kovasznay flow is considered for the comparison of

CG and HDG for the solution of Stokes and Navier–Stokes problems. Kovasznay

flow is an analytical solution of Navier–Stokes equations in a domain [0, 2] ×

[−0.5, 1.5], see [49].

u =

1− exp(λx1) cos(2πx2)

λ
2π exp(λx1) sin(2πx2)

 ,
p = −1

2
exp(2λx1) + C,
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Figure 5: Sparsity pattern of HDG (Pk) and CG (PkPk−1) matrices for k = 5 and h = 0.5.

Variable nnz represents number of non-zeros.

where λ = Re
2 −

√
Re2

4 + 4π2 and Re = 1
ν is the Reynolds number. The analyt-325

ical velocity and pressure are shown in figure 6. Dirichlet boundary conditions

are prescribed for the velocity on all the boundary. In the case of Stokes prob-

lem, a body force equal to the convective term, div (u ⊗ u), is set using the

exact solution at Re = 20.

Meshes are obtained by splitting a regular n × n Cartesian grid into either330

2n2 triangles or n2 quadrilaterals, which gives an uniform element size, h = 2/n.

All the results are presented considering the stability parameter τ = 1 on all

faces of each element.

In this section, results are presented for the Stokes problem, and just com-

mented for the Navier–Stokes case.335

Convergence

The L2 norm of the error in the post-processed velocity of HDG is compared

to the L2 norm of error in velocity of CG. Similarly, the L2 norm of the error

in pressure is also compared between HDG and CG.
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Figure 6: Kovasznay flow: analytical solution.
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Figure 7: Kovasznay flow: convergence of velocity.
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Figure 8: Kovasznay flow: convergence of pressure.

Figure 7 shows the convergence plots, for triangular elements, of velocity340

for HDG and CG, while figure 8 has the convergence results of pressure. In

HDG, both velocity and pressure are approximated with the same degree of

approximation, k, while in the case of CG, degree k is used for velocity and

k−1 for pressure. The HDG post-processed velocity converges with order k+2,

compared to k+ 1 for CG. Similarly, HDG has k+ 1 rate for pressure compared345

to the rate of k for pressure of CG.

Although not presented, optimal theoretical convergence with similar accu-

racy is observed for Navier–Stokes problem in both HDG and CG.

It is noticed that the CPU times for the Kovaszany flow problem are too small

for the considered mesh sizes to make a reliable comparison. Hence, a new test350

case is proposed in the following section in order to compare the computational

efficiency between CG and HDG.
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6.2. Test case

This test case is chosen in such a way that it facilitates the use of finer

meshes and hence, larger CPU times and errors stay within the level of 10−10.

The analytical solutions of the velocity and pressure considered are,

u =

− cos(70x1) sin(70x2)

sin(70x1) cos(70x2)

 ,
p = −1

4
(cos(140x1) + cos(140x2)) + C,

in a domain of [0, 2] × [0, 2]. Dirichlet boundary conditions are applied on

the boundary along with appropriate body force computed from the analytical355

solution. Stabilisation parameter, τ , in HDG is taken as 1 on all faces of the

each element.

CPU time for direct solver

CPU times for direct solver (in seconds) are presented, for both HDG and

CG, to compare their computational efficiency. The time taken for pre-processing,360

computation and assembly of matrices and post-processing is highly implementation-

dependent and hence, not taken into account. The errors considered for com-

parison are the L2 norm of error in post-processed velocity in the case of HDG,

with degree k for all variables, and the L2 norm of error in velocity of CG, with

degree k for velocity and k − 1 for pressure.365

The results are presented for degree from 2 to 9 and the element sizes, h,

used are 2/{32, 40, 48, 56, 64, 72.80, 88}. The size of the elements are chosen in

such a way to keep the errors within acceptable bounds.

Figures 9 and 10 show the CPU time taken by the direct solver for various

degrees of approximation, for both HDG and CG, in the case of Stokes problem370

with triangular and quadrilateral elements. In the plots, each data point corre-

sponds to the mesh size specified. A common trend can be observed from the

plots: to achieve the same level of accuracy, it is more computationally efficient

to use a high-order coarser mesh than a low-order finer mesh. This may be due

to the fact that the data dependencies in a high-order mesh between elements375
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Figure 9: Test case: error for HDG vs. CPU time for direct solver with triangular and

quadrilateral elements.

are lesser than in a low-order mesh, see [21]. A similar trend is observed in the

case of Navier–Stokes results and hence, plots are omitted.

Figure 11 presents a similar plot for a given mesh, with element size h = 2/88

for k = 2−9, comparing the efficiency of HDG and CG in a single plot. Asterisk

(∗) on HDG denotes the post-processed solution for velocity. For a given error,380

HDG always outperforms CG at all the degrees of approximation presented, and

the performance gap between CG and HDG increases with increasing degree of

approximation. A similar trend in results is obtained for Navier–Stokes problem,

but with a greater difference in the CPU times between HDG and CG at k = 5.

Figure 12 shows the ratio of CPU times of HDG to CG, for triangular el-385

ements and quadrilateral elements. It can be observed from these plots that,

for degree k ≥ 3, all points lie below the ratio of 1, indicating that HDG takes

lesser CPU time for direct solver. Even in the case of k = 2, as the mesh be-

comes finer, HDG becomes more efficient than CG for triangular elements. In

case of quadrilateral elements, HDG seems to be more efficient only for degree390
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Figure 10: Test case: error for CG vs. CPU time for direct solver with triangular and

quadrilateral elements.
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Figure 11: Test case: comparison of error between HDG and CG vs. CPU time for direct

solver.
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Figure 12: Test case: ratio of CPU times for direct solver vs. element size for triangular and

quadrilateral elements.

k ≥ 3. In the case of high-order, the ratio of CPU times tend to be constant for

all mesh sizes, owing to the larger computational times for both triangular and

quadrilateral elements.

Moreover, it is noticed from the convergence history that the HDG produces

lesser error compared to CG for same mesh and same degree of approximation.395

Hence, a comparison of CPU time against the error is a fairer comparison.

Figure 13 shows the ratio of CPU times against error. These plots are

produced using the CPU times for direct solver in figures 9 and 10. For a given

degree of approximation and mesh, HDG produces lesser error than CG, thus,

for every mesh in the CG plot, the CPU time of HDG is interpolated from figure400

9 to determine the CPU time that would provide the same error as CG. It is

evident from the plots that HDG is more efficient than CG for a given accuracy

in both triangle and quadrilateral cases. It can also be noticed that the ratio of

CPU times tend to a constant value for all degrees of approximation and mesh

sizes in triangular elements. For the case of quadrilateral elements, same can405
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Figure 13: Test case: ratio of CPU times for direct solver vs. error for triangular and quadri-

lateral elements.

be concluded that most of the points produce a constant ratio of CPU times.

However, the ratio for k = 9 tends to be increasing at the finer mesh sizes. This

can be explained from the figure 9b, where last two points for k = 9 are within

machine precision and hence, optimal convergence is lost. Nevertheless, it can

be safely concluded that HDG can outperform CG for a given level of accuracy410

at high-order approximations.

In the case of Navier–Stokes, a similar trend is observed, with ratios below

1. Hence, the results are not presented to avoid redundancy.

Finally, the condition number of global stiffness matrix of the Stokes prob-

lem, κ(A), is plotted against degree of approximation, k, for a mesh with trian-415

gular elements and h = 0.03125, in figure 14. Same choice of basis functions are

used to compute the elemental matrices for both HDG and CG to be able to

make a fair comparison of condition numbers. The condition number increases

more rapidly in the case of CG than HDG: condition number in HDG increases

by one order of magnitude when going from degree 2 to 9, whereas in CG it420
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Figure 14: Test case: Condition numbers in Stokes problem with triangular elements and

h = 0.03125.

increases by approximately 5 orders.

6.3. NACA airfoil

The results presented until this point are for regular uniform meshes with

a benchmark problem. Now, a more practical problem is considered in this

section: the computation of the lift coefficient for the NACA0012 airfoil section425

at Reynolds number Re = 5000 and angle of attack α = 2◦. Steady state

Navier–Stokes equations are solved and the error in the lift coefficient is used

for presenting the results.

The meshes are generated using an in-house code for a computational do-

main with a circular exterior boundary. Four different meshes are used in the430

computations with nested refinement. Figure 15 shows the most refined mesh

used in the computations and the region around the airfoil.

The mesh is non-uniform with refinement in the vicinity of the airfoil section.

Depending on the angle of attack, α, the velocity on the inflow half of the
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Figure 15: NACA airfoil: computational mesh (refinement level 4) and zoom.

boundary is prescribed to (cos(α), sin(α)). The rest of the exterior boundary435

is treated as outflow boundary, as it is far from the airfoil. No slip boundary

condition is applied along the boundary of the airfoil.

The velocity field around the airfoil, obtained using the mesh presented

in figure 15 and degree of approximation k = 5, is shown in figure 16. The

singularity at the front tip of the airfoil can be noticed, and it can be observed440

that the wake region of the airfoil is steady at this Reynolds number without

any vortices.

The results of computational efficiency with respect to CPU times are pre-

sented next considering the error in lift coefficient. More specifically, CPU times

reported are the average CPU time for each Newton–Raphson iteration and the445

reference value for the lift coefficient is obtained with a CG computation with the

mesh shown in figure 15 and degree k = 8. In both HDG and CG, the non-linear

solver takes around 5-6 Newton–Raphson iterations for attaining convergence

with tolerance 10−12.

Figure 17 shows the ratio of the CPU times for the direct solver vs. element450

size. The element size, h, in the case of NACA test is taken as the size of the
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Figure 16: NACA airfoil: velocity field with k = 5 and refinement level 4.

biggest element in the mesh. All the ratios lie below 1, leading to the conclusion

that HDG is more efficient than CG. Additionally, in this test, the ratios are

nearly constant for each degree of approximation. The computational domain

in this example is relatively big and hence, larger CPU times are noticed, which455

are more reliable and reproducible than for the Stokes problem for Kovasznay

flow.

CPU time with error is plotted in figure 18 by interpolating the CPU times

of HDG as stated in Kovasznay flow section. Again, all the ratios stay below 1,

leading to similar conclusions: HDG is more computationally efficient than CG460

when CPU times for the direct solver are considered.

It is worth noting that the efficiency of HDG is in part due to the convergence

of order k + 1 for the pressure and for the gradient, leading to convergence of

order k + 1 for the lift coefficient, as compared to the order k of CG.

Finally, figure 19 shows the maximum condition number in Newton–Raphson465

iterations in HDG and CG. All the condition numbers presented are for triangu-

lar elements and h = 0.78125. On the one hand, in the case of HDG, condition

number remains practically constant with increasing degree of approximation.

On the other hand, in the case of CG, there is no particular trend observed,

29



−2 −1.8 −1.6 −1.4 −1.2
0

0.2

0.4

0.6

0.8

1

h=3.125
h=1.5625h=0.78125

log(h)

H
D
G
(P
k
)
T
im

e/
C
G
(P
k
P
k
−

1
)
T
im

e

k=3 k=4 k=5

(a) k = 3-5.

−2 −1.8 −1.6 −1.4 −1.2
0

0.2

0.4

0.6

0.8

1

h=3.125
h=1.5625

h=0.78125

log(h)
H
D
G
(P
k
)
T
im

e/
C
G
(P
k
P
k
−

1
)
T
im

e
k=6 k=7 k=8 k=9

(b) k = 6-9.

Figure 17: NACA airfoil: ratio of CPU times for direct solver vs. element size for triangular

elements.
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Figure 18: NACA airfoil: ratio of CPU times for direct solver vs. error for triangular elements.
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Figure 19: NACA airfoil: condition numbers with triangular elements and h = 0.78125.

except that for the cases k = {2, 6}, κ(A) is several orders of magnitude higher,470

relatively to HDG.

7. Comparison of stability in the presence of sharp fronts

In this section, the robustness of HDG and CG is compared in terms of

stability. The problem chosen to make this study was first reported in [50]. The

analytical solution of this manufactured problem is given as follows,475

u =


(

1− cos

(
2π(exp(R1x1)− 1)

exp(R1)− 1

))
sin

(
2π(exp(R2x2)− 1)

exp(R2)− 1

)
R2

2π

exp(R2x2)

(exp(R2)− 1)

−
(

1− cos

(
2π(exp(R2x2)− 1)

exp(R2)− 1

))
sin

(
2π(exp(R1x1)− 1)

exp(R1)− 1

)
R1

2π

exp(R1x1)

(exp(R1)− 1)

 ,
p = R1R2 sin

(
2π(exp(R2x2)− 1)

exp(R2)− 1

)
sin

(
2π(exp(R1x1)− 1)

exp(R1)− 1

)
exp(R1x1) exp(R2x2)

(exp(R1)− 1)(exp(R2)− 1)
,

(9)

where R1 and R2 are two positive parameters. The body force is the exact one

corresponding to the solution of the Navier–Stokes equations (9). The problem
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is solved in the computational domain [0, 1]× [0, 1].

The velocity field of this solution is similar to a counter clockwise vortex. If

(x0, y0) are the coordinates of the center of vortex, then the relation between480

R1 and R2 with (x0, y0) is

x0 =
log((exp(R1) + 1)/2)

R1
, y0 =

log((exp(R2) + 1)/2)

R2
.

By increasing R1, the center goes towards the right side (x = 1) of the domain,

while by increasing R2 the center approaches the top edge (y = 1) of the domain.

In the present study, R2 is fixed at 0.1 which gives y0 = 0.5125. Hence, the

center of vortex is on the line y0 = 0.5125 and, in this case, its distance to485

the right side is 1/ 4
√
Re, where Re = 1/ν. R1 is chosen in such a way that

it satisfies the equation 1/R1 log((exp(R1) + 1)/2) = 1 − (1/ 4
√
Re). Thus, a

boundary layer is formed near the right handed edge (x = 1) of the domain,

which enables to study the relative stability between HDG and CG. Note that

this solution is non-symmetric as the line of symmetry is y = 0.5125, which does490

not coincide with the line of symmetry of the domain. Hence, the numerical

solutions obtained for the present problem are non-symmetric too.

To make the study, a regular mesh with triangular elements is chosen, with

degree of approximation k = 3, on a mesh of h = 0.03125, which is relatively

fine. The value of ν is chosen to be 4×10−4, which corresponds to a Re of 2500.495

Dirichlet boundary conditions are applied on all the boundary, computed from

the analytical solution, and also including the corresponding body force. In the

case of HDG, the stabilization parameter, τ , is taken as 1. Steady state Navier–

Stokes equations fail to converge for the mesh and problem data considered

for both HDG and CG. Hence,the problem is solved using unsteady Navier–500

Stokes equations until a steady state solution is reached. BDF3 time integration

scheme is used to perform the time integration. The initial solution is set as the

analytical solution.

Figure 20 shows the solution for Re = 2500. HDG provides a smooth solution

using τ = 1 with a good resolution of boundary layer, whereas oscillations close505
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Figure 20: Stability study: isolines of velocity field at Re = 2500 and k = 3.
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to the boundary layer can be noticed in CG solution. The error obtained in the

post-processed solution of HDG is 2.04×10−4, which is reasonable compared to

CG error of 1.09× 10−2. It is noticed that the post-processed solution of HDG

is only slightly more accurate than the HDG solution. However, as expected

super-convergence of the HDG is lost in this example.510

8. Conclusions

Theoretical DOF count is compared between HDG, with degree k for all

variables, and CG with degree k for the velocity and k − 1 for the pressure. In

the case of 2D, HDG has fewer DOFs than CG, when degree of approximation

is more than 5, for both triangular and quadrilateral elements. In the case of515

3D, they tend to be same only for very high degrees. However, when HDG

with degree k − 1 is compared to CG with degree k for velocity and k − 1

for pressure, i.e., with the same theoretical rates of convergence, the ratio of

number of DOFs favours HDG when k > 4 for 2D and, in the case of 3D, k > 6

and k > 12 for hexahedral and tetrahedral elements, respectively. The number520

of non-zero entries in the global system and its factor are also provided for HDG

and CG Stokes problems. HDG systems leads to fewer non zero entries when

the degree of approximation, k ≥ 5.

Then, Kovasznay flow, a benchmark for Stokes and Navier–Stokes problems,

is considered to present the convergence rates of HDG and CG in 2D. A test525

case is designed to study the relative performance of HDG and CG using direct

solvers. It is noticed that, using a high-order coarser mesh is computationally

more efficient than using a low-order finer mesh, with respect to CPU time for

direct solver. Numerical tests also show that HDG takes lesser CPU time for

direct solver when compared to CG, for the same level of accuracy and for degree530

greater than 2.

The same comparison is carried out with NACA0012 airfoil example, with

the error measured in the lift coefficient value. Again, HDG is more computa-

tionally efficient than CG for a given level of accuracy.
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The condition numbers for HDG and CG are presented for Kovasznay flow535

and NACA airfoil examples. In most of the cases, HDG produces lower condition

number values than CG.

Finally, a comparison of stability between HDG and CG is also presented,

using a manufactured solution with a boundary layer. It is concluded that HDG

can exhibit superior stability properties than CG in the presence of sharp fronts,540

which occurs at high Reynolds numbers.

Appendix A: Definition of elemental matrices in HDG and CG frame-

works

In this appendix, the elemental matrices that arise from HDG and CG meth-

ods are defined. All the variables presented in this section are the elemental vari-545

ables. Variable L(e) is a second–order tensor and it is represented as a column

vector, [l11 l12 l21 l22]
(e)T , in the numerical computations.

The independent variables (L
(e)
h ,u

(e)
h , p

(e)
h , û

(e)
h , ρ

(e)
h ) over each element, Ωe,

can be approximated as follows,

L
(e)
h (ξ) = ψL(ξ)L(e), u

(e)
h (ξ) = ψu(ξ)u(e), p

(e)
h (ξ) = ψp(ξ)p(e) in Ωe,

û
(e)
h (ξ) = ψû(ξ)û(e) on ∂Ωe,

where ψL(ξ), ψu(ξ), ψp(ξ) and ψû(ξ) are matrices that gather the approxi-550

mation functions of respective unknowns, while L(e), u(e), p(e) and û(e) are the

elemental nodal column vectors of gradient of velocity, velocity, pressure and

velocity trace, respectively. ξ and ξ represent the coordinate in the area and

line reference domain, respectively. û(e) contains the trace of velocity on each

face of the element and it can be represented as
[
ûFe1 . . . ûFen

]T , where Fef555

is the f th face of eth element. Here, n = 3 in the case of triangular elements,

while n = 4 for quadrilateral elements. From now on explicit dependence on ξ

and ξ is omitted for the sake of simplicity. The approximation functions can be
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represented as follows,

ψL =


ψ

ψ

ψ

ψ

 , ψu =

ψ
ψ

 , ψp = ψ,

ψû =

ψFe1
. . . ψFen

ψFe1
. . . ψFen

 ,
where ψ is the matrix that gathers the shape functions associated to the nodes560

of the elements and ψFef
is the matrix collecting the shape functions associated

to the nodes along the sides of the element.

Some notation used to represent the element matrices in case of both HDG

and CG is given as follows,

∇̃ ≡

∂/∂x1 ∂/∂x2

∂/∂x1 ∂/∂x2

 , Ñ ≡

n1 n2

n1 n2

 .
The global stiffness matrix, K, and the elemental stiffness matrix, K(e), are

related by following expression, where A(e) is the assembly operator.

K = A(e)K(e).

The elemental matrices of the corresponding global matrices presented in565

equation (3) are as follows,

K(e) =

((
∇̃T
ψu

)T
, ν∇̃T

ψu

)
Ωe

,

C(e)(u) =
(
ψTuu, ∇̃

T
ψu

)
Ωe

,

G(e) = −
((

∇ψp
)T
,ψu

)
Ωe

,

f (e) =
(
ψTu ,f

)
Ωe

+ 〈ψTu , t〉∂ΩeN
.

Similarly, the elemental matrices in the HDG framework presented in equa-
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tion (6) are given. The matrices corresponding to equation (4a) are,

A
(e)
LL =

(
ψTL,ψL

)
Ωe

,A
(e)
Lu =

(
(∇̃ψL)T ,ψu

)
Ωe

,

A
(e)
Lû = −〈(ÑψL)T ,ψû〉∂Ωe .

Similarly, non-linear convective matrices in equation (4b) can be expressed as

follows,

C
(e)
uu(u) = −


(
ψTu,1

, u1ψu

)
Ωe

(
ψTu,2

, u1ψu

)
Ωe(

ψTu,1
, u2ψu

)
Ωe

(
ψTu,2

, u2ψu

)
Ωe

 ,
C

(e)
uû(û) =

〈ψTu , û1ψûn1〉∂Ωe 〈ψTu , û1ψûn2〉∂Ωe

〈ψTu , û2ψûn1〉∂Ωe
〈ψTu , û2ψûn2〉∂Ωe

 .
(A.1)

The discretization of the rest of the terms in equation (4b) results in the follow-

ing,
A

(e)
uL = −

(
ψTu , ν∇̃ψL

)
Ωe

,A
(e)
up =

(
ψTu ,∇ψp

)
Ωe

,

A
(e)
uu = 〈ψTu , τ ψu〉∂Ωe

,A
(e)
uû = −〈ψTu , τ ψû〉∂Ωe

,

f (e) =
(
ψTu ,f

)
Ωe

.

The matrices of the continuity equation (4c) and constraint (4d) are presented

as follows,

A
(e)
pu = −

(
(∇ψp)T ,ψu

)
Ωe
,A

(e)
pû = 〈(nψp)T ,ψû〉∂Ωe ,

A
(e)
ρp = 1

|∂Ωe| 〈ψp, 1〉∂Ωe
.

Finally, the elemental matrices of global problem (5a) and (5b) can be expressed

as,
A

(e)
ûp = −〈ψTû , (nψp)〉∂Ωe

,A
(e)
ûL = 〈ψTû , (ÑψL)〉∂Ωe

,

A
(e)
ûû = 〈ψTû , τ ψû〉∂Ωe ,A

(e)
ûu = −〈ψTû , τ ψu〉∂Ωe ,

A
(e)
ρû = 〈nTψû, 1〉∂Ωe

, t(e) = 〈ψTû , t〉∂ΩeN
.

The tangent operator terms, necessary within the Newton–Raphson iterative

method, associated with the residual (6) are trivial, except for the ones associ-

ated with C
(e)
uu(u) and C

(e)
uû(û) matrices, given by (A.1). These are expressed
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by

C
(e)
Tuu =


(
ψTu,1

, u1ψu

)
Ωe

+
(
ψTu,2

, u2ψu

)
Ωe

0

0
(
ψTu,1

, u1ψu

)
Ωe

+
(
ψTu,2

, u2ψu

)
Ωe

 ,
C

(e)
Tuû =

〈ψTu , (û · n)ψû〉∂Ωe
0

0 〈ψTu , (û · n)ψû〉∂Ωe

 .
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