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Abstract. In this paper, we aim to compute numerical approximation integral by using an adaptive
Monte Carlo algorithm. We propose a stratified sampling algorithm based on an iterative method which
splits the strata following some quantities called indicators which indicate where the variance takes
relative big values. The stratification method is based on the optimal allocation strategy in order to
decrease the variance from iteration to another. Numerical experiments show and confirm the efficiency
of our algorithm.
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1. Introduction

This paper deals with adaptive Monte Carlo method (AMC) to approximate the integral of a given func-
tion f on the hypercube [0, 1[d, d ∈ IN∗. The main idea is to guide the random points in the domain
in order to decrease the variance and to get better results. The corresponding algorithm couples two
methods: the optimal allocation strategy and the adaptive stratified sampling. In fact, it proposes to
split the domain into separate regions (called mesh) and to use an iterative algorithm which calculates
the number of samples in every region by using the optimal allocation strategy and then refines the parts
of the mesh following some quantities called indicators which indicate where the variance takes a relative
big values.

A usual technique for reducing the mean squared error of a Monte-Carlo estimate is the so-called strati-
fied Monte Carlo sampling, which considers sampling into a set of strata, or regions of the domain, that
form a partition (a stratification) of the domain (see [6] and the references therein for a presentation
more detailed). It is efficient to stratify the domain, since when allocating to each stratum a number of
samples proportional to its measure, the mean squared error of the resulting estimate is always smaller
or equal to the one of the crude Monte-Carlo estimate. For a given partition of the domain and a fixed
total number of random points, the choice of the number of samples in each stratum is very important
for the results and precision. The optimal allocation strategy (see for instance [3] or [1]) allows to get the
better distribution of the samples in the set of strata in order to minimize the variance. We give in the
next section a brief summary of the this strategy which will be the basic tools of our adaptive algorithm.

In the other hand, it is important to stratify the domain in connection with the function f to be inte-
grated and to allocate more strata in the region where f has larger local variations. Many research works
propose multiple methods and technics to stratify the domain: [1] for the adaptive stratified sampling for
Monte-Carlo integration of differentiable functions, [5] for the adaptive integration and approximation
over hyper-rectangular regions with applications to basket option pricing, [4], . . . .

The paper is organized as follows. Section 2 describes the adaptive method. We begin by giving a
summarize of the optimal allocation strategy and then describe the adaptive algorithm consisting in
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2 TONI SAYAH

stratifying the domain. In section 3, we perform numerical investigations showing the powerful of the
proposed adaptive algorithm.

2. Description of the adaptive algorithm

In this section, we will describe the AMC algorithm which is based on indicators to guide the repartition
of the random points in the domain. In our algorithm, the indicators are based on an approximation
of the variance expressed on different regions in the domain. We detect those where the indicators are
bigger than their mean value up to a constant and we split them in small regions.

2.1. Optimal choice of the numbers of samples. Let D = [0, 1[d be the unit hypercube of IRd,
d ∈ IN∗, and f : D → IR a Lebesgue-integrable function. We want to estimate

I(f) =

∫
D

f(x)dλ(x),

where λ is the Lebesgue measure on IRd.

The classical MC estimator of I(f) is

ĪMC(f) =
1

N

N∑
i=1

f ◦ Ui,

where Ui, 1 ≤ i ≤ N , are independent random variables uniformly distributed over D. ĪMC(f) is an
unbiased estimator of I(f), which means that E[ĪMC(f)] = I(f). Moreover, if f is square-integrable, the
variance of ĪMC(f) is

Var(ĪMC(f)) =
σ2(f)

N
where

σ2(f) =

∫
D

f(x)2dλ(x)−
(∫

D

f(x)dλ(x)

)2

.

Variance reduction techniques aim to produce alternative estimators having smaller variance than crude
MC. Among these techniques, we focus on stratification strategy. The idea is to split D into separate
regions, take a sample of points from each such region, and combine the results to estimate I(f). Let
{D1, . . . , Dp} be a partition of D. That is a set of sub-domains such that

D =

p⋃
i=1

Di and Di ∩Dj = ∅ for i 6= j.

We consider p corresponding integers n1, . . . , np. Here, ni will be the number of samples to draw from

Di. For 1 ≤ i ≤ p, let ai =

∫
Di

dλ(x) be the measure of Di and Ii(f) =

∫
Di

f(x)dλ(x) be the integral

of f over Di. We have λ(D) =

p∑
i=1

ai and I(f) =

p∑
i=1

Ii(f). Furthermore, for 1 ≤ i ≤ p, let πi =
1Di

ai
λ

be the density function of the uniform distribution over Di and consider a set of ni random variables
X

(i)
1 , . . . , X

(i)
ni drawn from πi. We suppose that the random variables X(i)

j , 1 ≤ j ≤ ni, 1 ≤ i ≤ p, are
mutually independent.

For 1 ≤ i ≤ p, let Si be the MC estimator of Ii(f) defined by:

Si =
1

ni

ni∑
k=1

f ◦X(i)
k .

Then, the integral I(f) can be estimated by:

ĪSMC(f) =

p∑
i=1

aiSi =

p∑
i=1

ai
ni

ni∑
k=1

f ◦X(i)
k .
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We call ĪSMC(f) the stratified Monte Carlo estimator of I(f). It is easy to show that ĪSMC(f) is an
unbiased estimator of I(f) and, if f is square-integrable, the variance of ĪSMC(f) is

Var(ĪSMC(f)) =

ni∑
i=1

a2i
σ2
i (f)

ni

where

σ2
i (f) =

∫
D

f(x)2dπi(x)−
(∫

D

f(x)dπi(x)

)2

, ∀1 ≤ i ≤ p.

The choice of the integers ni, i = 1, . . . , p is crucial in order to reduce Var(ĪSMC(f)). A frequently made
choice is proportional allocation which takes the number ni of points in each sub-domain Di proportional

to its measure. In other words, if N =

p∑
i=1

ni, then ni = Nai, i = 1, . . . , p.

For this choice, we have

Var(ĪMC(f)) = Var(ĪSMC(f)) +
1

N

p∑
i=1

ai

(
Ii(f)

ai
− I(f)

)2

,

and hence, Var(ĪSMC(f)) ≤ Var(ĪMC(f)).

To get an even smaller variance, one can consider The optimal allocation which aims to minimize

V (n1, . . . , np) =

ni∑
i=1

a2i
σ2
i (f)

ni
,

as a function of n1, . . . , np, with N =

p∑
i=1

ni. Let

δ =
1

N

p∑
i=1

aiσi(f).

Using the inequality of Cauchy-Schwarz, we have

V

(
a1σ1(f)

δ
, . . . ,

apσp(f)

δ

)
=

1

N

(
p∑
i=1

aiσi(f)

)2

≤ 1

N

(
p∑
i=1

a2iσi(f)2

ni

)
p∑
i=1

ni

≤ V (n1, . . . , np).

Hence, the optimal choice of n1, . . . , np is given by

ni =
aiσi(f)

δ
, i = 1, . . . , p. (2.1)

In order to compute the number ni of random points in Di using (2.1), one can approximate σi(f) by:

σ̄2
i (f) =

1

ni

ni∑
j=1

(f ◦X(i)
j )2 −

( 1

ni

ni∑
j=1

f ◦X(i)
j

)2
. (2.2)

For 1 ≤ i ≤ p, we will denote

n̄i =
aiσ̄i(f)

δ̄
(2.3)

where

δ̄ =
1

N

p∑
i=1

aiσ̄i(f). (2.4)
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2.2. Description of the algorithm. The adaptive MC scheme aims to guide, for a fixed global number
N of random points in the domain D, the generation of random points in every sub-domain in order to
get more precise estimation on the desired integration. It is based on an iterative algorithm where the
mesh (repartition of the sub-domains in D) evolves with iterations. Let L be the total number of desired
iterations and D`, 1 ≤ ` ≤ L, be the corresponding mesh such that

D` =

p⋃̀
i=1

D`
i and D`

i ∩D`
j = ∅ for i 6= j,

where p` is the number of the sub-domains in D`. We start the iterations with a subdivision of the
domain D1 = D using p1 identical sub-cubes with given equal numbers of random points ni,1 in each

sub-domain D1
i , i = 1, . . . , ni,1, such that N =

p1∑
i=1

ni,1.

The main idea of the algorithm consists for every iteration 1 ≤ ` ≤ L, to refine some region D`
i , 1 ≤ i ≤ p`,

of the mesh D` where the function f presents more singularities (big values of the variance) and hence
must be better described. This technique is based on some quantities called indicators and denoted Vi,`
which give informations about the contribution of D`

i in the calculation of the variance of the MC method
at this level, approximated by

V` =

pl∑
i=1

Vi,` (2.5)

where

Vi,` =
a2i,`σ̄

2
i,`(f)

n̄i,`
. (2.6)

Our goal is to decrease V` during the iterations. Then, for every refinement iteration ` with a correspond-
ing mesh D` and corresponding numbers n̄i,`, we calculate σ̄i,`(f) and δ̄`, and update n̄i,` by using the
optimal choice of the numbers of samples based on the formulas (2.2), (2.4) and (2.3) for all the sub-
domains D`

i , i = 1, . . . , p`. For technical reason, we allow a minimal number, denoted by Mrp (practically
we choose Mrp = 2), of random points in every sub-domain and then if n̄i,` < Mrp we set n̄i,` = Mrp.
Next, we calculate the indicators Vi,` and V`, and then, we adapt the mesh D` to obtain the new one
D`+1. The chosen strategy of the adaptive method consists to mark the sub-domains D`

i such that

Vi,` > CmV
mean
` ,

where Cm is a positive constant bigger than 1 and V mean` is the mean value of Vi,` defined as

V mean` =
1

p`

pl∑
i=1

Vi,`, (2.7)

and to divide every marked sub-domains D`
i into small parts, four equal sub-squares for d = 2 and eight

equal sub-cubes for d = 3, with equal number of random points in each part given by
max(

n̄i,`
4
,Mpr) for d = 2

max(
n̄i,`
8
,Mpr) for d = 3.

Remark 2.1. We stop the algorithm if the number of iterations reaches L or if the calculated variance
is smaller that a tolerance denoted by ε. We denote by `ε the stopping iteration level of the following
algorithm which corresponds to a desired tolerance ε or at maximum equals to L.

The algorithm can be described as following :

(Algo 1) : For a chosen N with corresponding numbers ni,1, and a given initial mesh D1 with corre-
sponding sub-domains D1

i , i = 1, . . . , p1,
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Generate ni,1, i = 1, . . . , p1 random points Xi
j , j = 1, . . . , ni,1 in every sub-domain D1

i .
set ` = 1.
calculate V` by using (2.5).
While l≤L or V` ≤ ε

calculate σ̄i,`(f) and, δ̄` and update n̄i,`, i = 1, . . . , p` by using (2.2), (2.4) and (2.3).
Generate corresponding random points Xi

j , j = 1, . . . , ni,l in each sub-domain D`
i , i = 1, . . . , p`.

calculate Vi,`, i = 1, . . . , pl and V mean
` by using (2.6) and (2.7).

for (i = 1 : p`)
if (Vi,` ≥ Cm V mean

` )
Divide the sub-domain D`

i in m small parts (m = 4 in 2D and m = 8 in 3D).

Associate to every one of this small parts the number of random points max(
n̄i,l

m
,Mpr).

set p` = p` +m.
end if

end for
` = `+ 1.

end loop
`ε = `− 1.

calculate the adapt MC approximation IAMC =

p`ε∑
i=1

ai,`ε
n̄i,`ε

ni,`ε∑
k=1

f ◦Xi
k.

The previous algorithm calculate an approximation of I(f) with an adaptive Monte Carlo method. If we
are interested by the numerical variance, we repeat the previous algorithm Ness times and approximate
the I(f) by the corresponding mean value

ĪAMC =
1

Ness

Ness∑
i=1

IiAMC ,

where IiAMC corresponds to the ith essay using (Algo 1).
The estimated variance will by given by the formula

VAMC =
1

Ness − 1

(Ness∑
i=1

(IiAMC)2 −Ness Ī2AMC

)
.

In fact, it is useless to repeat the (Algo 1) Ness times to calculate ĪAMC and VAMC , and it is expensive
for the CPU time. We can reduce the coast by running (Algo 1) one time to define the mesh and to
get I1AMC and then, we use the corresponding sub-domains D`ε

i , i = 1, . . . , p`ε with the corresponding
number of random points ni,`ε , i = 1, . . . , `ε to perform the rest of calculations (Ness − 1 essays). The
corresponding algorithm can be describe as follow :

(Algo 2) :

Call algorithm (Algo 1) to define the mesh D`ε
i , i = 1, . . . , p`ε and calculate I1AMC

Set ne = 2
While ne≤Ness

Generate corresponding random points Xi
j , j = 1, . . . , ni,`ε in each sub-domain D`ε

i , i = 1, . . . , p`ε.

Calculate Ine
AMC =

p`ε∑
i=1

ai,`ε
n̄i,`ε

ni,`ε∑
k=1

f ◦Xi
k

Set ne = ne + 1
end loop calculate

ĪAMC =
1

Ness

Ness∑
i=1

IiAMC calculate

VAMC =
1

Ness − 1

(Ness∑
i=1

(IiAMC)2 −Ness Ī2AMC

)
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3. Numerical experiments

In this section, we perform in MATLAB several numerical experiments to validate our approach and we
compare between the MC and AMC methods.

3.1. 2D validations. We consider the unit square D = [0, 1[2, Cm = 2, Mpr = 2 and `ε = L. The initial
mesh is constituted by a regular partition with N0 = 4 segments in every side of D1 = D (see figure 1).

0 1
0

1

Figure 1. Initial partition D1
i , i = 1, . . . , p1 (p1 = 16)with N0 = 4.

In this section, we show two particular cases of the function f . The first treats an integrable but not
continuous function which presents a discontinuity along the border of the unit disc. The second one
treats a function concentrated in a part of D and vanishes in the rest on this domain. Both examples
show the powerful of the proposed AMC method.

3.1.1. First test case.
For the first test case, we consider the function fc given on D by

fc(x, y) =

{
1 if x2 + y2 ≤ 1
0 elsewhere.

The exact integration of fc over D is equal to

I =

∫
D

fc(x, y)dxdy =
π

4
,

which is the quarter of the surface of the unit disc.

We begin the numerical tests with the algorithm (Alog 1). Figures 2-7 show for N = 10000 and L = 6
the evolution of the mesh and the repartition of the random points during the iterations. We remark that
this points are concentrated around the curve x2 + y2 = 1 where the function fc represents a singularity.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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Y

Figure 2. Mesh for the second iteration.
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Y

Figure 3. repartition of the
points (second iteration).
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Figure 4. Mesh for the fourth iteration.
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Figure 5. repartition of the
points (fourth iteration).
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Figure 6. Mesh for the sixth iteration.
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Figure 7. repartition of the
points (sixth iteration).

Figure 8 shows a comparison in logarithmic scale of the relative errors (I =
π

4
)

EMC =
I − IMC

I

corresponding to the MC method and

EAMC =
I − IAMC

I

corresponding to the AMC method with respect to the number of random points N where the total
number of the iteration L = 4. As we can see in figure 8, the AMC method is more precise than the
MC method. Still we have to compare the efficiency of the AMC method with respect to the CPU time
of computation. In fact, figure 9 shows that for the considered N , the corresponding CPU times for
the AMC are smaller from those with MC. In particular, the MC method gives for N = 107 an error of
EMC = 0.00052 with a CPU time of 0.44s, but the AMC gives for N = 106 an error of EAMC = 0.00008
with a CPU time of 0.4s. Hence, the powerful of the AMC method. It is also clear that to get more
precision with the AMC method, we can increase the number of iterations L.

Next, we consider the algorithm (Algo 2) with Ness = 100, L = 4.

Figure 10 shows the comparison of the estimated variance between the classical Monte Carlo (VMC)
and adaptive Monte Carlo method (VAMC) in logarithmic scale. As the adaptive algorithm consists to
minimize the variance, it is clear in this figure that the goal is attended. Figure 11 shows in logarithmic
scale the efficiency of the MC and AMC methods versus the number of random points N by using the
following formulas (see [2])

EeffMC =
1

TMC ∗ VMC
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Figure 8. First test case:
EMC and EAMC with respect
to N in logarithmic scale.
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Figure 9. First test case:
CPU time of the MC and AMC
methods with respect to N in
logarithmic scale.

and
EeffAMC =

1

TAMC ∗ VAMC
,

where TMC and TAMC are respectively the CPU time of the MC and AMC methods. It is clear that the
efficiency of the AMC method is more important than the MC method.
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Figure 10. First test case:
Estimated variances VMC and
VAMC with respect to N in log-
arithmic scale.
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Figure 11. First test case: Ef-
ficiencies EeffMC and EeffAMC with
respect to N in logarithmic
scale.

3.1.2. Second test case.
In this case, we consider the function

f2,g(x, y) = e−α(x
2+y2),

where α is a real positive parameter. We begin the adaptive algorithm with the same initial mesh as the
previous case and we choose N = 10000. Figures 12-15 show for L = 6 the meshes and random points
repartition with respect to α. When α increase, the mesh and the random points follow the function f2,g
and focus more and more around the origin of axis.
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Figure 12. AMC mesh, α = −5.
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Figure 13. AMC mesh α = −10.
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Figure 14. AMC mesh α = −50.
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Figure 15. AMC mesh α = −100.

Figure 16 shows for α = −50, Ness = 100 and L = 4, the comparison of the estimated variance between
MC and AMC methods with respect to N in logarithmic scale. Figure 17 shows in logarithmic scale the
efficiency of the MC and AMC methods versus the number of points N . One more time, it is clear that
the efficiency of the AMC method is more important than the MC one.
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Figure 16. Second test case
(α = −50): Estimated vari-
ances VMC and VAMC with re-
spect to N in logarithmic scale.
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Figure 17. Second test case
(α = −50): Efficiencies EeffMC

and EeffAMC with respect to N
in logarithmic scale.
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3.2. 3D validations. In this section, we consider the unit cube D = [0, 1[3. We consider the function

f3,g(x, y) = e−α(x
2+y2+z2),

where α is a real positive parameter. The initial mesh is constituted by a regular partition with N0 = 4
segments in every side of D1 = D. Figure 18 shows the repartition of the random points for α = −50,
L = 6 and N = 10000.
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Figure 18. Mesh Gaussian for α = −50.

As for the previous case, figure 19 shows for Ness = 100 and L = 4, the comparison of the estimated
variance between MC and AMC methods with respect to N in logarithmic scale. Figure 20 shows in
logarithmic scale the efficiency of the MC and AMC methods versus the number of points N . We can
deduce the same remark for the efficiency of the AMC method in dimension three.
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Figure 19. 3D test case (α =
−50): Estimated variances
VMC and VAMC with respect to
N in logarithmic scale.
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Figure 20. 3D test case (α =

−50): Efficiencies EeffMC and
EeffAMC with respect to N in log-
arithmic scale.
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