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Abstract

Westudy an unbiased estimator for the density of a sumof randomvariables that are
simulated from a computer model. A numerical study on examples with copula
dependence is conducted where the proposed estimator performs favourably in
terms of variance compared to other unbiased estimators. We provide applications
and extensions to the estimation of marginal densities in Bayesian statistics and to
the estimation of the density of sums of random variables under Gaussian copula
dependence.
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1. Introduction

Sums of random variables are fundamental to modeling stochastic phenomena. In
finance, risk managers need to predict the distribution of a portfolio’s future value
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which is the sum of multiple assets; similarly, the distribution of the sum of an
individual asset’s returns over time is needed for valuation of some exotic (e.g.
Asian) options [17, 22]. In insurance, the probability of ruin (i.e. bankruptcy) is
determined by the distribution of aggregate losses (sums of individual claims of
random size) [13, 3]. Lastly, wireless system engineers model total interference
in a wireless communications network as the sum of all interfering signals (often
lognormally distributed) [10].

In this article, we consider estimating the probability density function (pdf) of
sums of random variables (rvs). That is, we wish to estimate the pdf of S =∑n

k=1 Xk , where X is simulated according to the joint pdf fX . A major motivation
for obtaining accurate pdf estimates of a rv is to produce confidence intervals
for quantiles. For example, the US Nuclear Regulatory Commission specifies
regulations in terms of the “95/95” rule, i.e. the upper 95

F̂X(x) =
1
R

R∑
r=1
I{X [r]≤x} for X [1], . . . , X [R] iid∼ FX ,

and then the quantile q̂α = F̂−1
X (α). In the obvious notation, we then have the

convergence in distribution:

√
R(q̂α − qα)

D−→ N
(
0, α(1 − α)/[ fX(qα)]2

)
as R → ∞, where the limiting variance depends on the unknown density fX(qα).
Thus, any confidence intervals for q̂α require estimation of the density fX(qα),
which is a highly nontrivial problem.

In general, the pdf of a sum of rvs is only available via an n-dimensional convo-
lution. The convolution usually cannot be computed analytically (except in some
special cases, e.g., iid gammas or normals) or numerically via quadrature (unless
n is very small). Approximations have long been applied to this problem in the
iid case for large n. These include the central limit theorems [18], Edgeworth
expansions [7], and inversion of integral transforms.

An Edgeworth expansion is a generalization of the CLT, which constructs a non-
normal approximation based on the first K moments (equivalently, cumulants) of S
(the first term of the edgeworth expansion is the CLT approximation, whichmay not
be accurate for small n). Moreover, when the summands of S are dependent, then
the moment sequence of S is unknown and needs to be estimated (e.g. by Monte
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Carlo), and small errors in the approximation of the higher moments can lead to
large errors in the approximation. Hence, the method is not fully deterministic
(as it may first appear), and requires careful calibration of the value K to avoid
numerical instabilities.

Another common method is to construct the Laplace transform (or characteristic
function) of S and numerically invert it, using a method such as those described
in [1]. However, when the summands are dependent, the Laplace transform
of the sum is unknown, so one has to first estimate it (e.g. by Monte Carlo),
and then numerically invert this approximation. Specialized methods have been
developed for certain marginals and dependence structures (for example, the sum
of lognormals case is considered by [14]), but an approach for general distributions
is still too difficult.

Finally, Monte Carlo estimators such as Conditional Monte Carlo [2] and the
Asmussen–Kroese estimator [6] utilize details of X’s distribution to produce un-
biased estimates with a dimension–independent rate of convergence of O(1/n).

The purpose of this work is to explore an unbiased Monte Carlo estimator for the
problem, with a focus on dependent summands.

The estimator is based on treating the pdf estimation problem as a derivative
(of the cumulative distribution function) estimation problem. There are several
advantages to the proposed estimator. First, we show that in certain settings it
enjoys smaller variance than those based on the ConditionalMonte Carlo approach.
Secondly, the estimator only requires evaluation of the joint pdf up to a (typically
unknown) normalizing constant, a situation similar to the application of Markov
chain Monte Carlo. As a result of this, the sensitivity–based approach is useful
in estimating posterior marginal densities in Bayesian inference (Section 5). The
source code used in this paper is available online [15].

In our notation, we use lowercase boldface letters like c, x, y for non-random
vectors and uppercase boldface letters like X for random vectors, and 1 for the
vector of 1’s. If X is of length n, we write: X = (X1, . . . , Xn)>. The inner-product
is denoted x · y. For a differentiable function f : Rn 7→ R, we write

∇ f (z) = (∂ f (x)/∂x1, . . . , ∂ f (x)/∂xn)>
��
x=z

,

and use ∇i f (z) to denote the i’th component of ∇ f (z).
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2. Sensitivity Estimator

The estimator is derived from a simple application of Likelihood Ratio method
[12, 19], also known as the Score Function method [21]), that is typically used
for derivative estimation of performance measures in Discrete Event Systems.
We thus tackle the pdf estimation problem by viewing it as a special type of
sensitivity analysis. The basic idea appears in [5, Chapter VII, Example 5.7], and
our contribution is to weaken a technical condition and use a control variate to
reduce variance. Furthermore, for the Gaussian copula case we introduce an novel
conditional Monte Carlo estimator that is infinitely smooth (which may be useful
in quasi Monte Carlo [5]).
Assumption 1. The random vector X has a density fX , each Xi is supported either
on the entire real line or a half-real line, the gradient∇ fX is a continuous function on
the support of X , and we have the integrability condition E |X · ∇ log fX (X)| < ∞
(here X ∼ FX ). 3

This assumption is slightlyweaker than the one in [5, Prop. 3.5 on page 222], which
requires that | dds ( fX (sx)sn)| is uniformly bounded by an fX -integrable function of
x. The proposed estimator is based on the following simple formula, proved in the
appendix.
Proposition 1. For the rv S =

∑n
i=1 Xi = 1 · X where X satisfies Assumption 1,

fS(s) =
1
s
E

{
I{1·X≤s}[X · ∇ log fX (X) + n]

}
(1)

for any s , 0. 3

It is straightforward to show that (1) still holds if the indicators I{·} are replaced by
−(1 − I{·}). This suggests the pair of (unbiased) estimators (X ∼ FX ):

1
s
I{1·X≤s}

[
X · ∇ log fX

(
X

)
+ n

]︸                                    ︷︷                                    ︸
f̂1(s)

, and −1
s
I{1·X>s}

[
X · ∇ log fX

(
X

)
+ n

]︸                                      ︷︷                                      ︸
f̂2(s)

.

We make use of both of these estimators by using one as a base estimator and the
difference of the two as a control variate (the difference has a known expectation,
namely, zero) [5]. In order to ensure the unbiasedness, wemay, for example, obtain
the control variate coefficient from a pilot (independent) sample, as explained in
Section 4.
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3. Conditional Monte Carlo Methods

In the following Sections 3.1 and 3.2 we describe the Conditional Monte Carlo
approach [2], as well as an extension of the Asmussen–Kroese estimator. We then
use these methods as benchmarks to illustrate the performance of the proposed
estimator in various settings.

3.1. Conditional Monte Carlo estimator

The Conditional Monte Carlo estimator [2] takes the form

f̂Cond(s) =
1
n

n∑
i=1

fXi |X−i (s − S−i), X ∼ FX,

where the notation X−i denotes the vector X with the i-th component removed and
S−i = 1 · X−i. This is particularly simple for the independent case, as fXi |X−i = fXi .

We now examine the dependent case where X’s dependence structure is given by
an Archimedean copula with generator ψ; i.e., the cdf yields

P(X1 ≤ F−1
X1
(u1), . . . , Xn ≤ F−1

Xn
(un)) = φ

( ∑n
i=1 ψ(ui)

)
, u ∈ [0, 1]n,

where φ ≡ ψ−1 is the functional inverse of ψ. The conditional densities of X can
be calculated from the formula (φ(n) denotes n-th derivative)

fXi |X−i (xi |x−i) = fXi (xi)ψ(1)(FXi (xi))
φ(n)(∑n

j=1 ψ(FXj (x j)))
φ(n−1)(∑ j,i ψ(FXj (x j)))

. (2)

Some Archimedean copulas, such as the Clayton and Gumbel–Hougaard copulas,
have what is called a Marshall–Olkin representation. An Archimedean copula is
in the Marshall–Olkin representation class if φ(s) = E[e−sZ ] for some positive rv
Z with cdf FZ . Then an X with this dependence structure can be simulated via

X =
(
F−1

X1

(
φ
(E1

Z

))
, . . . , F−1

Xn

(
φ
(En

Z

)))
, Ei

iid∼ Exp(1), Z ∼ FZ . (3)

For this case, Asmussen [2, Proposition 8.3] conditions upon the Z as well as X−i
to obtain what we call the extended Conditional Monte Carlo estimator

f̂ExtCond(s) =
1
n

n∑
i=1

fXi |X−i,Z (s − S−i), (4)

5



where fXi |X−i,Z (xi) = −zψ′(Fi(xi)) fXi (xi) e−zψ(Fi(xi)) and X is given by (3).

We will use this estimator as a benchmark in our comparisons later on.

3.2. Asmussen–Kroese estimator

The Asmussen–Kroese estimator [6] (typically for tail probabilities) is defined as

F̂AK(s) = 1 −
n∑

i=1
FXi |X−i (max{M−i, s − S−i})

where: M−i = max{X1, . . . , Xi−1, Xi+1, . . . , Xn} and FXi |X−i (x) = 1 − FXi |X−i (x).
Each FXi |X−i (max{M−i, s−S−i}) = FXi |X−i (s−S−i), whenever M−i+S−i < s. Thus,
we can take the derivative of this piecewise estimator to obtain

f̂AK(s) =
n∑

i=1
fXi |X−i (s − S−i)I{M−i+S−i≤s},

which can be viewed as alternative conditional estimator. When it is applicable,
we use the “extended” form of this estimator where fXi |X−i is replaced with fXi |X−i,Z
as in Section 3.1. Notice that the term 1/n in (4) does not appear here. We remark
that (to the best of our knowledge) this variant of the AK estimator for estimation
of a density has not been previously considered.

4. Numerical Comparisons

In this section,

for various distributions of X we compare: i) our proposed method, ii) the condi-
tional MC estimator, and iii) the Asmussen–Kroese (AK) estimator.

We conduct 3 experiments, each one depicted on Figures 1 to 3 below. Each
experiment uses R = 105 iid replicates of X which are common to all estimators
(our estimator uses the first 5

For each experiment we display a subplot of the estimated density function, as
well as the estimated standard deviation and (square root of the) work-normalized
relative variance: WNRV( f̂ (x)) = (CPU_Time) × Var( f̂ (x))/(R[ f̂ (x)]2). Here,
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CPU_Time is the (wall) time taken the by method to produce the estimates for the
grid of 50 points.

These examples show sums with dependent summands. When the copula has a
Marshall–Olkin representation (3) we use it to simulate X and give results for the
extended version (4) of the conditional MC estimator.

Figure 1 considers the sum of dependent identically-distributed heavy-tailed vari-
ables. The estimates plot shows us that the estimators basically agree with each
other, as is to be expected when all methods perform well. In terms of WNRV and
standard deviation the sensitivity estimator outperforms the others.

Figure 1: Sum of n = 10 Weibull(0.3, 1) random variables with a Clayton(1/5) copula.
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Figure 2 considers a sum of dependent light-tailed variables. The results here are
similar to Figure 1. Again, the sensitivity estimator outperforms the others on
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WNRV and standard deviation.

Figure 2: Sum of n = 15 Exp(1) random variables with a GumbelHougaard(5) copula.
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Figure 3: Sum of n = 10 random variables where Xi ∼ Lognormal(i−10,
√

i)with a Frank(1/1000)
copula. The choice of marginals mimic the challenging (and somewhat pathological) example
considered in [4].
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Figure 3 shows the sumof dependent heavy-tailed variables. Instead of the standard
multivariate lognormal distributionwhich has aGaussian copula, we take the Frank
copula. The Frank copula is unique among these tests as it is an Archimedean
copula which lacks a Marshall–Olkin representation.

5. Extension to Estimation of Marginal Densities

One extension of the sensitivity estimator is in the estimation of marginal densities,
which has multiple applications in Bayesian statistics. For an X which satisfies
Assumption 1, a similar derivation to the one in Proposition 1 gives the following
representation of the marginal densities:

fXi (s) =
1
s
E

{
I{Xi≤s}

(
Xi∇i log fX (X) + 1

)}
(5)

for i = 1, . . . , n, and s , 0. We use the estimator with associated control variate
that is based on (5). A nice feature of the corresponding estimator is that, due to

9



0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
Kernel Density Estimator

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
Sensitivity Estimator

Figure 4: Density estimation of posterior marginal corresponding to the coefficient parameter of
the Body Mass Index predictor variable ( results from two runs are shown).

the presence of the ∇ log fX (x) term, the normalizing constant of f need not be
known. As an example, we useMarkov ChainMonte Carlo to obtain samples from
the posterior density of a Bayesian model, and use these to estimate the posterior
marginal pdfs with our sensitivity estimator.

We consider the well-known “Pima Indians” dataset (standardized), which records
a binary response variable (the incidence of diabetes) for 532 women, along
with seven possible predictors. We specify a Logistic Regression model with
predictors: Number of Pregnancies, Plasma Glucose Concentration, Body Mass
Index, Diabetes Pedigree Function, and Age (see [11] for justification). The prior
is β ∼ N(0, I), as in [11].

To obtain samples from the posterior density, we implement an isotropic Random
Walk sampler, using a radially symmetric Gaussian density with σ2 = 7.5 × 10−3

(trace plots indicate this choice mixes well for the model).

We ran the Random Walk sampler for 103 steps for burn-in, then used the next
2.5 × 104 samples (without any thinning) to obtain a KDE, as well as density
estimates using our sensitivity estimator (with control variate). As a benchmark,
we compare the accuracy with a KDE constructed using every 50-th sample from
an MCMC chain of length 50 × 5 × 106. The result of this comparison is depicted
in Figure 4.

As expected, using the same set of samples, the sensitivity estimator yields a more
accurate estimate than KDE. The reason for the lower accuracy of KDE in this
context is well-known — a mean square error convergence of O(n−4/5), instead of
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the canonical Monte Carlo rate of O(n−1), due to the presence of non-negligible
bias in the KDE estimator (see [8], for example).

It is important to note that due to the 1/s term, the sensitivity estimator can
have large variance for very small s, even when F(s) or 1 − F(s) is not close to
zero. This problem can be resolved with a simple linear shift, as follows. If one
element, say X1, is supported on R, then fS(s) = fS̃(s − a) for a ∈ R, where
S̃ = (X1 + a) + X2 + · · · + Xn. We can then use the original estimator (with shifted
values of s and X1) to obtain estimates of the density of S near or at zero.

6. Extensions for a Gaussian Copula with Positive Random Variables

Recall that we wish to estimate the derivative of the cdf FS(s) = P(1 ·X < s),where
X ∼ fX . Here we consider random variables that are positive and thus consider
s > 0. We can then write FS(s) = P(1 · Y < 1), where Y ∼ fY (y; s) ≡ fX (sy)sn

(that is, Y has the same distribution as X/s). When P(Y ≥ 0) = 1, the nested
sequence of events:

{Y1 ≤ 1} ⊇ {Y2 ≤ 1−Y1} ⊇ {Y3 ≤ 1−Y1−Y2} ⊇ · · · ⊇ {Yn ≤ 1−(Y1+ · · ·+Yn−1)}

suggests the possibility of sequentially simulating the components of the vector Y :

Y1 → Y2 |Y1 → Y3 | (Y1,Y2) → · · · → Yn | (Y1, . . . ,Yn−1)

In other words, for k = 1, . . . , n each Yk is drawn from the conditional density:

gk(yk ; s | y1, . . . , yk−1) :=
fY (yk ; s | y1, . . . , yk−1)I{yk ≤ 1 −∑

j<k y j}
αk(y1, . . . , yk−1; s) , (6)

where {αk} are normalizing constants that depend on s. If we then simulate

Y ∼ g(y; s) :=
∏

k

gk(yk ; s | y1, . . . , yk−1),

we obtain the smooth unbiased estimator: F̂S(s) =
∏n

k=1 αk(Y1, . . . ,Yk−1; s). In
addition, an application of the likelihood ratio method [6, 12, 19, 21] gives us an
estimator similar to (1), but without the indicator function:

f̂S(s) =
(
Y · ∇ log fX (sY ) +

n
s

) n∏
k=1

αk(Y1, . . . ,Yk−1; s) . (7)
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Note that the density ofY depends on the specific s at which we estimate fS(s). We
can use the inverse transform method to remove the dependence on s. The inverse
transform method allows us to write Y = G(U; s) for some smooth function G
(that depends on s) and a uniformly distributed vector U ∈ Rn (which does not
depend on s).

In summary, in order to use estimator (7), we must be able to: a) easily simu-
late from the truncated (or conditional) densities in (6) via the inverse transform
method; b) evaluate easily the normalizing constants {αk} of the conditional den-
sities in (6).

Our finding is that satisfying requirement a) is too difficult for the family of
Archimedean copulas. This is because no simple formulas exist for the inverse
cdfs of the densities in (2) and thus numerical root-finding methods are required.
Nevertheless, estimator (7) is viable for the Gaussian copula under which the
vector [Φ−1(FX1(X1)), . . . ,Φ−1(FXn(Xn))] ∼ N(0, Σ) for some correlation matrix Σ.
This is because the conditional densities of the multivariate normal density are
also normal and their evaluation requires standard linear algebra manipulations of
Σ.

As an example, Figure 5 shows the density of the sum of n = 32 standard lognormal
variates (that is, marginally each log(Xk) ∼ N(0, 1)), whose dependence is induced
by a Gaussian copula with correlation matrix Σ = ρ11> + (1 − ρ)I for ρ ∈
{0.1, 0.5, 0.9}.

7. Conclusion

In this paper we derived a sensitivity-based estimator of the pdf of the sum of
(dependent) random variables and performed a short numerical comparison. To
achieve this we used standard techniques from sensitivity analysis — we con-
structed an estimator of the cdf of the sum of random variables and then differ-
entiated this cdf estimator in order to estimate the density. The cdf estimator
was constructed using either a change of measure (giving us the likelihood ratio
method), or conditional Monte Carlo (as with the Asmussen-Kroese estimator), or
both (as with the Gaussian copula example).

Overall, the numerical comparison indicates that there isn’t a single best estimator
in all settings. Nevertheless, the proposed sensitivity estimator will likely be
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Figure 5: The density of the sum of 32 dependent lognormal random variables for three correlation
values ρ. The estimate is based on the average of R = 105 iid replications of (7).

preferable in settings where ∇ log fX can be computed very quickly, and most
useful when the conditional Monte Carlo approach is difficult to apply.

As future research we suggest exploring the use of quasirandom numbers in order
to further reduce the variance of any smooth density estimators such as (7).
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Appendix A. Proof of Proposition 1

There aremanyways to derive this formula. One of the simplest is to use the likelihood ratiomethod
([6, Ch.VII, (4.1)], [12, 19, 21]), which requires the interchange of differentiation and integration.
A general sufficient condition for this interchange to be valid is given in [16, Theorem 1]. The
proof in this reference uses the dominated convergence theorem, which requires that | d

ds fX (sx)sn |
is uniformly bounded by an fX -integrable function of x. In our derivation below, we instead use
the Fubini-Tonelli theorem, which only requires the integrability of |x · ∇ log fX (x)| with respect
to fX .

Define the cdf FS(s) =
∫
1·x≤s fX (x) dx , so that the pdf is fS(s) = d

ds FS(s). The change of variables
x = sy yields:

FS(s) =
∫
Rs

fX (sy)|s |n dy s , 0,

where the notation
∫
Rs

means
∫
1·y≤1 if s > 0, else

∫
1·y>1 for s < 0.

Let ϕ(s) :=
∫
Rs

d
ds ( fX (sy)|s |n) dy. We will use the fact that ϕ(s) = fS(s) almost everywhere (i.e.

except possibly on sets of zero Lebesgue measure) on s < (−ε, ε) for an arbitrarily small ε > 0.

In order to justify the identity ϕ(s) = fS(s) (almost everywhere) in the case of s > ε (similar
arguments apply for s < ε), we use the Fubini-Tonelli theorem for exchanging the order of
integration. This exchange holds under the integrability condition∫ s

ε

∫
1·y≤1

���� d
dt
( fX (t y)tn)

���� dy dt < ∞ (A.1)
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and the existence of a continuous ∇ fX , both of which follow from Assumption 1 (verified at the
end of this proof). Using the Fubini-Tonelli theorem [20] we then write:∫ s

ε
ϕ(t) dt =

∫ s

ε

∫
1·y≤1

d
dt
( fX (t y)tn) dy dt =

∫
1·y≤1

∫ s

ε

d
dt
( fX (t y)tn) dt dy

=

∫
1·y≤1
( fX (sy)sn − fX (ε y)εn) dy = FS(s) − FS(ε)

Hence, by the fundamental theorem of Calculus, ϕ equals the derivative of FS up to a set of
measure zero. In other words, ϕ(s) = fS(s), s > ε almost everywhere. To proceed, we write
sign(x) = x/|x | = d

dx |x |

fS(s) = ϕ(s) =
∫
Rs

[
y · ∇ log fX (sy) + n sign(s)

|s |

]
|s |n fX (sy) dy,

so after a change of variables y = x/s and using sign(x)/|x | = 1/x, we obtain

fS(s) =
∫

1·x≤s

[ x
s
· ∇ log fX (x) +

n
s
]

fX (x) dx =
1
s
E

{
I{1·X≤s}[X · ∇ log fX (X) + n]

}
.

To verify (A.1), note that after using the change of variable above, it can be upper bounded by∫ s

ε
1
t E

{
I{1·X≤t } |X · ∇ log fX (X) + n|

}
dt ≤ (E

��X · ∇ log fX (X)
�� + n)

∫ s

ε
1
t dt < ∞,

which is bounded by assumption.
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