
ar
X

iv
:1

70
4.

02
28

4v
2 

 [
m

at
h.

N
A

] 
 1

2 
A

pr
 2

01
9

Model order reduction for

random nonlinear dynamical systems and

low-dimensional representations for

their quantities of interest

Roland Pulch

Institut für Mathematik und Informatik, Universität Greifswald,

Walther-Rathenau-Str. 47, 17489 Greifswald, Germany.

Email: roland.pulch@uni-greifswald.de

Abstract

We examine nonlinear dynamical systems of ordinary differential equa-
tions or differential algebraic equations. In an uncertainty quantification,
physical parameters are replaced by random variables. The state or inner
variables as well as a quantity of interest are expanded into series with
orthogonal basis functions like the polynomial chaos expansions, for ex-
ample. On the one hand, the stochastic Galerkin method yields a large
coupled dynamical system. On the other hand, a stochastic collocation
method, which uses a quadrature rule or a sampling scheme, can be writ-
ten in the form of a large weakly coupled dynamical system. We apply
projection-based methods of nonlinear model order reduction to the large
systems. A reduced-order model implies a low-dimensional representa-
tion of the quantity of interest. We focus on model order reduction by
proper orthogonal decomposition. The error of a best approximation lo-
cated in a low-dimensional subspace is analysed. We illustrate results of
numerical computations for test examples.

Key words: nonlinear dynamical systems, orthogonal expansion, stochas-
tic Galerkin method, stochastic collocation method, model order reduc-
tion, uncertainty quantification.
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1 Introduction

Mathematical modelling often generates dynamical systems of ordinary differen-
tial equations (ODEs) or differential algebraic equations (DAEs) in science and
engineering. A quantity of interest (QoI) is defined by the state variables or inner
variables. Multiple sources of uncertainties may affect the included parameters
like modelling errors and measurement errors, for example. Several techniques
have been developed to quantify the effects of those uncertainties in the model
predictions, see [21, 40, 43]. A common approach is the substitution of uncer-
tain parameters by random variables. Numerical methods often apply orthogo-
nal expansions with unknown coefficient functions and predetermined random-
dependent basis functions. The stochastic Galerkin method (intrusive method)
produces a larger coupled dynamical system. A stochastic collocation technique
(non-intrusive method) using a quadrature rule or a sampling method can be
written as a single large weakly coupled dynamical system, see [31].

A low-dimensional approximation of the random QoI often exists, where only a
few basis functions are required for a sufficiently accurate representation. In a
specific context, the representation can be interpreted as a sparse approximation.
Such low-dimensional representations have been computed by different methods
like least angle regression [5], sparse grid quadrature [8], compressed sensing [11]
and ℓ1-minimisation [19, 20]. Stochastic reduced bases were investigated for ran-
dom linear systems of algebraic equations in [25, 37].

Model order reduction (MOR) becomes favourable in the stochastic Galerkin
method and the stochastic collocation approach due to the high dimensionality
of the systems. In [32], it was shown that an MOR of the Galerkin system im-
plies a low-dimensional approximation of the QoI in the case of linear dynamical
systems. In [33], this strategy was carried over to an MOR of the single auxiliary
system of the stochastic collocation method in the linear case. In this paper,
we consider nonlinear dynamical systems with random parameters, where the
QoI still depends linearly on state variables or inner variables. Thus an MOR
generates a low-dimensional representation of the random QoI again.

More precisely, MOR is the tool to identify an approximation of the QoI with a
low number of basis functions. We do not investigate a reduction of the number
of random parameters, cf. [35].

Several efficient MOR methods exist for linear dynamical systems, see [1, 3, 16,
38]. Error bounds are available by Hardy norms of transfer functions in the
frequency domain. Yet MOR for nonlinear dynamical systems still represents a
challenging task. Typically, projection-based MOR schemes are applied like the
proper orthogonal decomposition (POD), see [1, 22], or the trajectory piecewise
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linear approach, see [24, 36]. We focus on the POD method, which identifies a
low-dimensional representation of the QoI. Furthermore, the representation can
be improved by the computation of a best approximation in the low-dimensional
subspace. We prove an error bound for this best approximation. In the first
place, our aim is the identification of a sufficiently accurate approximation with
as few basis functions as possible. In the second place, the MOR methods should
decrease the computational effort.

The paper is organised as follows. Section 2 incloses the problem setup. Numer-
ical methods yield large dynamical systems formulated in Section 3. The main
part is given by Section 4, where we apply MOR and show error bounds. We
demonstrate the results of numerical experiments for two illustrative examples in
Section 5.

2 Problem definition

We describe the task consisting in the identification of low-dimensional represen-
tations for QoIs from random nonlinear dynamical systems.

2.1 Deterministic model

Let a nonlinear dynamical system be given in the form

E(p)ẋ(t, p) = A(p)x(t, p) + F (x(t, p), p) +B(p)u(t)

y(t, p) = C(p)x(t, p)
(1)

with matrices and functions depending on physical parameters p ∈ Π ⊆ Rq. The
sizes of the matrices are A,E ∈ Rn×n, B ∈ Rn×nin, C ∈ Rnout×n. The system
involves a nonlinear function F : Rn × Π → R

n. For non-singular matrices E,
the system consists of ODEs with the state variables x : [t0, tend]×Π → R

n. For
singular matrices E, a system of DAEs is given with the inner variables x. We
consider initial value problems

x(t0, p) = x0(p) for p ∈ Π (2)

with a predetermined function x0 : Π → R

n. In the case of DAEs, the initial
values have to satisfy consistency conditions and typically depend on the physical
parameters of the system.

An input u : [t0, tend] → R

nin is supplied to the system (1). An output y :
[t0, tend]× Π → R

nout is defined by the state variables or inner variables and the
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matrix C. Without loss of generality, we restrict the analysis to the case of single-
input-single-output (SISO) with nin = nout = 1. On the one hand, the results
also apply to dynamical systems with a general nonlinear dependence of the
right-hand side on the input. Moreover, the theory is applicable to autonomous
dynamical systems. On the other hand, the linear dependence of the output on
the state variables or inner variables is essential in this paper.

2.2 Stochastic model

We adopt a common approach in uncertainty quantification (UQ), see [40, 43],
for example. Assuming that the parameters p ∈ Π of the system (1) are uncer-
tain, they are replaced by independent random variables p : Ω → Π on some
probability space (Ω,A, P ) with event space Ω, sigma-algebra A and probability
measure P . A joint probability density function ρ : Π → R is available in the case
of traditional probability distributions. For a measurable function f : Π → R,
the expected value reads as

E [f ] :=

∫

Π

f(p)ρ(p) dp (3)

provided that the integral is finite. The Hilbert space

L2(Π, ρ) :=
{
f : Π → R : f measurable and E

[
f 2
]
< ∞

}

is equipped with the inner product

< f, g > := E [fg] =

∫

Π

f(p)g(p)ρ(p) dp for f, g ∈ L2(Π, ρ). (4)

The accompanying norm reads as

‖f‖L2(Π,ρ) :=
√

< f, f >.

Concerning the dynamical system (1), we assume that x1(t, ·), . . . , xn(t, ·), y(t, ·) ∈
L2(Π, ρ) pointwise for t ∈ [t0, tend].

Now let a complete orthonormal system (Φi)i∈N ⊂ L2(Π, ρ) be given. It holds
that < Φi,Φj >= 0 for i 6= j and < Φi,Φj >= 1 for i = j. We assume that the
first basis function is always the constant function Φ1 ≡ 1. It follows that the
expansions

x(t, p) =
∞∑

i=1

vi(t)Φi(p) and y(t, p) =
∞∑

i=1

wi(t)Φi(p), (5)

where the coefficient functions vi : [t0, tend] → R

n and wi : [t0, tend] → R are
defined by

vi,j(t) = < xj(t, ·),Φi(·) > and wi(t) = < y(t, ·),Φi(·) >, (6)

converge in L2(Π, ρ) pointwise for t and j = 1, . . . , n with x = (x1, . . . , xn)
⊤.
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2.3 Low-dimensional orthogonal representations

Our aim is to identify a low-dimensional approximation using just a few basis
functions. Several methods to obtain sparse or low-dimensional representations
have already been designed and investigated, see [5, 8, 9, 11, 19, 20].

In practice, the series (5) have to be truncated to finite approximations. A
truncation yields

x(m)(t, p) =
m∑

i=1

vi(t)Φi(p) and y(m)(t, p) =
m∑

i=1

wi(t)Φi(p) (7)

for an integer m ≥ 1. We investigate the output of the random dynamical
system (1) as QoI. The truncation error reads as

∥∥y(t, ·)− y(m)(t, ·)
∥∥
L2(Π,ρ)

=

√√√√
∞∑

i=m+1

wi(t)2 (8)

for each t due to the orthonormality of the basis functions.

Often orthonormal polynomials are chosen as basis functions with respect to the
theory of the polynomial chaos (PC) expansions,

see [6, 12, 43]. Therein, the multivariate basis polynomials are just the products of
the univariate orthonormal polynomials. Each traditional probability distribution
implies its family of univariate orthonormal polynomials, see [41]. To obtain an
initial set of basis functions, often all polynomials up to a total degree d are
included. Hence the number of basis functions is

m =
(q + d)!

q!d!
,

see [43, p. 65]. Even if the total degree is moderate (say 3 ≤ d ≤ 5), the number
of basis polynomials becomes large for high numbers q of random parameters.

A numerical method yields approximations ŵ1, . . . , ŵm of the exact coefficient
functions in the truncated expansion (7). The investigated QoI reads as

ŷ(t, p) =

m∑

i=1

ŵi(t)Φi(p). (9)

Assuming a large number m, our aim is to identify a sufficiently accurate low-
dimensional representation of (9)

ȳ(t, p) =
r∑

i=1

w̄i(t)Ψi(p) (10)
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with a new orthonormal basis {Ψ1, . . . ,Ψr} satisfying

span{Ψ1, . . . ,Ψr} ⊂ span{Φ1, . . . ,Φm}

and new coefficient functions w̄1, . . . , w̄r for some r ≪ m. A special case is given
by the selection of a subset {Ψ1, . . . ,Ψr} ⊂ {Φ1, . . . ,Φm}. In this situation, the
approximation (10) can be interpreted as a sparse representation, see [5].

The error of the complete approach is estimated by

‖y(t, ·)− ȳ(t, ·)‖L2(Π,ρ) ≤
∥∥y(t, ·)− y(m)(t, ·)

∥∥
L2(Π,ρ)

+
∥∥y(m)(t, ·)− ŷ(t, ·)

∥∥
L2(Π,ρ)

+ ‖ŷ(t, ·)− ȳ(t, ·)‖L2(Π,ρ)

for each t. The upper bound consists of three terms: the truncation error, the
error of the numerical method and the additional error of the low-dimensional
approximation. We assume that the first and second term are sufficiently small
due to choosing a large initial set of basis functions and a sufficiently accurate
numerical method. The third term is analysed in Section 4.5.

3 Numerical Techniques

We apply two well-known classes of numerical methods for the computation of
the unknown coefficient functions (6) in the orthogonal expansions (5) now.

3.1 Stochastic Galerkin method

The stochastic Galerkin technique (intrusive method) represents a general ap-
proach, which can be applied to all types of differential equations including ran-
dom variables, see [40, 43]. Linear or nonlinear dynamical systems were consid-
ered in [2, 27, 28, 29], for example. In our problem, the Galerkin method changes
the nonlinear dynamical system (1) into the larger coupled system

Ê ˙̂v(t) = Âv̂(t) + F̂ (v̂(t)) + B̂u(t)

ŵ(t) = Ĉv̂(t)
(11)

with v̂ = (v̂⊤1 , . . . , v̂
⊤
m)

⊤ ∈ Rmn and ŵ = (ŵ1, . . . , ŵm)
⊤ ∈ Rm. To define the

involved matrices, we employ auxiliary arrays: the symmetric matrix S(p) :=
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(Φi(p)Φj(p)) ∈ Rm×m and the column vector s(p) := (Φi(p)) ∈ Rm. Now the
matrices of the linear parts in (11) read as

Â = E[S(·)⊗A(·)] ∈ Rmn×mn, B̂ = E[s(·)⊗B(·)] ∈ Rmn,

Ĉ = E[S(·)⊗ C(·)] ∈ Rm×mn, Ê = E[S(·)⊗E(·)] ∈ Rmn×mn,

using the expected value (3) componentwise and Kronecker products. The non-
linear part is given by F̂ := (F̂⊤

1 , . . . , F̂⊤
m)⊤ with F̂i ∈ Rn and

F̂i(v̂) := E

[
F

(
m∑

j=1

v̂jΦj(·), ·
)
Φi(·)

]
(12)

for i = 1, . . . , m.

The expected values (12) represent probabilistic integrals, which often cannot
be calculated analytically. An exception are functions F in (1) consisting of
polynomials with low degrees. We require approximations by quadrature formulas
for the case of general nonlinear functions F in (1). A quadrature rule or a
sampling method is determined by its nodes {p(1), . . . , p(k)} ⊂ Π and its weights
{γ1, . . . , γk} ⊂ R. The associated approximation becomes

F̂i(v̂) ≈
k∑

ℓ=1

γℓ F

(
m∑

j=1

v̂jΦj(p
(ℓ)), p(ℓ)

)
Φi(p

(ℓ)) (13)

for i = 1, . . . , m. Thus the computational effort for one evaluation of F̂ comprises
k evaluations of F , whereas the summation is negligible.

Concerning initial value problems of the system (11), the initial condition (2) of
the original system (1) has to be expanded as well. Consistent initial values are
required in the case of DAEs.

3.2 Stochastic collocation method

Alternatively, we consider a stochastic collocation (non-intrusive method) em-
ploying a quadrature rule or a sampling scheme, see [29, 42]. This approach is
determined uniquely by the nodes {p(1), . . . , p(k)} and the weights {γ1, . . . , γk}.
The approximations of the coefficient functions belonging to the QoI (9) become

ŵi(t) =

k∑

ℓ=1

γℓΦi(p
(ℓ))C(p(ℓ))x(t, p(ℓ)) (14)

for i = 1, . . . , m. Therein, C(p(ℓ)) denotes the evaluations of the output matrix
from (1) for ℓ = 1, . . . , k. Thus k separate initial value problems (1),(2) have to
be solved for the different nodes, which yields the variables x.

7



We write this approach as a single auxiliary system, which exhibits the form (11)
again. Due to a different meaning of the inner variables, we reformulate

Ê ˙̂x(t) = Âx̂(t) + F̂ (x̂(t)) + B̂u(t)

ŵ(t) = Ĉx̂(t)
(15)

with x̂(t) = (x(t, p(1))⊤, . . . , x(t, p(k))⊤)⊤. Consequently, the matrices read as

Â =



A(p(1))

. . .

A(p(k))


 ∈ Rkn×kn, B̂ =



B(p(1))

...
B(p(k))


 ∈ Rkn,

Ê =



E(p(1))

. . .

E(p(k))


 ∈ Rkn×kn.

The matrix Ĉ ∈ R

m×kn follows from the formula (14). The meaning of the
outputs is the same as in the stochastic Galerkin system (11). The nonlinear
part becomes

F̂ (x̂(t)) =



F (x̂(t, p(1)), p(1))

...
F (x̂(t, p(k)), p(k))


 ∈ Rkn.

The initial values follow from (2), i.e., x(t0, p
(ℓ)) = x0(p

(ℓ)) for ℓ = 1, . . . , k. This
auxiliary system was already derived and applied for linear dynamical systems
in [30, 31]. A similar single system was constructed in the case of a non-intrusive
approach for dynamical systems with both stochastic noise and random param-
eters in [26].

In the stochastic collocation method, the system (15) is large and weakly coupled,
because it consists of the separate original systems (1), which are connected just
by the supply of the same input and the definition of the outputs.

4 Model order reduction

Although the original dynamical system (1) may be small or medium-sized, the
dynamical systems (11) and (15) from the numerical methods are large. Thus
they represent excellent candidates for an MOR. Linear stochastic Galerkin sys-
tems were reduced successfully in [23, 30, 34, 35, 44].
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4.1 Projection-based model order reduction

The nonlinear dynamical systems (11) and (15) represent non-parametric for-
mulations. Without loss of generality, we consider the system (11) as full-order
model (FOM). MOR yields a reduced-order model (ROM) in form of a smaller
nonlinear dynamical system

Ē ˙̄v(t) = Āv̄(t) + F̄ (v̄(t)) + B̄u(t)

w̄(t) = C̄v̄(t)
(16)

with matrices Ā, Ē ∈ Rr×r, B̄ ∈ Rr, C̄ ∈ Rm×r and a function F̄ : Rr → R

r.
The state variables or inner variables are v̄ : [t0, tend] → R

r, which require initial
conditions v̄(t0) = v̄0. The input of (16) coincides with the input of (11). The
aim is to achieve outputs satisfying w̄(t) ≈ ŵ(t) for all t.

In projection-based MOR, see [1, 13], projection matrices Tl, Tr ∈ Rmn×r of full
rank are used. It follows that

Ā = T⊤
l ÂTr, B̄ = T⊤

l B̂, C̄ = ĈTr, Ē = T⊤
l ÂTr, F̄ (v̄) = T⊤

l F̂ (Trv̄). (17)

A transient simulation of the dynamical systems often requires implicit inte-
gration schemes. The smaller dimensionality of the system (16) causes a lower
computation work in the linear algebra algorithms. However, the definition of the
reduced nonlinear function (17) implies that a function evaluation of F̄ still takes
an evaluation of the original function F̂ . Significant reductions of the computa-
tional effort can be achieved only if one replaces the function evaluations of F̂
by cheaper approximations, which is also called hyper-reduction in this context.
Several techniques have been proposed for this purpose like (discrete) empirical
interpolation, missing point estimation or piecewise linear approaches. We refer
to [7] and the references therein. A hyper-reduction is not within the scope of this
paper. Our main aim is the identification of sufficiently accurate low-dimensional
representations.

Furthermore, systems of DAEs often require more sophisticated MOR methods
in comparison to systems of ODEs, see [4, 17]. Indeed the situation becomes
more critical for higher-index DAEs (index larger than one).

4.2 Proper orthogonal decomposition

The projection-based ROM (16),(17) is determined uniquely by the matrices Tl

and Tr. We apply the POD to identify a projection matrix. A numerical integra-
tion scheme yields a solution of an initial value problem for the larger system (11)
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or (15) in [t0, tend]. In grid points t0 < t1 < · · · < tℓ−1 = tend, we obtain approxi-
mations, which are called snapshots in this context. We collect them in a matrix

V = (v̂(t0), v̂(t1), . . . , v̂(tℓ−1)) ∈ Rmn×ℓ. (18)

Often it holds that ℓ ≪ mn. Now a singular value decomposition (SVD), see [15,
p. 76] yields

V = U

(
Σ
0

)
Q⊤ (19)

with orthogonal matrices U ∈ Rmn×mn, Q ∈ Rℓ×ℓ and a diagonal matrix Σ ∈ Rℓ×ℓ

with the singular values σ1 ≥ σ2 ≥ · · · ≥ σℓ ≥ 0. Let u1, . . . , umn be the columns
of U . The right-hand projection matrix is defined as

Tr = (u1, u2, . . . , ur) ∈ Rmn×r

for any r ≤ ℓ. Thus just the singular vectors associated with the r dominant
singular values are included in the MOR scheme. The left-hand projection matrix
is chosen by a Galerkin-type approach as Tl = Tr.

The POD technique requires a solution of an initial value problem of the FOM to
generate the snapshots. Thus saving computational effort is achieved only if the
ROM can be reused for other numerical simulations. These additional numerical
simulations may involve

• other input signals u(t),

• other initial values v̄(t0),

• longer time intervals [t0, t
′] with t′ > tend.

The third case will be examined for a test example in Section 5.

4.3 Low-dimensional subspaces and approximation

The following derivation is applicable in the case of any projection-based MOR as
discussed in Section 4.1. The output of the ROM (16) produces an approximation
of the QoI in the original system (1) by

ȳ(t, p) =

m∑

i=1

w̄i(t)Φi(p) (20)
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for t ∈ [t0, tend] and p ∈ Π. The L2(Π, ρ)-error of this reduction with respect
to (9) reads as

‖ȳ(t, ·)− ŷ(t, ·)‖L2(Π,ρ) =

√√√√
m∑

i=1

(w̄i(t)− ŵi(t))
2 for each t, (21)

due to the orthonormality of the basis and Parseval’s equality. Since a linear
dependence of the QoI y on the state variables or inner variables x is assumed
in (1), the same derivation applies as in [32]. In (16), the part w̄ = C̄v̄ with the
output matrix C̄ = (c̄ij) yields

w̄i(t) =

r∑

j=1

c̄ij v̄j(t) for i = 1, . . . , m.

The approximation (20) exhibits the formulation

ȳ(t, p) =

m∑

i=1

[
r∑

j=1

c̄ij v̄j(t)

]
Φi(p) =

r∑

j=1

v̄j(t)

[
m∑

i=1

c̄ijΦi(p)

]
.

Thus new basis functions

Ψj(p) :=

m∑

i=1

c̄ijΦi(p) for j = 1, . . . , r (22)

are defined. We obtain the low-dimensional representation (10) with w̄j = v̄j for
j = 1, . . . , r. Hence the coefficients are already identified by the MOR scheme.

Let Φ = (Φ1, . . . ,Φm)
⊤ and Ψ = (Ψ1, . . . ,Ψr)

⊤. It holds that Ψ = C̄⊤Φ. The
set of functions (22) is linearly independent in most of the cases. However, they
are not orthogonal in general. An orthonormal basis can be constructed from the
original basis by an SVD of the output matrix

C̄ = U

(
Σ
0

)
Q⊤ (23)

including orthogonal matrices U ∈ R

m×m, Q ∈ R

r×r and a diagonal matrix
Σ ∈ Rr×r with the singular values σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0. Thus we obtain the
alternative basis functions

Ψ∗
j (p) =

m∑

i=1

uijΦi(p) (24)

with coefficients from the matrix U . If follows that {Ψ∗
1, . . . ,Ψ

∗
r} is an orthonor-

mal basis spanning the same subspace as {Ψ1, . . . ,Ψr}. The alternative basis can
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be deflated to {Ψ∗
1, . . . ,Ψ

∗
k} for a k ≤ r to remove a (numerical) rank deficiency.

The details are explained in [32].

The original orthonormal basis {Φ1, . . . ,Φm} owns the advantage that the first
coefficient yields the expected value due to Φ1 ≡ 1. The first and second moment
can be obtained as well in the novel orthonormal basis. Expected value and
variance read as

E

[
r∑

j=1

wj(t)Ψ
∗
j(·)
]

=

r∑

j=1

wj(t)u1j

Var

[
r∑

j=1

wj(t)Ψ
∗
j(·)
]

=

(
r∑

j=1

wj(t)
2

)
−
(

r∑

j=1

wj(t)u1j

)2

due to (24). Hence just the SVD (23) has to be computed at the beginning. The
moments do not require significant additional work. Yet the only advantage of the
basis {Ψ∗

1, . . . ,Ψ
∗
r} in comparison to {Φ1, . . . ,Φm} is the reduced dimensionality.

4.4 Best approximation

A projection-based MOR (16),(17) identifies a low-dimensional representation
(10) including its time-dependent coefficient functions. In addition, we obtain a
best approximation within the subspace spanned by the new basis (22), where
just information from the right-hand projection matrix Tr is used.

The best approximation

y∗(t, p) =
r∑

j=1

w∗
j (t)Ψj(p) (25)

with w∗ = (w∗
1, . . . , w

∗
r)

⊤ ∈ Rr is defined by the optimisation problem

min
w(t)

∥∥∥∥∥ŷ(t, ·)−
r∑

j=1

wj(t)Ψj(·)
∥∥∥∥∥
L2(Π,ρ)

(26)

with w = (w1, . . . , wr)
⊤ ∈ Rr pointwise for t ≥ t0. This best approximation can

be computed from the solution of the FOM by a linear least squares problem.
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Theorem 1 Let ŵ = (ŵ1, . . . , ŵm)
⊤ be the output of the dynamical system (11)

or (15) for an initial value problem. Let the output matrix C̄ = ĈTr have full rank.
The coefficients w∗ = (w∗

1, . . . , w
∗
r) of the best approximation (25) minimising (26)

are the solution of the linear least squares problem

min
w(t)

∥∥ŵ(t)− C̄w(t)
∥∥
2

(27)

pointwise for t ≥ t0.

Proof:

We omit the dependence on time for notational convenience. The Hilbert space
norm can be expressed by inner products

‖ŷ − ȳ‖2L2(Π,ρ) = < ŷ, ŷ > −2 < ŷ, ȳ > + < ȳ, ȳ > .

We obtain

< ŷ, ȳ >=
m∑

i=1

r∑

j=1

ŵiw̄j < Φi,Ψj > and < ȳ, ȳ >=
r∑

i,j=1

w̄iw̄j < Ψi,Ψj > .

Using (22), basic calculations yield

< Φi,Ψj >= c̄ij and < Ψi,Ψj >=

m∑

k=1

c̄kic̄kj

with C̄ = (c̄ij). It follows that

‖ŷ − ȳ‖2L2(Π,ρ) = < ŷ, ŷ > −2w̄⊤C̄⊤ŵ + w̄⊤C̄⊤C̄w̄.

The degrees of freedom are w̄ ∈ Rr, whereas ŵ ∈ Rm is constant. A necessary
condition for a minimum is a vanishing gradient. Thus we achieve

2C̄⊤C̄w̄ − 2C̄⊤ŵ = 0,

which is equivalent to the normal equation, see [39, p. 232], associated with the
linear least squares problem (27). �

The least squares problem (27) implies the formula

w∗(t) = (C̄⊤C̄)−1C̄⊤ŵ(t) for all t (28)

provided that the output matrix exhibits full rank. Due to (28), the best ap-
proximation (25) is continuous in time, because the solution of the dynami-
cal system (11) or (15) is assumed to be continuous. The computation of the
best approximation requires to solve the FOM. However, the application of the
formula (28) afterwards is cheap, because the transformation matrix is time-
invariant. A QR-decomposition of the output matrix can be reused at all time
points.
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4.5 Error analysis

The difference ŷ − ȳ between the QoI (9) from a numerical method and the
approximation (10) is exactly the error of the MOR approach. Hence this error
depends on the individual choice of the projection-based MOR method.

A more detailed examination is feasible for the best approximation using the POD
method of Section 4.2. Again the Galerkin system (11) is considered without loss
of generality, since the analysis also applies to the collocation system (15). We
obtain the following property of the approximation quality with respect to the
state variables or the inner variables.

Lemma 1 Let v̂ ∈ C1 be the exact solution of an initial value problem of the
dynamical system (11). Let Tr ∈ Rmn×r be the projection matrix from the POD
approach with ℓ > r snapshots. For each t ∈ [t0, tend], the solution v∗(t) ∈ Rr of
the linear least squares problem

min
v(t)

‖v̂(t)− Trv(t)‖2 (29)

satisfies the estimate

‖v̂(t)− Trv
∗(t)‖2 ≤ σr+1 +

√
mn ∆t max

t0≤τ≤tend

∥∥∥ ˙̂v(τ)
∥∥∥
∞

with the time step size ∆t = max{tj − tj−1 : j = 1, . . . , ℓ− 1} and the singular
value σr+1 from the POD.

Proof:

The intermediate value theorem of differential calculus yields componentwise
v̂i(t) = v̂i(tj) + (t − tj) ˙̂vi(ξ) for each t ∈ [tj , tj+1] and i = 1, . . . , mn with in-
termediate values ξ. It follows that

‖v̂(t)− v̂(tj)‖∞ ≤ ∆t max
t0≤τ≤tend

∥∥∥ ˙̂v(τ)
∥∥∥
∞

for t ∈ [tj , tj+1]. (30)

Since v∗ represents an optimum, we obtain

‖v̂(t)− Trv
∗(t)‖2 ≤ ‖v̂(t)− Trv̆‖2 ≤ ‖v̂(t)− v̂(tj)‖2 + ‖v̂(tj)− Trv̆‖2

for any v̆ ∈ Rr. The first term can be bounded by

‖v̂(t)− v̂(tj)‖2 ≤
√
mn ‖v̂(t)− v̂(tj)‖∞

and the estimate (30) for each t ∈ [tj , tj+1]. For the second term, we apply the
equality v̂(tj) = V ej with the matrix (18) and a canonical unit vector ej ∈ Rℓ.
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Let Vr ∈ R

mn×ℓ be the closest rank-r approximation identified by the SVD,
see [15, p. 79]. It holds that

Vr = U

(
Σr

0

)
Q⊤ =

r∑

i=1

σiuiq
⊤
i ,

where the diagonal matrix Σr ∈ R

ℓ×ℓ contains only the r dominant singular
values. Furthermore, we obtain Vr = TrΣ̃rQ

⊤ with a modified diagonal matrix Σ̃r,
because Tr consists of the first r columns of U . Thus we choose the vector
v̆ = Σ̃rQ

⊤ej. It follows that

‖v̂(tj)− Trv̆‖2 = ‖V ej − Vrej‖2 ≤ ‖V − Vr‖2‖ej‖2 = ‖V − Vr‖2 = σr+1

due to the error estimate for the spectral norm in [15, p. 79]. �

The solutions of the least squares problems (29) are smooth again, because C1-
solutions of the FOM are assumed. However, we do not require this smoothness
of the optimum in the following. Now we show an error bound on the QoI.

Theorem 2 Let v̂ ∈ C1 be the solution and ŷ be the QoI of an initial value
problem of the dynamical system (11). The best approximation y∗ with respect to
the subspace, which is identified by the POD with ℓ > r snapshots, satisfies the
error bound

‖ŷ(t, ·)− y∗(t, ·)‖L2(Π,ρ) ≤ ‖Ĉ‖2
(
σr+1 +

√
mn ∆t max

t0≤τ≤tend

∥∥∥ ˙̂v(τ)
∥∥∥
∞

)
(31)

for each t ∈ [t0, tend] with the time step size ∆t = max{tj−tj−1 : j = 1, . . . , ℓ−1}
and the singular value σr+1 from the POD.

Proof:

It holds that Ψ = C̄⊤Φ with Ψ := (Ψ1, . . . ,Ψr)
⊤ and Φ := (Φ1, . . . ,Φm)

⊤ due
to (22). The best approximation exhibits a representation

y∗(t, p) =
r∑

j=1

w∗
j (t)Ψj(p) = w∗(t)⊤Ψ(p) = (C̄w∗(t))⊤Φ(p).

with w∗ = (w∗
1, . . . , w

∗
r)

⊤. The POD yields the projection matrix Tr. The or-
thonormality of the basis functions Φ allows for the application of Parseval’s
equality. For each t ∈ [t0, tend], it follows that

‖ŷ(t, ·)− y∗(t, ·)‖L2(Π,ρ) = ‖ŵ(t)− C̄w∗(t)‖2 ≤ ‖ŵ(t)− C̄w̆(t)‖2

= ‖Ĉv̂(t)− ĈTrw̆(t)‖2 ≤ ‖Ĉ‖2‖v̂(t)− Trw̆(t)‖2

15



for any w̆ ∈ Rr. Thus Lemma 1 yields the bound (31) by the choice w̆ = v∗ from
the least squares problem (29). �

The spectral norm of the output matrix is often uncritical in the estimate (31).
For example, if the single output of (1) is just a state variable or inner variable,
then it follows that ‖Ĉ‖2 = 1. The error bound (31) becomes small in the case of
a fast decay of the singular values and a sufficiently small time step size. On the
one hand, the singular values are computed a priori, which yields the first term
of the estimate. On the other hand, the second term is not computable, because
the involved derivatives are unknown.

5 Illustrative examples

Now we apply an MOR approach to the stochastic Galerkin system as well as a
stochastic collocation formulation for two test examples. All numerical calcula-
tions are performed within the software package MATLAB.

5.1 Scrapie model

We use a model of the scrapie disease from [10, p. 37]. Reaction kinetics yields
an autonomous system of ODEs

ẋ1 = −p1x1 + p2x2 − p5x1x3

ẋ2 = p1x1 − p2x2 − 2p3x
2
2 + 2p4x3 + p5x1x3

ẋ3 = p3x
2
2 − p4x3

(32)

for three molecular concentrations x1, x2, x3. The system (32) owns the form (1)
with B = 0 and an identity matrix E. As output, we examine the three concen-
trations separately. The five parameters are reaction constants, where we arrange
the nominal values p∗ = (10−5, 0.1, 1, 10−4, 0.1)⊤ from [10]. Initial values (2) are
chosen as x(0, p) = (1, 0, 0.1)⊤ for all p. The time interval [0, 500] is considered.

In the stochastic modelling, we replace the parameters by independent uniformly
distributed random variables with 10% variation around the nominal values p∗.
The PC expansion (5) includes multivariate polynomials, which are the products
of univariate Legendre polynomials. Our truncated expansion (7) involves all
polynomials up to total degree three, which implies m = 56 basis functions.
The stochastic Galerkin method yields a dynamical system (11) with mn = 168
state variables. Since just quadratic nonlinearities are given in the right-hand
side of the system (32), the right-hand sides of (11) can be evaluated exactly
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Figure 1: Expected values (left) and standard deviations (right) for the random
concentrations in the scrapie model.

except for roundoff errors. In a stochastic collocation approach, we consider a
tensor-product formula of the Gauss-Legendre quadrature, see [39, p. 171], with
k = 35 = 243 nodes. The accompanying dynamical system (15) exhibits kn = 729
state variables.

The trapezoidal rule yields the numerical solutions of all initial value problems in
this test example. Variable time step sizes are determined by a local error control
with relative tolerance εrel and absolute tolerance εabs. In the stochastic Galerkin
method, we apply the choice εrel = 10−4, εabs = 10−6 for the computation of the
snapshots, which causes 149 steps and thus 150 snapshots including the initial
values. These snapshots are also used to obtain an approximation of the expected
values (first coefficient) as well as the standard deviations (other coefficients) of
the three random concentrations shown in Figure 1. Now the POD method
requires the SVD (19). Figure 2 (left) illustrates the computed singular values,
which decay rapidly. The projection matrices Tl, Tr and the ROM (16) follow from
the POD technique for user-defined reduced dimensions. Since the dimensionality
of the FOM (11) is relatively small, we cannot expect saving computational effort
by an MOR. Nevertheless, we discuss the MOR to show the feasibility of the
approach for the identification of a low-dimensional representation.

Now both the FOM (11) and the ROMs (16) are integrated with accuracy require-
ments εrel = 10−3, εabs = 10−6. Initial values are transformed via v̄(0) = T⊤

r v̂(0).
We obtain the approximation (20) from solving the ROM as well as the best
approximation (25) for each concentration as QoI. The L2(Π, ρ)-error (21) be-
tween FOM and ROM can be determined pointwise in time. We evaluate the
approximations at 200 equidistant time points in the total time interval using
interpolation in time. Figure 3 depicts the L2(Π, ρ)-error (21) for different re-
duced dimensions, where the maximum error of all time points is determined.
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Figure 2: Singular values from the POD in the stochastic Galerkin method (left)
and the stochastic collocation method (right) for the scrapie example.
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Figure 3: Maximum L2(Π, ρ)-errors for low-dimensional representations from
MOR (left) and from best approximation (right) in Galerkin method for the
scrapie model.

We recognise that the MOR error decreases rapidly for increasing dimensions at
the beginning and then stagnates. The error becomes dominated by the quality
of the snapshots, which depends on the density of the associated time points, and
the error of the time integration. In contrast, the error of the best approximation
decreases further for increasing dimensions and achieves a much lower magnitude.

We repeat the strategy for the stochastic collocation method now. Each sys-
tem (32) is integrated separately for the nodes of the quadrature with different
step sizes for tolerances εrel = 10−4, εabs = 10−6. Interpolation yields 200 snap-
shots of the weakly coupled system (15) at equidistant time points. The result of
the POD is shown in Figure 2 (right), which demonstrates a fast decay of the sin-
gular values again. We impose the accuracy requirements εrel = 10−3, εabs = 10−6

on the integration of both the FOM (15) and the ROMs. Initial values are ob-
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Figure 4: Maximum L2(Π, ρ)-errors for low-dimensional representations from
MOR (left) and from best approximation (right) in collocation method for the
scrapie model.

tained by x̄(0) = T⊤
r x̂(0). Figure 4 illustrates the maximum L2(Π, ρ)-errors (21)

for the approximations (20) and (25) of the QoIs in the case of different reduced
dimensions. A comparison to Figure 3 shows that the quality of the approxima-
tions is slightly worse in this stochastic collocation approach. We remark that the
accuracy of the stochastic Galerkin method or the stochastic collocation method
with respect to the exact random QoI in (1) is not compared, because this item
is out of scope. We determine the error of the MOR separately in the Galerkin
technique and the collocation scheme.

5.2 Transistor amplifier circuit

We consider the electric circuit of a transistor amplifier depicted in Figure 5. A
mathematical modelling yields a dynamical system (1) of DAEs (n = 5) with
differential index one, which is given in [18, p. 377]. The system is nonlinear,
where the mapping F models the bipolar transistor of the circuit and thus involves
exponential functions. Three capacitances and six resistances are included in
the matrices E and A, respectively. The matrix B ∈ R5×2 inserts the inputs
u = (Uin, Uop)

⊤. The operating voltage Uop is constant. We put the value Uop

into the matrix B and the input becomes u = (Uin, Ũop)
⊤ with Ũop ≡ 1, because

Uop is a parameter in the matrix B now. A single time-varying input is supplied
by the voltage source Uin, which we select as the sinusoidal input

Uin(t) = 0.4 sin
(
2π
T
t
)

with T = 0.01.

The unknowns of the system consist of the five node voltages. The QoI is defined
as the output voltage Uout at the fifth node. Thus the matrix C in (1) is just a unit
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Figure 5: Electric circuit of a transistor amplifier.

vector. Figure 6 shows the numerical solution of an initial value problem (1),(2)
for constant physical parameters from [18].

In this test example, all numerical solutions of initial value problems are computed
by the backward differentiation formulas (BDF), see [39, p. 531]. A local error
control with tolerances εrel and εabs yields adaptive time step sizes as well as
adaptive orders (1 to 5).

For an uncertainty quantification, we choose all capacitances, all resistances and
the operating voltage as random parameters (q = 10) with independent uniform
distributions varying 1% around the constant parameters from above. Concerning
the orthogonal expansion (7), we apply all basis polynomials up to total degree
three and obtain m = 286 terms.

The stochastic Galerkin method generates a DAE system (11) with mn = 1430
inner variables. We require a quadrature formula (13) to evaluate the nonlinear
right-hand side approximately. We use a sparse grid quadrature, see [14], which
is adapted from the Gauss-Legendre rule with level 3 and k = 2441 nodes. Initial
values for the system (11) are determined as in the previous example. Now the
numerical solution with tolerances εrel = 10−5, εabs = 10−6 yields 222 snapshots
including the initial values in the time interval [0, T ]. On the one hand, the
snapshots imply an approximation of the coefficient functions in the truncated
expansion (7) of the output voltage. Figure 7 illustrates the maximum coefficients
occurring in the discrete time points. We observe different orders of magnitudes,
which indicates a potential for a sufficiently accurate low-dimensional approxima-
tion of the QoI. On the other hand, a POD of the snapshots reveals the singular
values within (19) shown by Figure 8 (left). We obtain the associated projection
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Figure 6: Input voltage and output voltage of the transistor amplifier in the case
of constant parameters.
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Figure 7: Maximum coefficient functions (left) and their descending order (right)
for the random output voltage in the transistor amplifier. (The dashes lines
separate coefficients for polynomials of degree zero/one, two and three.)
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Figure 8: Singular values from the POD in the stochastic Galerkin method (left)
and the stochastic collocation method (right) for the transistor amplifier.

matrices Tl, Tr for user-defined reduced dimensions.

Now we repeat the procedure for a stochastic collocation technique, where we
apply the sparse grid quadrature from above. The auxiliary system (15) becomes
a DAE with differential index one and kn = 12205 inner variables. Concerning
the time integrations, the same tolerances are used as in the stochastic Galerkin
approach. The numerical solution of the initial value problem of (15) is inter-
polated onto 200 equidistant time points in [0, T ], which yields 201 snapshots.
Alternatively, if the dynamical systems (1) are solved separately for the nodes of
the quadrature (as done in Section 5.1), then the interpolated snapshots cause
failures within the transient simulation of some reduced systems in this example.
Figure 8 (right) shows the dominating singular values from (19) associated with
the snapshots from the collocation system (15).

Both the stochastic Galerkin system (11) and the collocation system (15) are
reduced by the POD method now. Initial value problems of FOMs and ROMs
are solved with tolerances εrel = 10−3, εabs = 10−6 in the following. We consider
the total time interval [0, 3T ], whereas the snapshots are located in [0, T ] only.
Sometimes the transient simulation of an ROM fails, because the true dynamics
is not captured. The reasons are that the dimension of an ROM is not large
enough or the snapshots do not reveal some required information.

A Monte-Carlo simulation generates a reference solution, where initial value prob-
lems of the original DAEs (1) are solved for 104 samples of the random parame-
ters. The time integrations are done with high accuracy requirements εrel = 10−6,
εabs = 10−8. Figure 9 depicts the computed expected value as well as standard
deviation. We approximate the expected value as well as the variance of the QoI
using the FOMs and their ROMs. These statistics are compared to the reference
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Figure 9: Expected value (left) and standard deviation (right) for random output
voltage computed by Monte-Carlo simulation.

Table 1: Maximum differences to reference solution in time intervals [0, T ] and
[0, 3T ] for expected value as well as variance of random output voltage in tran-
sistor amplifier example.

expected value variance
ROM-dimension [0, T ] [0, 3T ] [0, T ] [0, 3T ]

Galerkin FOM 4.1 · 10−3 4.1 · 10−3 4.0 · 10−4 4.0 · 10−4

25 4.5 · 10−2 4.5 · 10−2 8.3 · 10−3 8.3 · 10−3

50 4.5 · 10−2 4.5 · 10−2 8.3 · 10−3 8.3 · 10−3

Collocation FOM 5.4 · 10−3 5.4 · 10−3 3.5 · 10−4 3.5 · 10−4

10 7.3 · 10−3 4.3 · 10−2 1.1 · 10−2 5.6 · 10−2

25 4.2 · 10−3 4.2 · 10−3 3.4 · 10−4 3.4 · 10−4

50 4.2 · 10−3 5.6 · 10−3 3.3 · 10−4 1.9 · 10−3

solution in Table 1. The maximum difference is determined on the time interval
[0, T ] of the snapshots and the longer time interval [0, 3T ]. In the interval of
the snapshots, the differences decay monotone for increasing dimensions of the
ROMs. The ROMs do not improve from r = 25 to r = 50, because the total error
is already dominated by the quality of the snapshots and the error of the time
integration. In the longer interval, the monotonicity is not given for increasing
dimensions, because the snapshots do not reproduce all required information.

We discuss QoIs from the reduced systems of dimension r = 25 for both Galerkin
approach and collocation technique in the time interval [0, 3T ] further. We in-
vestigate the difference of an approximation (20) from an ROM and a best ap-
proximation (25) to a solution (9) of an FOM. Figure 10 depicts the computed
L2(Π, ρ)-errors (21) depending on time. The behaviour of the error coincides
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Figure 10: L2(Π, ρ)-errors for low-dimensional representations of QoI in the
Galerkin method (left) and in the collocation technique (right) for reduced di-
mension r = 25 in transistor amplifier example.

in all four variants. The errors are relatively small in the first cycle, where the
snapshots are located. Yet the error increases at later cycles. Of course the error
of the best approximation is always smaller than the MOR error. In addition,
the magnitudes of the L2(Π, ρ)-errors agree for Galerkin method and collocation
method. Hence the collocation technique becomes favourable in this example,
because the computational effort of a time integration is lower.

We note that computation work is not decreased in the used MOR for this test
example, because hyper-reduction is not included and thus the nonlinear func-
tions of the FOMs still have to be evaluated in the ROMs. There is a potential
for saving computing time by the usage of hyper-reduction as mentioned in Sec-
tion 4.1.

6 Conclusions

Orthogonal expansions were applied to the solution of random nonlinear dy-
namical systems. An MOR for the stochastic Galerkin system or an auxiliary
system of a stochastic collocation method implied low-dimensional approxima-
tions of the expansions. On the one hand, a transient MOR method yields a
low-dimensional representation directly. On the other hand, the projection of
a solution of the full-order model onto the subspace, which is identified by the
MOR, generates a best approximation. Numerical simulations demonstrated that
both the Galerkin method and collocation techniques are feasible to determine
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adequate low-dimensional approximations. However, a transient simulation of a
reduced-order model may become critical or fail in the case of complex nonlinear
dynamical systems. In contrast, the best approximation is robust and identifies
an accurate low-dimensional approximation, while still the full-order model has
to be solved. The strategy of hyper-reduction is required if the proposed methods
shall save computing time in the transient simulations.
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