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Abstract In this paper we investigate on a normalized iterative approach to im-
prove the Smoothed Particle Hydrodynamics (SPH) estimate of a function. The
method iterates on the residuals of an initial SPH approximation to obtain a more
accurate solution. The iterative strategy preserves the matrix-free nature of the
method, does not require changes on the kernel function and it is not affected
by disordered data distribution. The iterative refinement is further improved by
ensuring a linear approximation order to the starting iterative values. We analyze
the accuracy and the convergence of the method with the standard and normal-
ized formulation giving evidence of the improvements obtained with both uniform
and non-uniform data density. Numerical experiments in 2D domain with different
data sets are presented to validate the iterative approach.

Keywords Iterated residuals - Normalized Smoothed Particle Hydrodynamics -
Accuracy - Convergence

1 Introduction

Grid based methods are consolidated numerical techniques applied to a wide range
of scientific area requiring the costly mesh generation task. In recent years mesh-
free methods have been introduced as an interesting computational alternative
strategy based only on displacement among the points of the discretized problem
domain [8,10,12,16,18,23,25]. When adopting a set of points without topological
connections, also the treatment of large deformation problems is relatively easier.
Furthermore, algorithms for problems involving interacting objects may be formu-
lated and handled with minimal difficulty. The Smoothed Particle Hydrodynamics
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is one of the most commonly used mesh-free method firstly developed for simu-
lating astrophysical problems [20,21,32-35] and it is being increasingly used [1-3,
19,27,29,36,37,39,40,44]. The idea of SPH is very simple and it can reconstruct
a continuous field with summation on a cloud of discrete points and on the kernel
function. However, despite its popularity there are many problems related to its
accuracy and as a consequence over the past years different corrective strategies
have been developed to cope with these difficulties [4-7,28-31,41,47].The improved
accuracy is frequently obtained at the price of modifying the kernel function: a
typical example is the reproduced kernel particle method (RKPM) proposed by
Liu et al. [31]. Sometimes, the accuracy is improved by solving linear systems for
each evaluation point giving rise to ill-conditioning of the system matrix for some
problems and to high computational effort for time-evolving simulations. This is
the case of the corrective smoothed particle method (CSPM) by Chen et al. [11]
and the finite particle method (FPM) by Liu et al.[29,30] and improvements de-
veloped in [46]. With the aim to guarantee more accurate results while preserving
the matrix-free feature of the method and avoiding to modify the kernel function,
we propose an iterative approach based on the refinement of the residuals. Start-
ing from an initial SPH estimate we generate some approximation values at any
point of the problem domain that, under a suitable condition, convergence to the
interpolant. The envelope of strictly definite positive kernel functions is considered
and the method, in convergence, can be successfully applied without any restric-
tion on pair-wise distinct data sites. Moreover, ensuring the linear approximation
order [13,17,30], the iterative procedure provides more accurate results than those
obtained with the standard SPH as initial values for both evenly and irregularly
data distribution [19]. The paper is organized as follows. In Section 2 we briefly
present the standard and the normalized version of the SPH method and some
behaviors, referring to a 2D case study, are discussed. In Section 3 we describe the
iterative process. In Section 4 the method is validated for different data sets pro-
viding more accurate results when the normalized SPH formulation is considered
as starting iteration estimate. Finally, some remarks and ideas on future work are
outlined in Section 5.

2 Basic concept of SPH

The method is based on the kernel approzimation of a function f: 2 C R? — R,
for d > 1, defined as

<) >= [ FOKEx.€ )i o
Q
at x = (ac(l), ...,x(d)),£ = (5(1),...,5(‘1)) € 2 and K(x,&; h) is the kernel function

with smoothing length h localizing its influence in {2. The kernel is required to
satisfy the normalization condition

/ K(x,&;h)d2 = 1. (2)
2

Moreover symmetry, monotonically decreasing and convergence to the Dirac func-
tion is required so that the error of the kernel approximation can be estimated as
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second order of accuracy (or of first order of consistency) [26,27].

Given a set of data sites = = (.Sj)j-vzl and the corresponding measurements

(f(e j))ﬁ\;l7 the discrete counterpart of the kernel approximation, usually named
as particle approximation, is defined as

N
fn(x) = Z F€;)K(x, &, h)d2;, (3)

where df2; is the measure of the subdomain §2; associated at each data site ;.
The discrepancy between the kernel and particle approximation, especially on the
boundary and with non uniform data locations, makes this computation often not
accurate [27,28,30]. In Fig. 1 we show the maximum absolute error (MAE)

MAE =  max | fr(xi) — f(x4)l, (4)

for the bivariate function

(92 —2)2 4 (922 — 2)?

faM, 2@y = 0.75exp [— 1 |+ (5)
02 +1)2 (92 +1)?
+0.75exp | T + 0
9z —7)2 4+ (922 — 3)2
+05exp[— 0T ) I(x "1+

—0.2exp [ — ((938(1) —4)* + (9$(2) - 7)2))]

In the simulations we consider M=1600 evaluation points, N=4225 gridded (Z¢)
and random (Zg) data sites in 2 = [0,1]>. The 5r are generated by the rand
function of MATLAB®. The infinitely differentiable, radial and strictly definite
Gaussian function is the kernel used in the experiments

llg—xI3

K(x,& h) = age” ™ #2 (6)

with the dimensional constant ag = 1/ h/me to satisfy the unity requirement
[26].

Improvements can be gained making use of the Taylor series expansion as detailed
in the next sub-section.

2.1 Linear approximation order
The first order of accuracy(p=1) can be ensured by considering the Taylor expan-

sion of f(&) retaining only the first term, multiplying for the kernel function and
integrating over 2

/ FEK(x, & B2 = / FOOK(x, & B2 + / OMK(x, & 12, (7)
0 0 0
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Fig. 1 Maximum Absolute Error (MAE) false-colored by magnitude with N=4225 (a) gridded
Z¢ and (b) random =R data sites for the test function (5).

_ Jo FIOK(x, & h)d2

509 = e e O ®)
The corresponding discrete formulation is
N
S F(6)K(x, &3 hde;
Jeo) = 1= +0(h). ()
SK(x, €, R)de2;
j=1

By requiring the SPH particle approximation to satisfy the 1-st order of accuracy
(9), we take here a closer look at some results obtained dealing with the function
(5). In the Table 1 and 2 the Root Mean Square Errors (RMSEs)

M
S Ifn(xi) = f(x0)?

RMSE = \| = i , (10)

give evidence of the improvements in the approximation when the discrete normal-
ized formulation is considered for both equally and random data distribution. In
the Fig. 2 the RMSEs are depicted for the two data sets. Higher order of accuracy
could be reached via Taylor expansion, but at the cost of solving linear systems
for each evaluation point or modifying the kernel function. In the following we
introduce an iterative scheme preserving the kernel function and the matrix-free
nature of the standard method. The iterative algorithm refines an initial estimate
of SPH and the normalized formulation (9) will be shown as a valid starting choice.
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Table 1 RMSEs for equally spaced data sites =g with the standard SPH and p=1 order of

accuracy. Test function (5).

N SPH  p=1
9 0.3487  0.2656
25  0.3136 0.1234
81  0.2456 0.1617
289  0.1540  0.0880
1089  0.0867  0.0403
4225  0.0621  0.0149
16641  0.0545  0.0054
66049  0.0537  0.0023

Table 2 RMSEs for random data sites =g with the standard SPH and p=1 order of accuracy.
Test function (5).

N SPH p=1
9 0.2197  0.1896
25 0.2215 0.1343
81 0.1132  0.0706
289 0.1246  0.0304
1089 0.0781  0.0196
4225 0.0995  0.0082
16641  0.1062  0.0031
66049 0.0974  0.0016
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Fig. 2 RMSEs versus the number of data sites (a) equally spaced =g and (b) random =g for
the test function (5). The blue full line depicts the error of the standard SPH estimates while

the red dotted line is for the error of the 1-st order of accuracy.

3 Iterative SPH approximation

The SPH approximant (3) can be defined in matrix-vector notation as
fr(x) = K(x)Qf (11)

where

K(x) = [K(x,€13h) K(x,&53h) ... K(x,Eni h) ],



6 Elisa Francomano, Marta Paliaga

Q = diag [df21 df2s ... d2N |

and f collects the function values at the data sites. By considering (11) as initial
estimate f,(lo) (x) and by iterating on residuals we generate a sequence of approx-

imants {f}(ln)(x)} The residual function is itself approximated via SPH. In the
following the process is detailed. By considering the matrix A

N
ij=1

A = [K(&;, & ; h)dy]

and
s(O =f— Af

we iteratively compute for n > 0

RV (x) = K(x)Qs" Y

AP (x) = £V (%) + RV (x) = K(x)$ ia —A)f (12)
k=0

S _ 1) _ A 1)
It is well known that [22]
lim Y (I-A)f=A""

n— oo
k=0

if and only if [|[I — A||2 < 1, therefore under this condition

lim fi" (x) = Pu(x) (13)
where
Pu(x) = K(x)QA™'f (14)

is the interpolant.
The solution for P, (x) is admitted with strictly definite positive kernel functions
on pair-wise distinct data sites and this is the only limit on the data location
[9,14,15,45]. Hence, with strictly definite positive kernel functions the {f,(Ln) (x)}
converges to the interpolant P (x) without assumption on the pair-wise distinct
data distribution.
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4 Numerical validation

In this section we discuss on the numerical results referring to the test function
(5) and proceed in the approximation for the gridded =g, Halton =y [24], Sobol’
Zs [42] and random data sites Zg. The haltonset and the sobolset functions of
MATLAB® are adopted to construct the quasi-random data distribution from the
Halton and Sobol’ sequence respectively. The rand function of MATLAB®is consid-
ered for the random distribution. We consider data sets by increasing the density
of the data in the unit square domain and the root mean square error measures
the accuracy of the estimates. M=1600 points are the number of the evaluation
points and the function (6) is adopted as kernel function. We illustrate results on
the accuracy and on the convergence. In all the tables the RMSEs are reported
with N = (2t + 1)2, t=1,2,...,6. In the first column the error is related to the stan-
dard or normalized SPH formulation, while in the other columns the errors of the
iterated method with 10,100,1000 iterations are shown. In the Tables 3,4,5 and 6
the RMSEs for the standard formulation is generated with the eq. (3). We observe
improvements in the function approximation by means of f,gn) (x) by increasing
the number of iterations n and of data N. In the Tables 7,8,9 and 10 the RMSEs
are reported working with the same data sets but with the normalized formula-
tion as initial values giving evidence of better results obtained with linear accurate
approximations as starting estimates. The improvements of the linear approxima-
tion are evident in the Fig. 3 where the convergence behavior is depicted in loglog
plots. In analogy to the discussed simulations many other experiments have been
performed giving evidence of the improvements in the accuracy with the standard
and normalized iterative approach. In the Fig. 4 we report some results obtained
working with the Wendland’s compactly supported kernel function [45]

K(x, & h) = (1-11€ — x[|2)$ (35]1€ — x||5 + 18]|€ — x]|2 + 3). (15)

It is a radial strictly positive definite function with degree of smoothness equal
to four [14,45]. We use this function for increasingly denser sets of data with
the Franke’s test function (5) and in the Fig. 4 the RMSEs are depicted with
the data sequence in Z¢,=x,=g,=5r with the standard SPH and the iterative
approach compared to the normalized formulations. We experimentally observe
that generally a good accuracy is with a reasonable number of iterations, but
more efforts need for a theoretical understanding of the convergence behavior.
This should be also useful for providing an estimate of the overall computational
demanding that also depends on the flatness of the kernel function.

Table 3 RMSEs with Z¢g.

N n }510) (100) (1000)

h h
9 0.3487 0.2579 0.1515  0.1344
25 0.3136 0.1786  0.1112  0.0864
81 0.2456  0.0901 0.0481  0.0214
289  0.1540 0.0270 0.0118  0.0052
1089 0.0867 0.0215 0.0076  0.0031
4225 0.0621 0.0201 0.0075  0.0030
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Fig. 3 RMSEs versus number of data sites.The function (6) is adopted as kernel function. In
the left panels the standard SPH is compared with the iterative method. In the right panels the
SPH, with p=1, is compared with the iterative method. 10, 100, 1000 iterations are considered.
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Fig. 4 RMSEs versus number of data sites. The function (15) is adopted as kernel function. In
the left panels the standard SPH is compared with the iterative method. In the right panels the
SPH, with p=1, is compared with the iterative method. 10, 100, 1000 iterations are considered.
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Table 4 RMSEs with = .

N fh }510) }(1100) }(11000)
9 0.3376  0.2355  0.1418  0.1265
25 0.2885 0.1441 0.1007 0.0752
81 0.2024 0.0496 0.0232 0.0126
289  0.1215 0.0211 0.0067  0.0026
1089 0.0720 0.0181 0.0057 0.0022
4225 0.0605 0.0186 0.0062  0.0020
Table 5 RMSEs with Zg.
N n }(110) P()loo) }(11000)
9 0.2945 0.1465 0.1226 0.1437
25 0.1873  0.0571 0.0436  0.0358
81 0.1564 0.0277 0.0122  0.0072
289  0.0769 0.0197 0.0108 0.0102
1089 0.0631 0.0188 0.0080  0.0049
4225 0.0554 0.0223 0.0123 0.0079
Table 6 RMSEs with =g.

N n }510) 5100) 51000)
9 0.2197 0.0962 0.0845 0.0874
25 0.2215 0.0942 0.0613 0.0495
81 0.1132 0.0526  0.0417  0.0298
289  0.1246 0.0260 0.0145 0.0107
1089 0.0781 0.0223 0.0117  0.0068
4225  0.0995 0.0377 0.0234 0.0181

Table 7 RMSEs with =Z¢ and p=1.
N n }(110) }(1100) }(11000)
9 0.2656 0.1657 0.1455 0.1834
25 0.1234  0.1355 0.1156  0.0905
81 0.1617  0.0919 0.0525  0.0396
289  0.0880  0.0255 0.0081 0.0042
1089 0.0403 0.0030 2.9le-4 5.51e-5
4225  0.0149 9.94e-4 1.16e-4  1.29e-5

Table 8 RMSEs with =y and p=1.
N fh }510) }5100) }51000)
9 0.2624 0.1626 0.1427 0.1280
25 0.2206  0.1331 0.1023  0.0839
81 0.1244  0.0603 0.0269  0.0167
289  0.0693  0.0133 0.0042  0.0021
1089  0.0266 0.0017 2.35e-4  4.60e-5
4225 0.0137 9.15e-4  1.27e-4 1.71le-5

5 Conclusions

In this paper we discuss on an iterative SPH method. The method preserves the
matrix-free nature of the standard approach without changes on the kernel func-
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Table 9 RMSEs with =g and p=1.

N fh h(m) (100) (1000)

h h
9 0.2206 0.1654  0.1756  0.2267
25 0.1293 0.0756  0.0616  0.0517
81 0.0972  0.0348 0.0106  0.0079
289  0.0305 0.0027 0.0010 6.82e-4
1089 0.0168 0.0015 4.05e-4 2.0le-4
4225 0.0053 0.0012  4.12e-4  7.24e-5

Table 10 RMSEs with £ and p=1.

N n (10) (100) (1000)

h b b
9 0.1896 0.1598  0.2103 0.2163
25 0.1343 0.0995 0.1044 0.1022
81 0.0706  0.0282  0.0143 0.0100
289  0.0304 0.0075  0.0032 0.0019
1089 0.0196 0.0030 8.98e-4 4.34e-4
4225 0.0082 0.0014 4.35e-4  1.86e-4

tion. We illustrate results on the convergence and on the accuracy giving evidence
of better results obtained with the normalized formulation than the standard one.
Many experiments are conducted with the aim to highlighting the basic results of
the approach dealing with gridded and scattered data sets. Future work will be
in investigating more on the convergence behavior and moving forward to extend
the iterative method to approximate function derivatives.
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