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Abstract

The Barlett-Lewis (BL) rainfall model is a stochastic model for the rainfall
at a single point in space, constructed using a cluster point process. The
cluster process is constructed by taking a primary/parent process, called the
storm arrival process in our context, and then attaching to each storm point
a finite secondary/daughter point process, called a cell arrival process. To
each cell arrival point we then attach a rain cell, with an associated rainfall
duration and intensity. The total rainfall at time ¢ is then the sum of the
intensities from all active cells at that time.

Because it has an intractable likelihood function, in the past the BL model
has been fitted using the Generalized Method of Moments (GMM). The
purpose of this paper is to show that Approximate Bayesian Computation
(ABC) can also be used to fit this model, and moreover that it gives a better
fit than GMM. GMM fitting matches theoretical and observed moments of
the process, and thus is restricted to moments for which you have an analytic
expression. ABC fitting compares the observed process to simulations, and
thus places no restrictions on the statistics used to compare them. The
penalty we pay for this increased flexibility is an increase in computational
time.

Keywords: Bartlett-Lewis process, rainfall, simulation, Generalized
Method of Moments, Approximate Bayesian Computation, Markov Chain
Monte Carlo

1. Introduction

Stochastic rainfall models based on the Barlett-Lewis cluster process were
introduced by Rodriguez-Iturbe et al. [1, 2], with later refinements by Cow-
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pertwait et al. [3] and Kaczmarska et al. [4, 5]. Because the Barlett-Lewis
(BL) rainfall model has an intractable likelihood function, it has in the past
been fitted using the Generalized Method of Moments (GMM).

GMM requires a vector of summary statistics whose means have closed-
form expressions, and the broader the variety of summary statistics used, the
better the fitting. In contrast, Approximate Bayesian Computation (ABC)
is a likelihood free method that compares the observed process to a model
using simulations, and places no restrictions on the summary statistics used
to compare them. As a result, ABC fitting allows us to use summary statis-
tics that are potentially very informative, but do not have nice closed-form
expressions for their means. Beyond that, ABC allows us to consider mod-
els whose complexity is not constrained by the need to obtain closed-form
expressions for various summary statistics.

Our primary goal is to demonstrate that ABC fitting works as well as—
or better than—GMM fitting for BL type rainfall models. Accordingly we
will restrict ourselves to the simplest form of the BL model, namely the
rectangular pulse model introduced by Rodriguez-Iturbe et al. [1]. To our
knowledge this is the first time ABC has been used to fit rainfall models.

We use a (homogeneous) Poisson process with rate A for the storm arrival
process. The cell arrival processes are independent processes, each one a
Poisson process of rate 3, truncated after an exponential(y) amount of time,
which we call the storm duration. Assuming that we are working in a finite
time window, denote the storm arrival times 17,75, ...T, and the storm

durations Dy, Do, ..., D,. Let the arrival times for the i-th cell arrival process
be S, 55,..., 54 € [0, D], where k(i) (possibly zero) is the number of cells
in storm i. The cell arrival times are thus {7; + S;. e =1,...,n, 7 =

1,...,k()}.

Rain cells are independent with duration and intensity having indepen-
dent exponential(n) and exponential(1/u,) distributions. The intensity is
constant during a cell’s lifetime. Suppose the j-th cell in storm ¢ has du-
ration L; and intensity X;, then the overall intensity of rainfall at time ¢

1S
Y(6) =Y Unesiccresiery Xj-

2 J

Rain gauges record accumulated rather than instantaneous rainfall. Accord-
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Figure 1: Constituent parts of a Bartlett-Lewis process: a) Storm process and cell
processes b) Storm durations, cell durations, and cell intensities

ingly we define the rainfall for the i-th time period of length A to be

ih
Y= / Y (t) dt.
(

i—1)h

An illustration of the components of a BL process is given in Figure 1.

In the section Conclusions we discuss the implications of our findings for
the modelling process, in particular regards the successful fitting of more
complex (and thus more realistic) models.

1.1. Generalised Method of Moments

Suppose that V.= (V4,..., V%) is a vector of statistics computed from
our observed data, with expectations 7(0) = (11(0),...,7:(0))’, depending
on some unknown parameter vector 8. The GMM estimate of @ is then

~

0 = argming (V — 7(0)) W (V — 7(0)),

where W is a positive definite weighting matrix. It can be shown that the
optimal weights are proportional to (Var V)~!, and can be estimated itera-
tively.

Rodriguez-Iturbe et al. [1] derive expressions for the mean, variance, and
covariances of the Y, as well as P(Y;® = 0). GMM fitting requires moments



with analytical expressions, and we used mean, standard deviation, auto-
correlation at lags 1 and 2, and probability of no rain, for both six-minute and
hourly aggregated data, giving a total of nine summary statistics. (Note that
given the mean at six-minute intervals, the mean at hourly intervals contains
no additional information, and so is not included.) For specific details of
GMM fitting for BL models, we refer the reader to [6, 4], for example.

1.2. Approzimate Bayesian Computation

ABC was introduced by Pritchard et al. [7], and was later extended
to incorporate Markov Chain Monte Carlo (MCMC) [8], or alternatively
Sequential Monte Carlo (SMC) [9, 10, 11]. We will use the ABC-MCMC
methodology in what follows. Wegmann et al. [12] provide some practical
advice on implementing ABC-MCMC, and give a proof of the central result
in Marjoram et al. [§].

We assume that we have an observation D, supposedly from some model
f(-]@) with parameters 8, and that we are able to simulate from f. D could be
actual data from a rain gauge, or simulated data when validating the proce-
dure. Let 7 be the prior distribution for 8 and S = S(D) a vector of summary
statistics for D, then ABC generates samples from f(0|p(S(D*), S(D)) < €),
where D* ~ f(:|8), 8" is a proposal for 8 distributed according to 7, and p
is some distance function. If S is a sufficient statistic, then as e — 0 this will
converge to the posterior f(0|D). ABC-MCMC adds a proposal chain with
density ¢ and a rejection step, to generate a sample {6;}. The algorithm is
as follows:

Algorithm 1 ABC-MCMC
for i=1to N do
1. Given current state 6; propose a new state 8 using ¢(+|0;)
2. Put a = min (1', %M) .
3. Go to step 4 with probability «, otherwise set ;.1 = 8; and return
to step 1
4. Simulate data D* ~ f(-|6%)
5. If p(S(D*),S(D)) < € then set 6,1 = 0", otherwise set 8;.; = 0;
end for

Note that the MCMC rejection at step 3 comes before the ABC compar-
ison in step 5. This is to avoid unnecessarily running the simulation in step
4.



2. Applying ABC-MCMC to the BL model

Firstly we reparameterise the model, to reduce the dependence between
the parameters. In addition we use a log transformation to map them from
R, to R, which simplifies the choice of the proposal chain.

Our first three parameters give a top down description of the process,
more directly relatable to the observed rainfall. The total intensity at time
t has mean Iy = Ay~ 18171 u,; the percentage of time covered by storms has
mean roughly proportional to Ay ~!; and the percentage of a storm covered by
rain cells has mean roughly proportional to Sn~!. Our final two parameters
were chosen to be roughly orthogonal to these three, with respect to the
posterior. Our new parameters are

0(1) log(Ir)
0(2) = log(Ay 1)
0(3) log (A7)
0(4) = log(fn ")
0(5) log(6m)

Posterior plots of these parameters show less dependence than the originals.
We also found that Ir is much easier to estimate than pu,, and that the new
parameterisation avoids the very strong negative correlation between A and
v~! (which exists because a low storm arrival rate and long storm duration
can give the same total intensity as a high storm arrival rate and short storm
duration).

Vague normal priors were used for all the 0(i); that is 7(6) ~ N(0,02I)
for 0% large. For the proposal chain we just used a random walk. Note that
as the proposal distribution is symmetric, o will depend only on the prior.

The choice of good summary statistics is important to the success of ABC
fitting. Ideally, summary statistics should discriminate between the effects
of all the model parameters. For example, a process with small storm arrival
rate A and large storm duration 1/4 may have the same expected rainfall
intensity (proportional to A/v) as a process with high storm arrival rate and
small storm duration. Thus the average rainfall will tell us a lot about A/7,
but to distinguish between A and v we need other statistics, for example
statistics that can measure the clustering of rainfall. We can also choose
summary statistics to support our research objectives. For example, if it is
important that our model accurately reproduces rainfall extremes, then we



can include statistics that measure extremal behaviour, such as the number of
exceedances over a given threshold. In our case, in addition to the statistics
used for GMM (mean, standard deviation, auto-correlation at lags 1 and 2,
probability of no rain), we also used mean length of wet and dry periods,
standard deviation of wet and dry periods, and the total number of wet and
dry periods, again for six-minute and hourly aggregated data. This gave us
a vector of 19 summary statistics for ABC-MCMC fitting.

Note that while it is important that our summary statistics are sufficient,
including unnecessary statistics will reduce the performance of the ABC es-
timator, essentially by introducing noise that makes it harder to distinguish
between good and bad simulations. (By a good simulation we mean one
which was generated using parameters close to the true parameters.) This
can be mitigated somewhat using the post-hoc analysis of Beaumont et al.
[13], which uses regression to determine which summary statistics are most
significant. We also determined experimentally that leaving out any one of
our summary statistics gave less precise estimates.

For the distance measure p we use a weighted Euclidean metric,

p(5(D*),5(D)) = Zwi(s*(i) - S8(1))%,

where S*(i) and S(i) are respectively the i-th component of S(D*) and S(D).
Just as the choice of summary S is important, so too is the choice of weights.
Various authors have found that choosing w; inversely proportional to the
variance of S*(i) works well, formally giving equal importance to each com-
ponent of S. In the context of least-squares estimation this weighting is
optimal when the S*(i) are independent [14]. When the S*(i) are dependent,
as is certainly the case here, the Mahalanobis distance has been observed to
work well [15]. However in practice the Mahalanobis distance is problematic
for more than a small number of summary statistics, as the covariance matrix
is often close to singular.

We estimate Var (S*(7)) using a sample generated from f(]é), where 0
is a preliminary estimate of 6.

3. Simulation study

In this section we use a simulated data set to compare GMM and ABC-
MCMC parameter estimation for the BL model. Using A = 0.04, v = 0.20,
£ =0.50, n = 2.00 and p, = 1.50, we simulated rainfall for a two week period

6
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Figure 2: From top to bottom, plots are errors in the estimates of parameters A, v, S,
n and p,, for 25 separate simulations. Left figures are GMM estimation errors and right
figures are ABC-MCMC estimation errors. The blue doted lines give the average bias.



and then used GMM and ABC-MCMC to estimate the parameters. This was
repeated 25 times to gauge the bias and variability of each estimator.

ABC-MCMC requires tuning to perform well. We need to choose € small
enough that we get a good approximation to the posterior, but large enough
that the chain has a reasonable acceptance rate. Also, for very small € it
can be difficult to get the chain started, particularly if your starting point
is in a region of low posterior probability. The practical solution to this
problem is to run a short initial ABC estimate (using i.i.d. samples from the
prior 7, instead of using the proposal density ¢). This allows us to roughly
estimate the distribution of p(S(D*), S(D)) and thus choose €. It also allows
us to choose a starting point for the MCMC chain that has high posterior
probability (removing the need for a burn-in period), and to refine the weights
w; used in p.

For priors we used the N(0,3.0%) distribution for each 6(i). As for any
MCMC procedure, the proposal chain needs to be chosen so that it mixes
well and explores the whole parameter space. We we used a random walk
with N(0,0.2%]) increments. Combined with a threshold of € = 2.5, this gave
an acceptance rate of around 3%, and an efficiency of around 0.003 for each
parameter (the effective sample size over the number of simulations).

We used the posterior mean of the ABC-MCMC sample to get a point
estimate that we could compare directly to the GMM estimate. We used local
linear regression to calculate the posterior mean, as suggested by Beaumont
et al. [13]. The results are given in Figure 2. These graphs clearly show that
ABC-MCMUC gives less biased and less variable estimates than GMM.

4. Application to real data

Figure 3 gives rainfall for Bass River, Victoria, July 2010. Rainfall is
measured in increments of 0.2 mm every 6 minutes using a tipping bucket.
Rainfall of less than 0.2 mm is considered as no-rainfall. In this section we
fit a Bartlett-Lewis model to these data.

A preliminary version of these results appeared in [16]. The results here
benefit from increased ABC simulation time, and the estimates given correct
a previous scaling error (the previous estimates were all out by a factor of
ten). By comparing various parameter combinations we show where the ABC
and GMM fits agree and where they differ. Then by considering how well
the fitted models describe wet and dry periods, we show that the ABC fit is
doing a better job.
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Figure 3: Rainfall measurements from Bass River, Victoria, July 2010. The z-axis is
measured in days and the y-axis in mm. Data obtained from the Australian Bureau of

Meteorology.




Parameter GMM ABC-MCMC ABC-MCMC ABC-MCMC

Posterior mean 95% credible interval Posterior median

A 0.010 0.007 (0.005, 0.010) 0.007
A1 26.96 32.35 (18.57, 56.38) 30.73
B 0.019 0.097 (0.056, 0.156) 0.095
n! 14.10 0.279 (0.057, 0.634) 0.256
L 0.140 1.994 (0.699, 6.450) 1.531

Table 1: Parameter estimates for the BL model fitted to the Bass River data. All estimated
parameter values are per six minutes except u,, which is mm per six minutes.

We used independent N (0, 3.0%) priors for the §(z). For the proposal chain
we used a random walk with N (0,0.2%]) increments. Trace plots were used
to verify that the chain was mixing nicely (Figure 4). Figures 5 and 6 give
the estimated posterior densities for € and the original (untransformed) pa-
rameters. The diagonals are marginal densities and the off-diagonals pairwise
densities.

In Table 1 we give the posterior meai, median and 95% credible intervals
for each parameter, together with a GMM estimate. The ABC and GMM
estimates for A and y~! are roughly similar, and if you take the mean storm
coverage (storm rate by mean duration Ay~!) you get an even closer match,
with 0.256 for the GMM fit and 0.226 using the ABC posterior means. The
estimates for 3, n~! and p, are quite different, however if you take the mean
storm intensity (87 'u,) you get 0.038 using the GMM fit and 0.054 using
the ABC posterior means, which are again roughly similar. Formally, storm
coverage and storm intensity are essentially directly observable quantities,
making their means easier to estimate.

To compare the models fitted using GMM and ABC-MCMC, we used
simulation to generate 95% Monte-Carlo predictive intervals for a variety of
statistics (at different levels of temporal aggregation), and compared these
to their observed values. The results are given in Figures 7 and 8. We see
that the GMM fitted model only gives a good correspondence between the
fitted model and the data for those statistics used in the GMM fit, but the
ABC-MCMC fitted model gives a good correspondence for all the statistics
considered. That is, the extra statistics—such as the number of wet/dry
periods—has helped ABC to distinguish 3, = and p, more successfully
than GMM.

10
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5. Conclusions

Using both a simulation study and real data, we have seen that ABC-
MCMC gives better fits than GMM, for fitting a Bartlett-Lewis rainfall
model. From the modelling perspective, an important advantage of ABC fit-
ting over GMM fitting is that we can use summaries of the data that capture
useful information, whether or not we have an expression for their expec-
tation. Moreover, this means that ABC can be used for models for which
GMM fitting is not available. For example, if we used a gamma distribution
for the duration of a rain cell, rather than an exponential distribution, then
we would not be able to calculate the second order statistics of the {Y;"},
making GMM fitting impossible. However ABC fitting would proceed as be-
fore, with the addition of a single parameter. This opens up the possibility
of fitting much more realistic stochastic rainfall models.

We also note that unlike GMM, ABC fitting provides credible intervals
and not just point estimates.

The choice of good summary statistics is important to the success of ABC
fitting. To fit the BL model we used rainfall aggregated over six-minute and
hourly intervals, and then compared the mean, standard deviation, auto-
correlation at lags 1 and 2, probability of no rain, mean length of wet and
dry periods, standard deviation of wet and dry periods, and the total number
of wet and dry periods We note that for GMM fitting we can only use the
first five of these statistics, because we do not have analytic expressions for
the others. Using a simulation study we demonstrate that ABC fitting can
give less biased and less variable estimates than GMM. We also give an
application to rainfall data from Bass River, Victoria, July 2010. Again we
see that the ABC fit is better than the GMM fit.

Finally we note that other simulation-based model fitting approaches are
available, in particular the Simulated Method of Moments (SMM) of McFad-
den [17] and Pakes and Pollard [18]. The advantage of ABC over SMM is
that it gives access to all the advantages of Bayesian modelling.
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