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Abstract

We study the approximation of the radiative transfer equation with a rel-
atively few moments in the spherically symmetric case. We propose a three-
moment model based on choosing the beta distribution as the ansatz for the
specific intensity. This ansatz enables our model to capture the anisotropy in
the distribution function. The characteristic structure of the Riemann prob-
lem of the model is studied in detail. Numerical simulations demonstrate
its validity in approximating the radiative transfer equation in the spheri-
cally symmetric case and its advantage in approximating highly anisotropic
distribution functions in comparison to the Pn method.

Keywords: Radiative transfer, spherical symmetry, moment method, anisotropic
distrubution

1 Introduction
The radiative transfer equation (RTE) is essential for describing the propagation of
radiation through absorbing and emitting medium [28, 26] and has applications in
the fields of astrophysics [8], atmospheric physics [23] and optical imaging [18]. It
is a high-dimensional integro-differential kinetic equation for the specific intensity
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(also referred to as the distribution function in this paper) of the radiation. Due
to its high-dimensionality, numerical methods to solve the RTE is a challenging
topic. Currently, numerical methods for solving the radiative transfer equation
can be categorized into two groups: probabilistic approaches, for example, the
direct simulation Monte Carlo methods [22, 13, 1], and the deterministic methods
[4, 20, 9, 27, 2, 10]. The deterministic methods mainly include the long or short
characteristic methods [7, 19], the discrete ordinate methods (SN ) [15, 31], and
the moment methods [32, 27].

The moment method is an effective approach to solve the radiative transfer
equation, as moments are often the quantities we are interested in. For exam-
ple, the radiation energy is the zeroth moment and the radiation energy flux is the
first moment. However, the governing equation of each moment usually contains
higher order moments, therefore an approximation for the higher order moments
is required to complete the moment system. This is called the moment closure,
which is the central problem of the moment method. Two important properties
of the moment closure are hyperbolicity and realizability. Hyperbolicity is a nec-
essary condition for the well-posedness of the first order moment systems, while
realizability is a natural requirement that comes from the positivity of the under-
lying distribution function. However, the most commonly used moment model,
the spherical harmonics (PN ) method [28] does not possess realizability. There-
fore, the result of the PN model sometimes leads to negative particle concentration
[6, 5, 24]. In fact, for multidimensional cases, the maximum entropy model (MN )
[9, 27] possesses both hyperbolicity and realizability. However, the closing rela-
tionship of the maximum entropy model is not explicit, making it too expensive
to be applied in the numerical simulations.

In some cases, the dimension of the radiative transfer equation can be reduced
due to symmetry considerations. One widely studied dimension-reduced case is
that of slab geometry [28, 1, 2, 11]. For the slab geometry case, the distribution
function varies only along one direction in spatial space and is an axisymmetric
function in microscopic velocity space. Another case is the spherically symmetric
case. The spherically symmetric case has many applications, such as in the studies
of extended atmospheres [25], and there are many previous studies [12, 3, 17].
Compared to the radiative transfer equation in the slab geometry case, the transfer
equation in spherical symmetry is more complicated due to the appearance of a
derivative with respect to the microscopic velocity, which is not present in the slab
geometry case.

The present paper is an extension of a model previously studied in [2] for the
slab geometry case to the spherically symmetric case. The B2 model studied in
[2] is the second order case of the Extended Quadrature Method of Moments (EQ-
MOM) [1]. For the slab geometry cases, the B2 model gives an explicit closing
relationship but possesses many of the essential properties of the attractive but

2



much more expensive maximum entropy model. It was shown that the B2 model
is globally hyperbolic and possesses a non-negative ansatz for all realizable mo-
ments, and numerical simulation shows it has similar results as the M2 model for
benchmark problems in slab geometry cases.

In this work, we apply the ansatz of theB2 model to the spherically symmetric
case. Due to spherical symmetry, the distribution function should also be axisym-
metric, which indicates that it is natural to extend the B2 model to the spherically
symmetric case. The resulting moment system is similar to theB2 moment system
in slab geometry in the convection term and possesses both global hyperbolicity
and realizability. We also derive the connection condition between rarefaction and
shock waves when there are simple wave conditions. Several numerical simula-
tions are computed to validate the B2 model in spherically symmetric cases and
show the advantages of the B2 model compared to other numerical methods.

The rest of this paper is organized as follows: In Section 2 we briefly introduce
the RTE in the spherically symmetric case; then in Section 3 we introduce the B2

model for spherical symmetry and analyze its properties. Numerical results are
shown in Section 4 and the paper ends with a brief summary and conclusion in
Section 5.

2 Preliminaries
We consider the radiative transfer equation (RTE) in spherical symmetry [28]

1

c

∂I

∂t
+ µ∂I

∂r
+ 1 − µ2

r

∂I

∂µ
= C(I), (1)

where
C(I) = −σaI − σsI +

σs
2 ∫

1

−1
I(µ)dµ + S

2
. (2)

Here c is the speed of light, I = I(t, r, µ) is the specific intensity, t ∈ R+ is time,
r ∈ [rL, rR] ⊂ R+ is the radial distance, and µ ∈ [−1,1] is the velocity related
variable where arccos(µ) represents the polar angle, i.e., the angle between the
photon velocity and the radial distance r. Also, σa and σs are the absorption and
scattering coefficients, respectively, and S is the external source term. Compared
to the radiative transfer equation in slab geometry, which has the form

1

c

∂I

∂t
+ µ∂I

∂x
= C(I), (3)

equation (1) is more complicated because of the presence of a derivative with
respect to the polar angle, a term which does not appear in (3).
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We can obtain a moment system from equation (1) by taking its moments
with respect to µ, truncating the system and specifying a closure. Denote the k-th
moment of the specific intensity as

⟨I⟩k ≜ ∫
1

−1
µkI(µ)dµ, k ∈ N, (4)

we multiply equation (1) by µk and integrate over µ ∈ [−1,1] to get

1

c

∂⟨I⟩k
∂t

+ ∂⟨I⟩k+1
∂r

+ (k + 2)⟨I⟩k+1 − k⟨I⟩k−1
r

= ⟨C(I)⟩k, (5)

where

⟨C(I)⟩k = −(σa + σs)⟨I⟩k +
1 + (−1)k

2k + 2
(σs⟨I⟩0 + S). (6)

The governing equation of ⟨I⟩k in (5) depends on higher order moment ⟨I⟩k+1, in-
dicating that the full system contains an infinite number of equations. For a given
integer N ∈ N, we truncate the system and only keep the governing equations of
⟨I⟩k, k ≤ N . However, the first N + 1 equations contain N + 2 unknown vari-
ables; thus the truncated system is not closed. In order to obtain a closed system,
we have to approximate the (N + 1)-th moment ⟨I⟩N+1 based on the first N + 1
moments ⟨I⟩k, k = 0,⋯,N , which is formulated as

⟨I⟩N+1 ≈ EN+1 = EN+1(⟨I⟩0, ⟨I⟩1,⋯, ⟨I⟩N),

and this is called the moment closure. A popular way to obtain the moment clo-
sure is to construct a specific intensity Î based on the known moments. Let Ek,
k = 0,1,⋯,N , be the known moments of a specific intensity I , we can construct a
specific intensity Î(µ;E0,E1,⋯,EN), which is called the ansatz of I , to approxi-
mate the unknown specific intensity I , such that,

∫
1

−1
µkÎ(µ;E0,E1,⋯,EN)dµ = Ek, k = 0,1,⋯,N. (7)

Then the (N + 1)-th moment can be directly approximated by the (N + 1)-th
moment of Î ,

EN+1 = ∫
1

−1
µN+1Î(µ;E0,E1,⋯,EN)dµ,

which closes the moment system (5).
The physically relevant value of a given set of moments for the RTE should

satisfy constraints imposed by the positivity of the specific intensity. It is referred
to as the realizable region. Realizability of the closing relationship ensures the
closure is consistent with our apriori knowledge about the moments of a probabil-
ity distribution function and is expected to improve the accuracy of the truncated
system of equations [16]. Below we recall the definition of the realizable region.
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Definition 1. The realizable region for the first N +1 moments for any given inte-
ger N ∈ N, denoted as ΩR,N , is the set of moments where each point corresponds
to a positive specific intensity,

ΩR,N ≜ {(E0,E1,⋯,EN)T ∶ ∃I(µ) > 0, ⟨I⟩k = Ek, k = 0,1,⋯,N}.

The focus of this paper is to find a closing relationship of the second order
moment model, for which the known moments are in the realizable region, which
we will study in the next section.

3 B2 Model for Spherical Symmetry

3.1 The B2 closure
The moment model for N = 2 is written as

1

c

∂E

∂t
+ ∂F
∂r

=C, (8)

where E = (E0,E1,E2)T , F = (E1,E2,E3)T , and

Ck = −
(k + 2)Ek+1 − kEk−1

r
− σtEk +

1 + (−1)k
2k + 2

(σsE0 + S), k = 0,1,2.

The realizable region for (E0,E1,E2) can be derived from the Cauchy-Schwarz
inequality to be

ΩR,2 = {(E0,E1,E2)T ∶ E0 > 0,E2 < E0,E
2
1 < E0E2}. (9)

To close system (8), we use the following beta distribution ansatz,

ÎB2(µ;E0,E1,E2) =
w

2B(ξ, η) (1 + µ
2

)
ξ−1

(1 − µ
2

)
η−1

, ξ = γ
δ
, η = 1 − γ

δ
, (10)

with w > 0,0 < γ < 1, δ > 0. The ansatz (10) has the same form as the B2 ansatz
for slab geometry previously studied in [2]. Consistency of the known moments
(7) determines the parameters w, γ, and δ, as

w = E0, γ = E1/E0 + 1

2
, and δ = (E1/E0)2 −E2/E0

E2/E0 − 1
, (11)

giving the moment closure

E3 = ∫
1

−1
µ3ÎB2 dµ = E1(E2

2 + 2E2
1 − 3E0E2)

2E2
1 −E0E2 −E2

0

. (12)

5



System (8) with the closing relationship (12) shall be referred to as the B2

model for spherical symmetry hereafter, and it differs from that studied in [2] in
that it contains curvature terms brought about by spherical geometry.

In [2] it was proved that theB2 model for slab geometry is globally hyperbolic,
and there exists a non-negative ansatz for realizable moments. Hyperbolicity is
necessary for the well-posedness of the Cauchy initial value problem. Moreover,
the existence of a non-negative ansatz ensures the realizability of the closure. Sys-
tem (8) has the same convection terms as the B2 system for slab geometry studied
in [2], therefore it is also globally hyperbolic and realizable.

Next, we study the Riemann problem because its solution structure is instruc-
tive for the design of the approximate Riemann solver, which is the basis of the
numerical methods using Godunov-type schemes. Note that this problem has not
yet been studied for the slab geometry case, and the analysis below can also be
applied to that scenario.

3.2 Riemann problem
Define E = (E0,E1,E2)T and F = (E1,E2,E3)T , where E3 is given by (12).
Consider the following Riemann problem:

1

c

∂E

∂t
+ ∂F
∂r

= 0,

E(0, r) = { EL, r < r0,
ER, r > r0.

(13)

We first recall results from [2] in two lemmas which will be used in the fol-
lowing discussions in this section. Hereafter, the eigenvalues and eigenvectors of
the Jacobian matrix

J = ∂F
∂E

=
⎛
⎜⎜⎜
⎝

0 1 0
0 0 1
∂E3

∂E0

∂E3

∂E1

∂E3

∂E2

⎞
⎟⎟⎟
⎠
, (14)

are denoted by λk and rk, k = 1,2,3, with λ1 < λ2 < λ3, and we also define
∆k ≜ ∇Eλk ⋅ rk, which is essential to analyze the characteristic structure.

Lemma 3.1. For any E ∈ ΩR,2, we have −1 < λ1 <
E1

E0

< λ3 < 1.

Moreover, the eigenvector of J with respect to the eigenvalue λk is rk =
(1, λk, λ2k)T .
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Lemma 3.2. ∆1 < 0 and ∆3 > 0 hold for any E ∈ ΩR,2. However, ∆2 changes
sign over ΩR,2.

It was proved in [2] that the first and third characteristic fields are genuinely
nonlinear, while the second characteristic field is neither genuinely nonlinear nor
linearly degenerate. This indicates the solution of the Riemann problems may
contain rather complex behavior. However, we would still expect simple char-
acteristic waves in the solution of Riemann problems for first and third waves.
Simple wave solutions of the above Riemann problems are the composition of
one intermediate state connected by rarefaction waves or shock waves. In order
to get full understanding of the system, these waves will be studied respectively
below.

To simplify discussions, we denote

u = E1

E0

, p = E2 −
E2

1

E0

.

Rarefaction waves We first investigate the integral curves given by rarefaction
waves. We take the first characteristic field as an example. Suppose that two states
EL = (EL

0 ,E
L
1 ,E

L
2 )T and ER = (ER

0 ,E
R
1 ,E

R
2 )T are connected by a rarefaction

wave corresponding to the first characteristic field. Take ζ as the parameter such
that Ẽ(0) = EL and Ẽ(ζ∗) = ER, while

Ẽ(ζ) = (Ẽ0(ζ), Ẽ1(ζ), Ẽ2(ζ))
T

(15)

denotes the integral curve in the 3-dimensional phase space. The corresponding
eigenvalues and eigenvectors are denoted as λ̃1(ζ) and r̃1(ζ).

According to the theory of integral curves of rarefaction waves [21, Chapter
13.8.1], there exists a nonzero scalar factor α̃(ζ), such that

Ẽ′(ζ) = α̃(ζ)r̃1(Ẽ(ζ)). (16)

Recalling r̃1 = (1, λ̃1, λ̃21)T , by direct calculation we obtain from (16)

dẼ0(ζ)
dζ

= α̃(ζ), dũ(ζ)
dζ

= α̃(ζ)(λ̃1 − ũ),
dp̃(ζ)

dζ
= α̃(ζ)(λ̃1 − ũ)2. (17)

Combine the entropy condition λ̃1(0) = λL1 < λR1 = λ̃1(ζ∗) with

1

α̃(ζ)
dλ̃1(ζ)

dζ
= 1

α̃(ζ)∇Ẽλ̃1 ⋅
dẼ

dζ
= ∇Ẽλ̃1 ⋅ r̃1 < 0,
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where the last inequality holds because of Lemma 3.2, we could see that α̃(ζ∗)ζ∗ <
0. Also, according to Lemma 3.1 we have λ̃1 < ũ, therefore (17) indicates that

EL
0 > ER

0 , uL < uR, pL > pR.

Analogously, for the third wave, we have

EL
0 < ER

0 , uL < uR, pL < pR. (18)

Shock waves We consider shock waves by taking the first characteristic field
as an example. Suppose EL = (EL

0 ,E
L
1 ,E

L
2 )T and ER = (ER

0 ,E
R
1 ,E

R
2 )T are

connected by a shock corresponding to the first characteristic field, then according
to the Rankine-Hugoniot condition, there exists s1 ∈ R/{0}, such that

ER
1 −EL

1 = s1(ER
0 −EL

0 ),
ER

2 −EL
2 = s1(ER

1 −EL
1 ),

ER
3 −EL

3 = s1(ER
2 −EL

2 ).
(19)

From the first two equations of (19),

s1 =
ER

1 −EL
1

ER
0 −EL

0

= E
R
2 −EL

2

ER
1 −EL

1

. (20)

Direct calculations from the above equalities yield

(ER
0 −EL

0 )(uR − uL) =
(ER

0 −EL
0 )2

ER
0

(s1 − uL),

(ER
0 −EL

0 )(pR − pL) =
1

EL
0 E

R
0

(ER
0 E

L
1 −EL

0 E
R
1 )2 > 0.

(21)

Also, according to the entropy condition and Lemma 3.1,

uL > λLk > s1 > λRk , (22)

indicating (ER
0 −EL

0 )(uR − uL) < 0. Therefore, the signs of uR − uL and pR − pL
are determined by sign of ER

0 −EL
0 .

Next, we consider the sign of ER
0 − EL

0 . Parameterize the Hugoniot curve
as Ẽ(τ) with Ẽ(0) = EL and Ẽ(1) = ER. For any 0 ≤ τ∗ < τ∗ + ε ≤ 1 define
El = Ẽ(τ∗) and Er = Ẽ(τ∗ + ε), then El and Er satisfy the Rankine-Hugoniot
condition (19) and the entropy condition (22), therefore also (21). Assuming ε is
sufficiently small, then according to (19), we have

Er
0 = El

0 + d, Er
1 = El

1 + s1d, Er
2 = El

2 + s21d, Er
3 = El

3 + s31d,
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where ∣d∣ ≪ 1, and λl1 > s1 > λr1. As λ1 is a smooth function of E, Taylor
expansion yields

λr1 − λl1 = λ1(Er) − λ1(El) = d(( ∂λ1
∂E0

)
l

+ ( ∂λ1
∂E1

)
l

s1 + ( ∂λ1
∂E2

)
l

s21) +O(d2).

(23)

According to Lemma 3.2, we have

( ∂λ1
∂E0

)
l

+ ( ∂λ1
∂E1

)
l

λl1 + ( ∂λ1
∂E2

)
l

(λl1)2 = ∆1 < 0. (24)

Notice that ∣d∣ ≪ 1 indicates ∣λr1 − λl1∣ ≪ 1, thus ∣s1 − λl1∣ ≪ 1. Therefore, when
∣d∣ ≪ 1,

( ∂λ1
∂E0

)
l

+ ( ∂λ3
∂E1

)
l

s1 + ( ∂λ1
∂E2

)
l

(s1)2 < 0. (25)

Combining (23) and (25) with entropy condition (22), we obtain

d > 0, Er
0 > El

0, ur < ul, pr > pr. (26)

Notice that (26) holds for any τ∗ ∈ [0,1), and according to the finite covering
theorem, we can obtain the following results for the first characteristic field.

ER
0 > EL

0 , uR < uL, pR > pL. (27)

For the third characteristic field, we analogously have

ER
0 < EL

0 , uR < uL, pR < pL. (28)

Before the end of this subsection, we summarize the discussion on the entropy
condition of two types of waves in the following theorem.

Theorem 3.1. For the B2 moment system, the waves of the first and third families
are elementary, and their types can be determined by the sign of λ − u and the
macroscopic parameters on the both sides of the waves:

4 Numerical Experiments
In this section, we discuss the numerical scheme for the B2 model for spherical
symmetry and perform numerical simulations on some typical examples to verify
its validity. In all subsequent computation we assume c = 1 in equation (8).
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E0 u p

Rarefaction wave
1-wave EL

0 > ER
0 uL < uR 1-wave pL > pR

3-wave EL
0 < ER

0 3-wave pL < pR

Shock wave
1-wave EL

0 < ER
0 uL > uR 1-wave pL < pR

3-wave EL
0 > ER

0 3-wave pL > pR

Table 1: wave structure of one dimension B2 model

4.1 Numerical scheme
We use an equidistant discretization of Ncell cells for the spatial domain [rL, rR],
where 0 ≤ rL < rR. Therefore, the spatial step is ∆r = rR−rL

Ncell
, with grid points

ri = rL + (i − 1/2)∆r, i = 1,⋯,Ncell, and cells [ri−1/2, r1+1/2], i = 1,⋯,Ncell, with
midpoints r1−1/2 = ri − ∆r/2. We denote the approximation of the solution and
the source term in the i-th cell at time step tn as En

i and Cn
i , respectively.

We adopt the splitting scheme described in [21, Chapter 17.6]. Problem (8)

is split into a hyperbolic conservation law,
∂E

∂t
+ ∂F

∂r
= 0, and a simple ODE,

∂E

∂t
= C. The former is solved under the finite volume framework, and the latter

is solved using the backward Euler method. The numerical scheme is formulated
as

E∗
i −En

i

∆t
+
Fi+1/2 −Fi−1/2

∆ri
= 0,

En+1
i −E∗

i

∆t
=Cn+1

i ,

(29)

where E∗
i is the intermediate value in the i-th cell between the time step tn and

tn+1, Fi+1/2 is the numerical flux at r = ri+1/2, and the k-th entry of the source term
Cn+1
i is

Cn+1
k,i = −

(k + 2)En+1
k+1,i − kEn+1

k−1,i
ri

− σn+1t,i E
n+1
k,i + 1 + (−1)k

2k + 2
(σn+1s,i E

n+1
0,i + Sn+1i ).

We compute Fi+1/2 using the Lax-Friedrich flux and solve the nonlinear system re-
sulting from the implicit discretization of the source term by the Newton iteration
method.

The time step is constrained by the CFL condition

∆t = CFL ⋅min
i

∆r

maxk ∣λk(En
i )∣
,

where λk(En
i ) is the k-th characteristic value of the B2 model when the given

moments are En
i . Notice that it is proved in [2] that the characteristic speed of the
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B2 model is not larger than 1. Hence we take ∆t = CFL ⋅∆r, and the CFL number
is chosen to be 0.95.

In our numerical scheme, we also need to specify the values of E1, E2, and E3

on the boundaries, which we derive from the kinetic level. Take the left boundary
as an example. We define the flux vector f̂L ∶= (EL

1 ,E
L
1 ,E

L
3 )T on the left boundary

as
EL
j = ∫

1

0
µjIoutdµ + ∫

0

−1
µj ÎB2dµ, for j = 1,2,3,

where ÎB2 is the ansatz associated with the moment vector from the first spatial
cell on the inner side of the boundary and Iout is the distribution function outside
of the domain depending on ÎB2 and the actual boundary condition of the problem.
For instance, for the vacuum boundary condition,

Iout(t, rL, µ) = 0, µ > 0,

while for the reflective boundary condition,

Iout(t, rL, µ) = ÎB2(t, rL,−µ), µ > 0.

We use the reflective boundary condition on the left when rL = 0. Analogously,
we can give the boundary condition for the right boundary at rR > 0.

4.2 Numerical results
Example 4.1 (Bilateral beams). This example is used to test the ability of the B2

model to deal with anisotropic specific intensity. In this test, the spatial domain is
unbounded (but [0,1] for numerical experiments), σa and σs are set to 0, and the
external source term S = 0. The initial state is taken as

I(0, r, µ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

r2
δ(µ − 1), 0.2 ≤ r ≤ 0.4,

1

r2
δ(µ + 1), 0.7 ≤ r ≤ 0.9,

0, otherwise.

The analytical solution of this problem is

I(t, r, µ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(r − t)2
r2

I(0, r − t,1), µ = 1,

(r + t)2
r2

I(0, r + t,−1), µ = −1.

Therefore, the analytical solutions of E0, E1 and E2 are

E0(t, r) = E2(t, r) =
1

r2
χ[0.2+t,0.4+t](r) +

1

r2
χ[0.7−t,0.9−t](r),

11



E1(t, r) =
1

r2
χ[0.2+t,0.4+t](r) −

1

r2
χ[0.7−t,0.9−t](r),

where χA(r) is the indicator function, defined as

χA(r) = {
1, r ∈ A,
0, r ∉ A.

This problem describes two shells. The inner shell spreads out while the outer
shell contracts to the center. The specific intensities of these two shells are delta
functions. When the two shells intersect, the specific intensity is the sum of two
delta functions δ(µ − 1) and δ(µ + 1). This kind of highly anisotropic specific
intensity is difficult to approximate by traditional methods [11].

However, when the actual distribution function is the sum of two delta func-
tions,

I = C1δ(µ − 1) +C2δ(µ + 1) (30)

where C1 and C2 are constants. The moments of the distribution function in (30)
are E0 = E2 = C1 +C2 and E1 = C1 −C2. According to the closure (12), we have
that the moment closure given by the B2 model is

E3 = C1 −C2,

which is the third moment of the actual distribution function. Therefore, the B2

model can deal with this kind of highly anisotropic distribution function.
We simulate this problem withNcell = 10000 cells until tend =0.1,0.2,0.25,0.3,0.4,

and the results of E0, E1, and E2 are shown in Figure 1, 2, and 3, respectively.
Figure 1 demonstrates that the B2 model can obtain an accurate solution of

E0 at all times. When t = 0 and 0.1, the two waves are independent; when t =
0.2,0.25, and 0.3, the two waves intersect each other; when t = 0.4, the two
waves separate. Also, according to the results in Figure 2 and Figure 3, the B2

solutions give first and second order moments which are almost identical with the
exact solution. These results indicate that the B2 model can describe this highly
anisotropic specific intensity.

We use the PN method with N = 10, 30, and 70 to do the same simulations,
and the results of E0 at t = 0.1 are presented in Figure 4. The PN solution of
N = 10 and 30 are oscillatory and contains negative values for E0, showing that
the PN method can not approximate this kind of beam-like distribution well. As
N gets larger, the oscillation decreases in magnitude. However, the PN method
requires to take as many as N = 70 to get a sufficiently satisfying result.

Example 4.2 (Laser beams propagating into vacuum). We use the same setup as
Example 4.1, where the opacities σa = σs = 0, and the external source term S = 0.
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(b) solution of E0 at t = 0.1.
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(c) solution of E0 at t = 0.2.
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(d) solution of E0 at t = 0.25.
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(e) solution of E0 at t = 0.3.
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(f) solution of E0 at t = 0.4.

Figure 1: Numerical results of the B2 model of E0 for bilateral beams
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(a) solution of E1 at t = 0.
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(b) solution of E1 at t = 0.1.
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(c) solution of E1 at t = 0.2.
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(d) solution of E1 at t = 0.25.
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(e) solution of E1 at t = 0.3.
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(f) solution of E1 at t = 0.4.

Figure 2: Numerical results of the B2 model of E1 for bilateral beams
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(b) solution of E2 at t = 0.1.
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(c) solution of E2 at t = 0.2.
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(d) solution of E2 at t = 0.25.
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(e) solution of E2 at t = 0.3.
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(f) solution of E2 at t = 0.4.

Figure 3: Numerical results of the B2 model of E2 for the bilateral beams
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Figure 4: Numerical results of the PN method for the bilateral beams
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The domain is unbounded (but [0,10] for numerical experiments). The initial
state is taken as

I(0, r, µ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

r2
δ(µ − (r − 5)), 4 ≤ r ≤ 6,

0, otherwise.

The analytical solution can be obtained in the same way as in Example 4.1.
Direct calculation shows the exact solution of this example to be

I(t, r, µ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

r2(1 + t)δ(µ −
r − 5

1 + t ), 4 − t ≤ r ≤ 6 + t,

0, otherwise.

In this problem, every point corresponds to a Dirac delta function, which means
that we need to approximate δ(µ − µ0) for any µ0 ∈ [−1,1], because that at

r = µ0+5, 4 ≤ µ0 ≤ 6, the initial state is
1

r2
δ(µ−µ0). This is difficult for commonly

used numerical method, such as the discrete-ordinates (SN ) and the spherical har-
monics (PN ). However, consider the actual distribution function I = δ(µ − µ0),
we have that

E0 = 1, E1 = µ0, E2 = µ2
0.

According to (12), we can obtain the moment closure given by the B2 model:

E3 =
E1(E2

2 + 2E2
1 − 3E0E2)

2E2
1 −E0E2 −E2

0

= µ3
0,

which is the third moment of the actual distribution function. Therefore, the B2

model can approximate the Dirac delta function δ(µ − µ0) for any µ ∈ [−1,1].
We use Ncell = 100000 cells to simulate this problem until t = 0.5, and the

results of E0, E1, and E2 are shown in Figure 5. Results in Figure 5 show that
the solutions of all the three moments considered in the B2 model agree with the
reference solution, demonstrating the effectiveness of the B2 model in approxi-
mating this test case where the distribution function contain the Dirac function
δ(µ − µ0). Moreover, we use the PN method with N = 10, 30, and 50 to do the
same simulations, and the results of E0 are shown in Figure 6. There are many
oscillations in the results of the PN model, and as many as N = 50 are required
in order to get a satisfying result. Therefore, the PN model is not effective for
describing this kind of strongly anisotropic distribution.

Example 4.3 (Homogeneous sphere). This example consists of a static homoge-
neous and isothermal sphere of radius R that radiates into vacuum. The radiation

15



0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

0.06

(a) Solution of E0

0 2 4 6 8 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b) Solution of
E1

E0

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Solution of
E2

E0

Figure 5: Numerical results of the B2 method for laser beams propagating into
vacuum
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Figure 6: Numerical results of the PN method for laser beams propagating into
vacuum
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interacts with the background matter only via isotropic absorption and thermal
emission inside the sphere.

µ
∂I

∂r
+ 1 − µ2

r

∂I

∂µ
= {

σa(B − I), r ≤ R,
0, r > R. (31)

The sphere radius is R = 1 and the spatial domain is unbounded (but [0,5] for
numerical experiments). Inside the sphere the absorption and scattering opacities
are chosen to be σa = 250 and σs = 0, respectively, and the emissivityB = 1; while
in the vacuum at r > R, we have σa = σs = B = 0. The boundary condition at
r = 5 is an infinite boundary condition, and the initial state is I(µ) = 0.5 × 10−7

everywhere.

As this test case contains a sharp transition from the diffusive regime inside
the sphere to the free-streaming regime outside, it is frequently employed to test
radiative transfer codes [29, 30, 1].

The steady-state transport equation can be solved analytically [30]:

I(r, µ) = B(1 − e−σas(r,µ)), (32)

where

s(r, µ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

rµ +Rg(r, µ) if r ≤ R, − 1 ≤ µ ≤ 1,

2Rg(r, µ) if r > R,
√

1 − (R
r
)
2

≤ µ ≤ 1,

0, otherwise

(33)

and

g(r, µ) =
√

1 − ( r
R

)
2

(1 − µ2). (34)

We use Ncell = 10000 cells to calculate this example and the results of E0, E1,
and E2 of the B2 model are shown in Figure 7. The results of the P2, P6, and P10

model are shown in Figure 8. The values of E1

E0
, E2

E0
, and E2

E0
− (E1

E0
)2 in Figure 7

gives some indication as to the characteristics of the distribution function of this
problem. First, we see that the distribution function of this numerical solution
lies in the realizable region for any r. Second, when r ≤ R, E1

E0
= 0 and E2

E0
= 1

3 .
This indicates that the distribution function I(r, µ) = E0

2 , which is isotropic; when
r > R, the results show that the distribution function gets more anisotropic when
r gets larger. When r is large, according to the result of E1

E0
and E2

E0
− E2

1

E0
, we know

that the distribution function is close to the boundary of the realizable region. The
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Figure 7: Numerical results of the B2 model for homogeneous sphere example
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Figure 8: Numerical results of the PN model for homogeneous sphere example
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results ofB2 model in Figure 7 all agree well with the analytical solution, showing
that the B2 model is valid to simulate both isotropic and anisotropic distribution
functions.

Furthermore, notice that when r < R, because σ = 250 ≫ 1, the distribution
function of the analytical solution is close to a constant. However, when r ≥ R,
the distribution function itself has a discontinuity with respect to µ. Therefore,
this problem not only has a discontinuity at the sphere with respect to spatial
variable r, but also has a discontinuity with respect to velocity related variable µ.
Actually, it is this discontinuity which leads to the anisotropy of the distribution
function. This phenomenon, which is often found in many practical applications,
is a challenge for numerical simulations [1, 30]. However, the results of the B2

model show that the B2 model can handle the discontinuity well. On the other
hand, according to the results of the PN model in Figure 8, the PN model can not
handle this discontinuity, and we need a relative large order to obtain a satisfying
result.

Example 4.4 (Static scattering atomsphere). This example is similar to test cases
considered in [14, 1]. Consider the pure scattering steady-state radiative transfer
equation

µ
∂I

∂r
+ 1 − µ2

r

∂I

∂µ
= −σsI +

σs
2 ∫

1

−1
I(µ)dµ. (35)

where the computational region is r ∈ [0,R], σs = r−n with n > 1. A vacuum
boundary condition is prescribed at the right boundary. In addition, a point source
is located at the origin, which emits L units of energy per unit time. This is the
simplest spherical analogue of the classical Milne problem in the plane-parallel
geometry.

The analytical result of this problem was studied in [14], where the researchers
show the asymptotic behavior of E0 when r is sufficiently small and r is suffi-
ciently large. The tendency of E0 can be formulated as

E0 ∝ { r
−(n+1), r ≪ 1;

r−2, 1 ≪ r ≤ R.
(36)

We perform a set of simulations with L = 1, R = 1 and 100, and n = 3
2 , 2,

and 3. When R = 1, Ncell = 10000 cells is used, and when R = 100, we use
Ncelll = 100000 cells. In Figure 9 we show the results of E0 and the comparison
with lines to determine the slopes. The numerical result for E0 shown in Figure 9
is with the logarithm scale. Notice that C, C1, and C2 can be different in different
subfigures. According to the results for different choices of n in Figure 9, we
know that the results of the B2 model is consistent with the asymptotic analysis in
(36).

19



-1 -0.8 -0.6 -0.4 -0.2 0
-4.5

-4

-3.5

-3

-2.5

-2

(a) solution of E0 when n =
1.5,R = 1

-1 -0.8 -0.6 -0.4 -0.2 0

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

(b) solution of E0 when n =
2,R = 1

-1 -0.8 -0.6 -0.4 -0.2 0

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

(c) solution of E0 when n =
3,R = 1

-1 -0.5 0 0.5 1 1.5 2
-8

-7

-6

-5

-4

-3

-2

-1

(d) solution of E0 when n =
1.5,R = 100

-1 -0.5 0 0.5 1 1.5 2
-7

-6

-5

-4

-3

-2

-1

0

1

(e) solution of E0 when n =
2,R = 100

-1 -0.5 0 0.5 1 1.5 2
-6

-5

-4

-3

-2

-1

0

1

2

(f) solution of E0 when n =
3,R = 100

Figure 9: Numerical results for static scattering atomsphere.

Notice that in this example, E0 tends to infinity when the radius r tends to 0.

This means that in the geometry source term
1 − µ2

r

∂I

∂µ
is extremely stiff, which is

a challenge in numerical simulations. However, the B2 model yields correct result
with a CFL number equals to 0.95. Therefore, theB2 model and the corresponding
numerical scheme we adopt are valid and robust to simulate the RTE.

5 Conclusion
We extended the B2 model for the radiative transfer equation in slab geometry,
which was studied in [2], to the spherically symmetric case. The global hyper-
bolicity and realizability of the B2 model can be verified, and its characteristic
structure was analyzed in detail. One of the main advantages of the B2 model
is that its ansatz could capture highly anisotropic distribution functions, while at
the same time it has explicit closing relationship. In our test cases where there
are strongly peaked or discontinuous distribution functions the B2 model shows
better performance than the Pn model, displaying its potential to approximate the
RTE accurately and inexpensively. The next step is to extend the model to higher
order.
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