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Abstract

We used a collocation method in refinable spline space to solve

a linear dynamical system having fractional derivative in time. The

method takes advantage of an explicit derivation rule for the B-spline

basis that allows us to efficiently evaluate the collocation matrices ap-

pearing in the method. We proof the convergence of the method. Some

numerical results are shown.
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1 Introduction

In recent years fractional differential models were used to describe a great va-
riety of physical phenomena, such as the anomalous diffusion in biological tis-
sues, the viscoelastic properties of smart materials, the growth of population
in dynamical systems (see, [8, 20, 22] and references therein). Even if there
is a great effort in developing the theory of fractional calculus [5, 13, 19, 20],
the analytical solution of fractional differential problems can be obtained in a
very few cases. This is why the literature on numerical methods to solve this
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kind of problems is growing rapidly (see, [2, 11] and the detailed bibliography
in the more recent papers [10, 17]).
In [15] two of the authors introduced an efficient collocation method to numer-
ically solve fractional differential problems. In the method the approximating
function is assumed to belong to a refinable space and its expression is de-
termined by solving the differential problem in a set of collocation points.
Thus, the method is both a projection method and a collocation method and
the nonlocal behavior of the fractional derivative can easily be taken into
account.
In the present paper we used this method to solve a linear dynamical system
having fractional derivative in time. We assume the approximating function
belongs to refinable spaces generated by the polynomial splines and we take
advantage of an explicit derivation rule for the B-spline basis that allows us
to efficiently evaluate the collocation matrix.
The paper is organized as follows. In Section 2 we recall the definition of
the Caputo fractional derivative and describe the fractional dynamical sys-
tem we are interested in. We give also its analytical solution in terms of the
matrix Mittag-Leffler function. In Section 3 we describe the B-spline basis
we used to construct the approximate solution to the differential system and
give the explicit expression of the fractional derivatives of the basis functions.
In Section 4 we analyze the refinability properties of the B-spline basis. The
collocation method is described in Section 5 where its convergence is also
proved. Finally, some numerical tests are provided in Section 6 while some
conclusions are drawn in Section 7.

2 Fractional dynamical systems

Let X(t) : R → R
m be a real-valued vector function, X0 ∈ R

m be a real
vector and A ∈ Rm×m be a real matrix. We consider the following linear
dynamical system:







Dγ
t X(t) = AX(t) , t > 0 , 0 < γ < 1 ,

X(0) = X0 ,
(2.1)

having time derivative of fractional, i.e. noninteger, order γ. In this context,
the operator Dγ

t denotes the Caputo fractional derivative with respect to the
time t. For a sufficiently smooth vector function X(t) = [x1(t), x2(t), . . . , xm(t)]

T ,
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the Caputo derivative is defined as

Dγ
t X(t) :=

[

Dγ
t x1(t), D

γ
t x2(t), . . . , D

γ
t xm(t)

]T
, (2.2)

where

Dγ
t x(t) :=

(

J (k−γ)x(k)
)

(t) , k − 1 < γ < k , k ∈ N , t > 0 , (2.3)

and

J (γ)x(t) :=
1

Γ(γ)

∫ t

0

x(τ) (t− τ)γ−1 dτ , (2.4)

is the Riemann-Liouville integral operator. Here, Γ(γ) denotes the Euler’s
gamma function. For details on fractional calculus see, for instance, [5, 8,
13, 20].

The existence of a unique solution to (2.1) was proved, for instance, in
[5, §7.1]. A detailed analysis of positive linear systems of type (2.1) and of
their properties can be found in [7] where the analytical solution in terms of
the Mittag-Leffler function is obtained by the Laplace transform. Its explicit
expression is

X(t) = Eγ,1(t
γ, A)X0 , (2.5)

where

Eγ,β(z, A) =
∑

k≥0

(zA)k

Γ(γk + β)
, z ∈ C , A ∈ R

m×m , (2.6)

is the matrix Mittag-Leffler function. We observe that the evaluation of
Eγ,β(z, A) is rather cumbersome (cf. [6]). An alternative expression of the
analytical solution not involving the matrix Mittag-Leffler function can be
found in [5, §7.1].

3 The B-spline basis and its fractional deriva-

tives

In this section we describe the polynomial B-spline basis we will use to ap-
proximate the solution to Equation (2.1) and give the analytical expression
of its fractional derivative.

The classical cardinal B-splines are piecewise polynomials of integer de-
gree having breakpoints on integer knots (see [3, 21] for details). For our
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porposes, we define the cardinal B-spline through the truncated power func-
tion

Tn(t) :=
(

max(0, t)
)n
, n ∈ N ∪ 0 , (3.1)

and the backward finite difference operator

∆n f(t) :=

n
∑

ℓ=0

(

n

ℓ

)

(−1)lf(t− ℓ) , n ∈ N . (3.2)

Then, the cardinal B-spline of integer degree n ≥ 0 is defined as

Bn(t) :=
1

n!
∆n+1Tn(t), n ∈ N ∪ 0 . (3.3)

The cardinal B-spline Bn is a piecewise polynomial of degree n with break-
points on the integers, compactly supported on [0, n + 1] and belonging to
Cn−1.
On the semi-finite interval [0,∞) the integer translates

Bn = {Bn(t− ℓ),−n ≤ ℓ} , t ∈ [0,∞) , (3.4)

form a function basis for the spline space so that any spline function s can
be represented as

s (t) =
∑

ℓ≥−n

ck Bn(t− ℓ). (3.5)

As a consequence, the fractional derivative of s can be evaluated as

Dγ
t s (t) =

∑

ℓ≥−n

ck D
γBn(t− ℓ) , k − 1 < γ < k, 1 ≤ k ≤ n− 1. (3.6)

Thus, to compute the fractional derivatives of s we need the fractional
derivatives of the functions belonging to the B-spline basis Bn.
Let us denote by Bn,ℓ(t) the ℓ-translate of Bn, i.e.

Bn,ℓ(t) = Bn(t− ℓ) , ℓ ≥ −n .

First of all, we notice that when ℓ ≥ 0 the functions Bn,ℓ are interior functions
having support [ℓ, ℓ+n+1] all contained in [0,∞). Their fractional derivative
can be evaluated by the differentiation rule

Dγ
t Bn(t) =

1

Γ(n− γ + 1)
∆n+1Tn−γ(t) , (3.7)
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where
Tγ(t) :=

(

max(0, t)
)γ
, γ ≥ 0, (3.8)

is the fractional truncated power function [23]. From (3.7) it follows that
the fractional derivative of a polynomial B-spline is a fractional spline, i.e. a
piecewice polynomial of noninteger degree. Details on fractional splines can
be found in [23].
For −n ≤ ℓ ≤ −1, the functions Bn,ℓ are left edge functions having support
[0, n + ℓ + 1]. Their fractional derivative can be explicitly evaluated using
definition (2.3) and the differentiation rule (3.7) as the following theorem
shows.

Theorem 3.1. For 0 < γ < 1, the fractional derivative of the B-spline basis
functions Bn,ℓ is given by

Dγ
t Bn,ℓ(t) =

1

Γ(n− γ + 1)
∆n+1Tn−γ(t− ℓ) , ℓ ≥ 0 , (3.9)

and

Dγ
t Bn,ℓ(t) =

∆n+1Tn−γ(t− ℓ)

Γ(n+ 1− γ)
−

1

Γ(1− γ)

∫ −ℓ

0

B′
n(τ)

(t− ℓ− τ)γ
dτ , −n ≤ ℓ ≤ −1 .

(3.10)

Proof. The derivation rule (3.9) immediately follows from (3.7). Now, con-
sider the case −n ≤ ℓ ≤ −1. From definition (2.3) one has

Dγ
t Bn,ℓ(t) =

1

Γ(1− γ)

∫ t

0

B′
n,ℓ(τ)

(t− τ)γ
dτ =

=
1

Γ(1− γ)

(
∫ t

ℓ

B′
n,ℓ(τ)

(t− τ)γ
dτ −

∫ 0

ℓ

B′
n,ℓ(τ)

(t− τ)γ
dτ

)

.

The first integral is the fractional derivative of the ℓ-translate of Bn and can
be evaluated by the differentiation rule (3.9).
As for the second integral, we get

1

Γ(1− γ)

∫ 0

ℓ

B′
n,ℓ(τ)

(t− τ)γ
dτ =

1

Γ(1− γ)

∫ 0

ℓ

B′
n(τ − ℓ)

(t− τ)γ
dτ =

1

Γ(1− γ)

∫ −ℓ

0

B′
n(τ)

(t− ℓ− τ)γ
dτ

so concluding the proof.
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In the following theorem we explicitly evaluate the integral appearing in the
left hand side of (3.10).

Theorem 3.2. For −n ≤ ℓ ≤ −1 the explicitly expression of the integral in
(3.10) is

1

Γ(1− γ)

∫ −ℓ

0

B′
n(τ)

(t− ℓ− τ)γ
dτ =

1

Γ(n+ 1− γ)

−ℓ−1
∑

r=0

(−1)r
(

n+ 1

r

)(

(t− ℓ− r)(n−γ)+

t1−γ
n−1
∑

p=0

(−1)n−p(−ℓ− r)n−1−p(t− ℓ− r)p

(n− 1− p)!

n−1−p
∏

s=1

(γ − s)

)

.

Proof. We recall that B′
n(t) writes:

B′
n(t) =

1

n!
∆n+1T ′

n(t) =
1

(n− 1)!

n+1
∑

r=0

(−1)r
(

n + 1

r

)

Tn−1(t− r) .

Substituting the expression of B′
n in the integral in the left hand side of

(3.10), we obtain

1

Γ(1− γ)(n− 1)!

n+1
∑

r=0

(−1)r
(

n + 1

r

)
∫ −ℓ

0

Tn−1(τ − r)

(t− ℓ− τ)γ
dτ =

1

Γ(1− γ)(n− 1)!

−ℓ−1
∑

r=0

(−1)r
(

n + 1

r

)
∫ −ℓ−r

0

τn−1

(t− ℓ− r − τ)γ
dτ .

By a direct computation we get
∫ −ℓ

0

τn−1

(t− ℓ− τ)γ
dτ =

(n− 1)!
∏n

s=1(γ − s)
(t− ℓ− τ)(1−γ)

n−1
∑

p=0

(ℓ− t)pτn−1−p

(n− 1− p)!

n−1−p
∏

s=1

(γ − s)

∣

∣

∣

∣

−ℓ

τ=0

=

(n− 1)!
∏n

s=1(γ − s)

[

(t− ℓ)(n−γ) + t1−γ
n−1
∑

p=0

(−1)n−p(−ℓ)n−1−p(t− ℓ)p

(n− 1− p)!

n−1−p
∏

s=1

(γ − s)

]
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and the claim follows.

4 Multiresolution Analysis on L2[0,∞)

The B-spline basis Bn generates a multiresolution analysis on the semi-
infinite interval [0,+∞) [4]. This means that the sequence of subspaces
{Vj ⊂ L2[0,+∞)} defined as

Vj = closL2[0,∞) {ϕjℓ(t) , ℓ ≥ −n} , j ∈ Z , t ≥ 0 ,

where
ϕjℓ(t) := 2j/2Bn(2

j t− ℓ) ,

fulfills the following properties:

(i) Vj ⊂ Vj+1, j ∈ Z; (ii) ∪j∈ZVj = L2[0,+∞);

(iii)
⋂

j∈Z Vj = {0}; (iv) f(t) ∈ Vj ↔ f(2t) ∈ Vj+1, j ∈ Z;

(v) there exists a L2[0,+∞)-stable basis in V0.

Thus, any function f ∈ Vj can be represented as

f(t) =
∑

ℓ≥−n

cjℓ ϕjℓ(t) , (4.1)

where {cjℓ} ∈ ℓ2(Z). Once again, the basis functions ϕjℓ with −n ≤ ℓ ≤ −1
are the left egde functions, while for ℓ ≥ 0 ϕjℓ are integer translates of Bn(2

j·).
The computation of the fractional derivatives of f requires the evaluation of
the fractional derivatives of ϕjℓ. This can be done using Theorem 3.1 and
the following lemma.

Lemma 4.1. The Caputo derivative of order γ of the 2j-dilate of a function
f(t) is given by:

Dγ
t f(2

jt) = 2γjDγ
2jtf(2

jt) , k − 1 < γ < k , k ∈ N .

Proof. Let F (t) = f(2jt), then F (m)(t) = 2jmf (m)(2jt), m ∈ N. By definition

Dγ
t F (t) =

1

Γ(k − γ)

∫ t

0

F (k)(τ)

(t− τ)γ−k+1
dτ

=
1

Γ(k − γ)
2jk

∫ t

0

f (k)(2jτ)

(t− τ)γ−k+1
dτ
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By the change of variables 2jτ → τ , we get

Dγ
t F (t) =

1

Γ(k − γ)
2j(k−1)

∫ 2jt

0

f (k)(τ)

(t− 2−jτ)(γ−k+1)
dτ

=
1

Γ(k − γ)

2j(k−1)

2−j(γ−k+1)

∫ 2jt

0

f (k)(τ)

(2jt− τ)(γ−k+1)
dτ

and the claim follows.

In the next section we will describe how to apply the collocation method
introduced in [15] to numerically solve the differential problem (2.1) in the
refinable spline spaces.

5 The fractional collocation method

We look for an approximating vector function

Xj(t) =
∑

ℓ≥−n

Cjℓ ϕjℓ(t) ∈ Vj , Cjℓ ∈ R
m, (5.1)

that solves the differential problem (2.1) on a set of collocation points. We
choose as collocation points the dyadic nodes in which ϕjk can be efficiently
evaluated through well-known recursive algorithms [12].
Let I = [0, T ] be a finite interval. Without loss of generality we assume
T ∈ N. Since ϕjk has compact support, for t ∈ I the sum in (5.1) reduces to
a finite sum:

Xj(t) =
2jT−1
∑

ℓ=−n

Cjℓ ϕjℓ(t), t ∈ I. (5.2)

Let us denote by {tp = p/2s, 0 ≤ p ≤ 2sT} the dyadic collocation points in
the interval I. Substituting (5.2) in (2.1) evaluated on the collocation points
gives







Dγ
t Xj(tp) = AXj(tp), 1 ≤ p ≤ 2sT,

Xj(0) = X0.
(5.3)

This is a linear algebraic system that can be written in matrix form as follows






(Im ⊗Gjs − A⊗ Bjs) Γjs = 0 ,

Im ⊗ Φjs(0) Γjs = X0 ,
(5.4)
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where Im is the identity matrix of order m,

Gjs =
[

Dγ
t ϕjℓ(tp), 0 < p ≤ 2sT,−n ≤ ℓ ≤ 2jT − 1

]

and
Bjs =

[

ϕjℓ(tp), 0 < p ≤ 2sT,−n ≤ ℓ ≤ 2jT − 1
]

are the collocation matrices of the refinable basis,

Φjs(0) =
[

ϕjℓ(0),−n ≤ ℓ ≤ 2jT − 1
]

,

and
Γjs =

[

Cjℓ,−n ≤ ℓ ≤ 2jT − 1
]T

is the unknown vector. We notice that the linear system (5.4) has m(2sT +1)
equations and m(2jT +n) unknowns. To guarantee the existence of a unique
solution we set 2sT + 1 ≥ 2jT + n.

Theorem 5.1. For 2sT + 1 ≥ 2jT + n the linear system (5.4) has a unique
solution.

Proof. Using definitions (2.2)-(2.4) the differential problem (2.1) can be writ-
ten as a system of integral equations:

Z(t) = AJ (γ) Z(t) +X0, (5.5)

where Z(t) = [z1(t) = Dγ
t x1(t), z2(t) = Dγ

t x2(t), . . . , zm(t) = Dγ
t xm(t)]

T and
J (γ) Z = [J (γ) z1(t), . . . , J

(γ)zm(t)]
T . The system above is equivalent to the

differential problem (2.1) (cf. [9]) and has a unique solution [24] so that the
associated integral operator is invertible. Thus, the linear system (5.4) has
a unique solution, too (cf. [1]).

Finally, we proof the convergence of the collocation method (5.3).

Theorem 5.2. The collocation method is convergent, i.e.

lim
j→∞

‖X(t)−Xj(t)‖∞ = 0,

where ‖X(t)‖∞ = max1≤i≤m

(

maxt∈[0,T ] |xi(t)|
)

. Moreover, the approxima-
tion order is γ, i.e.

‖X(t)−Xj(t)‖∞ ≤ κ 2−jγ, 0 < γ < 1,

where κ is a constant independent from j.
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Proof. Since the collocation method can be used also to approximate the
solution to the system (5.5), the equivalence implies that the approximation
error ‖X −Xj‖∞ is the same as the approximation error ‖Z − Zj‖∞ [1, 9].
Now, Zj is a projection operator in the spline space so that the convergence
is guarantee with approximation order at least γ in the case when Z is suffi-
ciently smooth [3].

We notice that since the equality 2sT + 1 = 2jT + n can be satisfied just
in a few special cases, in practice we choose s and j so that 2sT+1 > 2jT+n.
Thus, the system (5.4) results is an overdetermined linear system that can
be solved in the least squares sense.

6 Numerical results

In this section we use the proposed method to solve some test problems. In
the tests we used the splines of degree n = 3 and n = 4 as approximat-
ing functions and set s = j + 1. The functions of the cubic B-spline basis
and their fractional derivatives are shown in Figures 1-2. The ordinary first
derivative is also displayed.
To check the accuracy of the approximations obtained by the proposed method,
we evaluated the componentwise L∞-norm of the error Ej(t) = X(t)−Xj(t),
i.e.

‖Ei,j(t)‖∞ = max
t∈[0,T ]

|xi(t)− xi,j(t)| , 1 ≤ i ≤ m.

Moreover, we evaluated the numerical approximation order ργ,n(j) defined
as

ργ,n(j) = log

(

‖Ei,j(t)‖∞
‖Ei,j+1(t)‖∞

)

1

log(2)
.

We notice that the matrix Mittag-Leffler function appearing in the analytical
solution was evaluated using the procedure proposed in [6].

6.1 Example 1

First of all, we tested the accuracy of the collocation method by solving the
following simple fractional differential equation (cf. [5, pg. 137]):







Dγx(t) = −x(t) + t2 + 2
t2−γ

Γ(3− γ)
, t > 0, 0 < γ < 1,

x(0) = 0.
(6.1)
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Figure 1: The cubic B-spline basis (left panel) and the ordinary first deriva-
tive of the first four basis functions (right panel). The three boundary func-
tions and the first interior function are displayed as solid lines.

whose exact solution is x(t) = t2. In this case the cubic spline approximation
is exact. We numerically solve Equation (6.1) in the interval I = [0, 1] for
γ = 0.10, 0.25, 0.50, 0.75. The table below lists the L∞-norm of the error
Ej(t) = x(t)− xj(t) obtained by the collocation method when j = 7:

γ ‖x− xj‖∞
0.10 2.15e-16
0.25 3.16e-16
0.50 3.77e-16
0.75 6.42e-16

As expected, the error is in the order of the machine precision.

6.2 Example 2

In the second test we solved the fractional dynamical system























Dγx(t) = −3
2
x(t) + 1

2
y(t),

t > 0 , 0 < γ < 1 .
Dγy(t) = 1

2
x(t)− 3

2
y(t),

x(0) = 1 , y(0) = 2 .

(6.2)
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Figure 2: The fractional derivative of the boundary functions and of the first
interior function for γ = 0.10 (left top panel), 0.25 (right top panel), 0.50
(left bottom panel), 0.75 (right bottom panel).

The exact solution is [5, §7.1]

x(t) = 3
2
Eγ(−tγ)− 1

2
Eγ(−2tγ) ,

y(t) = 3
2
Eγ(−tγ) + 1

2
Eγ(−2tγ) ,

where

Eγ(t) =
∑

k≥0

tk

Γ(γk + 1)
,

is the one-parameter Mittag-Leffler function. We notice that the matrix

A =
1

2

[

−3 1
1 −3

]

associated with the dynamical system (6.2) has negative eigenvalues, so that
the stability of the dynamical system is guaranteed [7].

12



We solved the differential problem (6.2) by the collocation method described
in Section 5 for γ = 0.10, 0.25, 0.50, 0.75, and for different values of j. In
Figures 3-6 the numerical solution and the approximation error are displayed
in the case of the cubic spline approximation and for j = 8. The numeri-
cal solution and the error obtained when solving the classical problem with
integer first derivative are displayed in Figure 7. The plots show that the
proposed method gives a good accuracy that increases as γ increases, i.e. as
the smoothness of the analytical solution increases. In Figure 8 the numerical
approximation order ργ,n(j) is displayed as a function of j for different values
of γ and n = 3 and n = 4. The plots show that the numerical approximation
order is in accordance with the theoretical one. Moreover, the error is lower
for the spline of degree 4. Finally, in Figure 9 the numerical convergence
order ργ,n(j) for n = 3 and n = 4 is displayed in the case of ordinary first
derivative. We observe that in this case the theoretical convergence order is
n+ 1 (cf. [3]).
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j
(t)|
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100

|y(t)-y
j
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Figure 3: The numerical solutions xj , yj, for j = 8 (left panels) and the
approximation error (right panels) obtained with the cubic spline when γ =
0.10.
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Figure 4: The numerical solutions xj , yj, for j = 8 (left panels) and the
approximation error (right panels) obtained with the cubic spline when γ =
0.25.

7 Conclusions

We used a collocation method based on an interpolating projection operator
on refinable polynomial spline spaces to approximate the solution of a linear
fractional dynamical system. We provide an explicit formula that allows us
to evaluate the fractional derivatives of the approximating function in an
accurate and easy way. The method can be used to solve several differential
problems of fractional order and, in particular, nonlinear problems [17, 18]
or boundary value problems [16]. We notice that higher approximation order
methods can be obtained by using different types of collocation points as in
[1, 9, 14]. This will be the subject of a forthcoming paper.
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Figure 5: The numerical solutions xj , yj, for j = 8 (left panels) and the
approximation error (right panels) obtained with the cubic spline when γ =
0.50.
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