
ar
X

iv
:2

00
5.

00
85

2v
2 

 [
m

at
h.

A
P]

  1
5 

M
ay

 2
02

0

Unconditional finite amplitude stability of a viscoelastic fluid in a

mechanically isolated vessel with spatially non-uniform wall

temperature

Mark Dostalı́ka,1, Vı́t Průšaa,2,, Judith Steinb
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Abstract

We investigate finite amplitude stability of spatially inhomogeneous steady state of an incom-

pressible viscoelastic fluid which occupies a mechanically isolated vessel with walls kept at

spatially non-uniform temperature. For a wide class of incompressible viscoelastic models in-

cluding the Oldroyd-B model, the Giesekus model, the FENE-P model, the Johnson–Segalman

model, and the Phan–Thien–Tanner model we prove that the steady state is stable subject to any

finite perturbation.
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1. Introduction

We are interested in the long time behaviour of a fluid occupying a vessel that is mechanically

isolated and that is allowed to exchange thermal energy with the surroundings. (The temperature

boundary condition is an inhomogeneous Dirichlet boundary condition.) If no external forces

are present, then one expects that the fluid in the vessel comes to the rest state as time goes to

infinity. Moreover, the stability is expected to be unconditional, that is the rest state should be

attained irrespective of the initial state of the fluid. The question is whether one can prove that

such a long time behaviour is indeed implied by the corresponding governing equations.

Since the walls of the vessel are kept at a given spatially nonuniform temperature, the corre-

sponding steady state is a spatially inhomogeneous solution to the governing equations, and the

entropy is being produced (at a constant rate) at the steady state. Consequently, from the ther-

modynamic perspective the steady state is a non-equilibrium (entropy producing) steady state
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of a thermodynamically open system. This makes the analysis of the long time behaviour diffi-

cult as we cannot use methods developed for thermodynamically isolated systems or for systems

that are immersed in a thermal bath (spatially homogeneous temperature boundary condition),

see Coleman [1], Gurtin [2, 3] and later developments.

Recently, the issue of application of thermodynamically based methods in the stability ana-

lysis of spatially inhomogeneous steady states has been discussed by Bulı́ček et al. [4], where

the authors have also proposed a systematic thermodynamically based approach to the stability

problem. The approach proposed by Bulı́ček et al. [4] has been then used by Dostalı́k et al. [5],

who have investigated the same stability problem as in the current contribution, but who have

considered the Navier–Stokes–Fourier fluid (incompressible viscous heat conducting fluid).

Using minimal assumptions concerning the behaviour of the dissipative heating term in the

evolution equation for temperature, Dostalı́k et al. [5] have shown that the corresponding spatially

inhomogenoeus steady state is indeed unconditionally stable. In the present contribution we

follow the approach by Dostalı́k et al. [5], and we generalise the findings by Dostalı́k et al. [5] to

include a variety of viscoelastic models.

The analysis by Dostalı́k et al. [5] has been based on two qualitative properties of the Navier–

Stokes–Fourier model. First, the dissipative heating term in the evolution equation for the tem-

perature must be a positive and integrable quantity. With a minimal effort we can show that this

property is valid also for the considered viscoelastic rate-type models. Second, a norm of the

velocity field must decay to zero at an exponential rate. This property is more complicated to

show for the viscoelastic rate-type models, and its proof constitutes the main body of the current

contribution. (In fact only show that the norm of the velocity field is bounded from above by an

exponentially decaying function, but this is sufficient for the stability.) Once we show that the

essential qualitative properties are preserved for viscoelastic rate-type fluids, it is straightforward

to follow Dostalı́k et al. [5], and show the decay of the temperature perturbations.

In particular, we show that stability of the spatially inhomogeneous non-equilibrium steady

state is indeed implied by the corresponding governing equations for the standard Oldroyd-B

model, see Oldroyd [6], the Giesekus model, see Giesekus [7], the FENE-P model, see Bird

et al. [8] and Keunings [9], the Johnson–Segalman model, see Johnson and Segalman [10], and

the Phan–Thien–Tanner model, see Phan Thien and Tanner [11] and Phan Thien [12].

2. General viscoelastic rate-type fluid

Since the stability analysis will be based on thermodynamical concepts, we need to recall

some facts regarding the themodynamic basis of the viscoelastic rate-type models for incom-

pressible fluids. We present the derivation of a general thermodynamically consistent model

which, among others, includes the Oldroyd-B model, the Giesekus model, the FENE-P model,

the Johnson–Segalman model, and the Phan–Thien–Tanner model.

The derivation outlined below follows the procedure introduced by Rajagopal and Srinivasa

[13]. The method is purely phenomenological and is based on the characterisation of the en-

ergy storage and entropy production mechanisms in the material. Specifically, we are interested

in the identification of the specific Helmholtz free energy ψ , see Section 2.2, and the entropy

production ξ , see Section 2.3. In the specific case of viscoelastic fluids we further apply a de-

composition of its motion according to the dissipative and elastic response of the material. We

virtually split the deformation from the initial configuration to the current configuration into the

deformation of the intermediate configuration, and to the instantaneous elastic deformation from
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the intermediate configuration to the current configuration, see Figure 1. Such a decomposition

of the total deformation to elastic and dissipative part then leads to certain kinematical identities

that can be exploited in the derivation of the model.

2.1. Kinematics

current
configuration

reference
configuration

intermediate
configuration

κ0(B)

κt(B)

κp(t)(B)

F

F1

F2

Figure 1: General decomposition of deformation gradient.

Let us concentrate on the decomposition of the motion of a viscoelastic body as depicted in

Figure 1. (For details see also Dostalı́k et al. [14].) The total deformation gradient F can be seen

as a composition of two deformations

F = F2F1, (2.1)

where F1 and F2 are the deformation gradients of the partial deformations. Let us introduce the

left Cauchy–Green tensor B2 associated with the elastic response of the material via the relation

B2 =def F2F
⊺
2 . (2.2)

Tensor B2 provides us a characterisation of the instantaneous elastic part of the deformation,

and as we shall see in Section 2.4 it constitutes an additional “elastic” part of the Cauchy stress

tensor.

The described decomposition yields viscoelastic models with the evolution equation contain-

ing the upper convected derivative

▽

A =def
dA

dt
−LA−AL

⊺
, (2.3)

where d
dt
=def

∂
∂ t
+vvv●∇, denotes the material derivative, vvv denotes the spatial velocity, L =def ∇vvv

denotes the velocity gradient, and D =def
1
2
(L+L

⊺) denotes the symmetric part of the velocity

gradient. This setting is thus able to incorporate the standard Oldroyd-B model, the Giesekus

model, and the FENE-P model.

However, the evolution equations for the Johnson–Segalman model and the Phan–Thien–

Tanner model contain the so-called Gordon–Schowalter derivative

◻

A =def
dA

dt
−a(DA+AD)−(WA+AW

⊺) , (2.4)

where a ∈ [−1,1] and W =def
1
2
(L−L

⊺) denotes the skew-symmetric part of the velocity gradi-

ent. Although the Gordon–Schowalter derivative is in general different from the upper convected
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derivative, it can be also obtained using the decomposition described above. However a gen-

eralisation of the decomposition (2.1) is needed. In principle one has to articulate the concept

of “non-affine” motion introduced in Johnson and Segalman [10], see Dostalı́k et al. [14] for

details. The generalised decomposition yields a different tensorial quantity associated with the

additional “elastic” part of the Cauchy stress tensor. We denote this quantity by B2,GS. For a thor-

ough analysis of the motion of a viscoelastic body in this generalised setting and interpretation

of the tensorial quantity B2,GS, see Dostalı́k et al. [14].

Note that for a = 1 the Gordon–Schowalter derivative (2.4) reduces to the upper convected

derivative and the tensorial quantity B2,GS is simply recast to B2. In the following, we shall

thus be using the general notation B2,GS for the additional tensorial quantity in the Cauchy stress

tensor. For the models containing the upper convected derivative we then simply set a = 1 and

use the notation B2 instead of B2,GS.

2.2. Helmholtz free energy

We consider the specific Helmholtz free energy in the form

ψ =def ψ0(θ)+ψ1(B2,GS), (2.5)

where the thermal part ψ0 is given by a simple formula (the symbols cV,ref and θref denote the

specific heat capacity at constant volume and the reference temperature)

ψ0 =def −cV,refθ [ln( θ

θref

)−1] , (2.6)

and ψ1 satisfies the following set of requirements

ψ1(B2,GS) ≥ 0, ψ1(B2,GS) = 0 ⇐⇒ B2,GS = I, (2.7a)

∂ψ1

∂B2,GS

(B2,GS) = 0 ⇐⇒ B2,GS = I, (2.7b)

B2,GS
∂ψ1

∂B2,GS

(B2,GS) = ∂ψ1

∂B2,GS

(B2,GS)B2,GS. (2.7c)

(The commutative property (2.7c) is immediately granted for the isotropic material.) The model-

dependent quantity ψ1 is specified in Appendix A for all the viscoelastic models mentioned in

Section 2. In the same section we also verify that the structural assumptions (2.7) are fulfilled

for all considered models. Using the standard thermodynamic relations for the specific entropy

η and the specific internal energy e

η = −
∂ψ

∂θ
, (2.8a)

e =ψ +θη , (2.8b)

together with the general evolution equation for the internal energy

ρ
de

dt
= T ∶D−div jjje, (2.9)

we can derive an evolution equation for the specific entropy. (Here ρ denotes density, T denotes

the Cauchy stress tensor, and jjje denotes the non-mechanical contribution to the energy flux.)
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Indeed, by taking the material derivative of (2.8b) and exploiting the relations (2.8a) and (2.9)

we arrive at

ρ
dη

dt
+div( jjje

θ
) = 1

θ
(Tδ ∶Dδ −ρ

∂ψ1

∂B2,GS

∶
dB2,GS

dt
−

jjje ●∇θ

θ
) (2.10)

Expressing the material derivative of B2,GS via the formula for the Gordon–Schowalter deriva-

tive (2.4)
dB2,GS

dt
=

◻

B2,GS+a(DB2,GS+B2,GSD)+(WB2,GS+B2,GSW
⊺) , (2.11)

and using the assumption (2.7c) we finally obtain

ρ
dη

dt
+div( jjje

θ
) = 1

θ
{[Tδ −2ρa(B2,GS

∂ψ1

∂B2,GS

)
δ

] ∶Dδ −ρ
∂ψ1

∂B2,GS

∶
◻

B2,GS−
jjje ●∇θ

θ
} . (2.12)

2.3. Entropy production

In order to identify the constitutive relations we want to “compare” equation (2.12) with the

general evolution equation for entropy

ρ
dη

dt
+div jjjη = ξ , (2.13)

where jjjη denotes the entropy flux and the entropy production ξ is given by

ξ =def
1

θ
(ζth +ζmech) , (2.14)

where we have introduced the notation

ζth =def κref
∇θ ●∇θ

θ
, (2.15a)

ζmech =def 2ν(θ)D ∶D+ρ
µ

ν1(θ)
∂ψ1

∂B2,GS

(B2,GS) ∶ f(B2,GS). (2.15b)

Here, the symbol κref denotes the thermal conductivity, the material coefficient µ is a positive

constant while the material coefficients ν , ν1 are assumed to be positive functions of temperature.

We require ν to be bounded from below, and ν1 to be bounded from above. Further, we assume

that the tensorial function f ∶ R3×3
> → R

3×3
> , where R

3×3
> denotes the space of symmetric positive

definite 3×3 matrices, satisfies

f(B2,GS) = 0 ⇐⇒ B2,GS = I, (2.16a)

∂ψ1

∂B2,GS

(B2,GS) ∶ f(B2,GS) ≥ 0, (2.16b)

ψ1(B2,GS) ≤Cf
∂ψ1

∂B2,GS

(B2,GS) ∶ f(B2,GS), (2.16c)

where Cf is a positive constant dependent on the choice of f. See Appendix A for specification of

the tensorial function f for all the viscoelastic models mentioned in Section 2. In the same section

we also verify that the structural assumptions (2.16) are fulfilled for all considered models.
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2.4. Constitutive relations

Comparison of the entropy production ξ given by (2.14) with the right-hand side of (2.12)

yields the sought constitutive relations for the mechanical quantities T and B2,GS,

Tδ = 2ν(θ)Dδ +2ρa(B2,GS
∂ψ1

∂B2,GS

)
δ

, (2.17a)

ν1(θ) ◻

B2,GS = −µf(B2,GS), (2.17b)

as well as for the energy/entropy fluxes jjje and jjjη ,

jjje = −κref∇θ , (2.17c)

jjjη = −
κref∇θ

θ
. (2.17d)

2.5. Evolution equation for temperature

It remains to derive the evolution equation for temperature. Using the relation η = − ∂ψ
∂θ =

− dψ0

dθ we can rewrite the evolution equation for entropy (2.13) as

ρ
d

dt
(−dψ0

dθ
)+div jjjη = ξ . (2.18)

Using the special choice of ψ0 given by (2.6), the postulated entropy production (2.14), and the

constitutive relation for the entropy flux (2.17d) in (2.18) then yields the evolution equation for

temperature

ρcV,ref
dθ

dt
= div(κref∇θ)+ζmech. (2.19)

We note that the structure of the temperature evolution equation is the same both for the

Navier–Stokes–Fourier fluid and for our general viscoelastic rate-type fluid. The two fluid mod-

els differ in the specification of the entropy production term ζmech, see also 2.15b. Since the

stability analysis done by Dostalı́k et al. [5] required that the entropy production term ζmech is

nonnegative and integrable in time and space, we see that this assumption is very likely to hold

also for our general viscoelastic rate-type model. Consequently, one can conjecture that it would

be possible to reuse much of the results obtained in Dostalı́k et al. [5]. As we shall see later, this

is indeed the case.

3. Problem formulation

3.1. Governing equations and boundary conditions

Appealing to the derived constitutive relations (2.17) and the evolution equation for temper-

ature (2.19) we see that the complete system of evolution equations describing the behaviour of
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our general viscoelastic rate-type fluid reads

divvvv = 0, (3.1a)

ρ
dvvv

dt
= ∇m+div[2ν(θ)D+2ρa(B2,GS

∂ψ1

∂B2,GS

)
δ

] , (3.1b)

ν1(θ) ◻

B2,GS = −µf(B2,GS), (3.1c)

ρcV,ref
dθ

dt
= div(κref∇θ)+ζmech, (3.1d)

where m =def
1
3

TrT denotes the mean normal stress. The evolution equations 3.1 for the quadru-

ple WWW =def [m,vvv,B2,GS,θ ]must be solved in the domain Ω that represents the closed vessel, while

the boundary conditions on the vessel walls are

vvv∣∂Ω = 000, (3.2a)

θ ∣∂Ω = θbdr. (3.2b)

The quantity θbdr is a given nontrivial function of position.

3.2. Problem of stability of the steady state

The objective is to show that the perturbations W̃WW =def [m̃, ṽvv, B̃2,GS, θ̃] to the steady state

ŴWW =def [m̂, v̂vv, B̂2,GS, θ̂] vanish as time goes to infinity, that is

lim
t→+∞

W̃WW = 000, (3.3)

while the evolution of the quadruple WWW = ŴWW +W̃WW is governed by evolution equations (3.1).

3.3. Spatially inhomogeneous non-equilibrium steady state

In the non-equilibrium steady state ŴWW =def [m̂, v̂vv, B̂2,GS, θ̂ ] the fluid is at rest v̂vv = 000, and the

tensorial quantity B2,GS reduces to identity, that is B̂2,GS = I. This observation follows from (3.1c)

and the structural assumption (2.16a). Further from (3.1b) and the assumption (2.7b) we obtain

∇m̂ = 0. Lastly, the temperature evolution equation (3.1d) implies that the steady temperature

field θ̂ solves

0 = div(κref∇θ̂) , (3.4a)

θ ∣∂Ω = θbdr. (3.4b)

The temperature field is thus given by the steady heat equation (3.4a) with Dirichlet boundary

condition (3.4b). If θbdr is a nontrivial function of position, then θ̂ is a spatially inhomogeneous

bounded function.
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3.4. Evolution equations for perturbations to the mechanical quantities

Using the governing equations (3.1) it is straightforward to derive evolution equations for the

perturbations W̃WW =def [m̃, ṽvv, B̃2,GS, θ̃ ] to the steady state. The evolution equations for the mechan-

ical quantities ṽvv and B̃2,GS read

ρ
∂ ṽvv

∂ t
= −ρ (̃vvv●∇) ṽvv+∇m̃+div[2ν(θ̂ + θ̃)D̃+2ρa((I+B2,GS) ∂ψ1

∂B2,GS

(I+B2,GS))
δ

] ,
(3.5a)

∂ B̃2,GS

∂ t
= −(ṽvv●∇) B̃2,GS+a(D̃B̃2,GS+ B̃2,GSD̃)+W̃B̃2,GS+ B̃2,GSW̃

⊺ +2aD̃

−
µ

ν1(θ̂ + θ̃) f(I+ B̃2,GS).
(3.5b)

(In the derivation of (3.5a) we have exploited the assumption (2.7b).) Furthermore, the evolution

equation for the temperature perturbation θ̃ reads

ρcV,ref
∂ θ̃

∂ t
+ρcV,refṽvv● [∇(θ̂ + θ̃)] = div(κref∇θ̃)+ζmech (ŴWW +W̃WW) . (3.5c)

4. Thermodynamically motivated construction of a Lyapunov type functional

The stability is investigated using the concepts introduced in Bulı́ček et al. [4] and Dostalı́k

et al. [5].

4.1. Construction of the functional

Following Bulı́ček et al. [4] we define Lyapunov type functional Vneq as

Vneq (W̃WW∥ŴWW) =def −[Sθ̂(W̃WW∥ŴWW)−E(W̃WW∥ŴWW)] , (4.1)

where

Sθ̂ (W̃WW∥ŴWW) =def Sθ̂(ŴWW +W̃WW)−Sθ̂(ŴWW)−DSθ̂(ŴWW)[W̃WW] , (4.2a)

E(W̃WW∥ŴWW) =def Etot(ŴWW +W̃WW)−Etot(ŴWW)−DEtot(ŴWW)[W̃WW ] , (4.2b)

and the rescaled net entropy Sθ̂ and the net total energy Etot are given by the formulae

Sθ̂(WWW) =def ∫
Ω

ρθ̂η(WWW)dv = −∫
Ω

ρθ̂
dψ0

dθ
(θ)dv, (4.3a)

Etot(WWW) =def ∫
Ω
[ρe(WWW)+ 1

2
ρ ∣vvv∣2]dv =∫

Ω
ρ [ψ0(θ)+ψ1(B2,GS)−θ

dψ0

dθ
(θ)+ 1

2
ρ ∣vvv∣2]dv,

(4.3b)

where e denotes the specific internal energy, η denotes the specific entropy, and where have

exploited thermodynamic relations (2.8). In (4.2), the symbols DSθ̂(ŴWW)[W̃WW ] and DEtot(ŴWW)[W̃WW ]
8



denote the Gâteaux derivative of the given functional at point ŴWW in the direction W̃WW . It particular,

we have

DSθ̂(ŴWW)[W̃WW ] = ∫
Ω

ρθ̂ θ̃
d2ψ0

dθ 2
(θ̂)dv, (4.4a)

DEtot(ŴWW)[W̃WW ] = ∫
Ω

ρ [B̃2,GS ∶
∂ψ1

∂B2,GS

− θ̂ θ̃
d2ψ0

dθ 2
(θ̂)+ρ v̂vv● ṽvv]dv, (4.4b)

Consequently, it is straightforward to see that the formulae for the functionals Sθ̂ and E read

Sθ̂(W̃WW∥ŴWW) = −∫
Ω

ρθ̂ [dψ0

dθ
(θ̂ + θ̃)− dψ0

dθ
(θ̂)− θ̃

d2ψ0

dθ 2
(θ̂)]dv, (4.5a)

E(W̃WW∥ŴWW) = ∫
Ω

ρ[ψ0(θ̂ + θ̃)−ψ0(θ̂)−(θ̂ + θ̃)dψ0

dθ
(θ̂ + θ̃)+ θ̂

dψ0

dθ
(θ̂)+ θ̂ θ̃

d2ψ0

dθ 2
(θ̂)

+ψ1(B̂2,GS+ B̃2,GS)−ψ1(B̂2,GS)− B̃2,GS ∶
∂ψ1

∂B2,GS

(B̂2,GS)+ 1

2
ρ ∣̃vvv∣2 ]dv,

(4.5b)

hence the explicit formula for the functional Vneq introduced in (4.1) reads

Vneq (W̃WW∥ŴWW) =∫
Ω

ρ [ψ0(θ̂ + θ̃)−ψ0(θ̂)− θ̃
dψ0

dθ
(θ̂ + θ̃)]dv

+∫
Ω

ρ [ψ1(B̂2,GS+ B̃2,GS)−ψ1(B̂2,GS)− B̃2,GS ∶
∂ψ1

∂B2,GS

(B̂2,GS)]dv+∫
Ω

1

2
ρ ∣̃vvv∣2 dv. (4.6)

For the subsequent stability analysis it is convenient to split the functional Vneq into two parts

Vth (W̃WW∥ŴWW) =def ∫
Ω

ρ [ψ0(θ̂ + θ̃)−ψ0(θ̂)− θ̃
dψ0

dθ
(θ̂ + θ̃)]dv, (4.7a)

Vmech (W̃WW∥ŴWW) =def ∫
Ω

ρ [ψ1(B̂2,GS+ B̃2,GS)−ψ1(B̂2,GS)− B̃2,GS ∶
∂ψ1

∂B2,GS

(B̂2,GS)]dv

+∫
Ω

1

2
ρ ∣̃vvv∣2 dv,

(4.7b)

where Vth shall be used to deal with the temperature perturbations θ̃ , while Vmech shall be used

to deal with the perturbations to the mechanical quantities ṽvv and B̃2,GS. Note that in general

Vth ≠ Sθ̂ , Vmech ≠ E . However, if ψ0 is chosen as in (2.6), then the corresponding functionals

coincide.

Recall that so far we have considered the specific free energy in the general form (2.5).

However, in our specific case, ψ0 is given by (2.6) and, moreover, in the steady non-equilibrium

state we have B̂2,GS = I, which together with the assumptions (2.7a) and (2.7b) yields the final

formula for Vneq

Vneq (W̃WW∥ŴWW) = ∫
Ω

ρcV,refθ̂ [ θ̃

θ̂
− ln(1+ θ̃

θ̂
)]dv+∫

Ω
ρψ1(I+ B̃2,GS)dv+∫

Ω

1

2
ρ ∣̃vvv∣2 dv, (4.8)
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along with

Vth (W̃WW∥ŴWW) =∫
Ω

ρcV,refθ̂ [ θ̃

θ̂
− ln(1+

θ̃

θ̂
)]dv, (4.9a)

Vmech (W̃WW∥ŴWW) =∫
Ω

ρψ1(I+ B̃2,GS)dv+∫
Ω

1

2
ρ ∣̃vvv∣2 dv. (4.9b)

It is straightforward to show that the functionals Vneq, Vth, and Vmech are nonnegative and vanish

if and only if the perturbation vanishes.

4.2. Time derivative of the functional

The time derivative of the thermal part Vth of the constructed functional Vneq has been al-

ready dealt with in Dostalı́k et al. [5], see Appendix A therein, hence we will not repeat the

lengthy algebraic manipulation here. (Note that although Dostalı́k et al. [5] have considered the

Navier–Stokes–Fourier fluid, their results regarding the thermal part of the proposed functional

are applicable to viscoelastic rate-type fluids as well. This follows from the fact that the particu-

lar choice of the formula for the mechanical dissipation ζmech(ŴWW +W̃WW) has been inconsequential

in the analysis by Dostalı́k et al. [5]. See also Section 2.5 for a thorough discussion thereof.) The

time derivative of Vth is given by

dVth

dt
(W̃WW∥ŴWW) = −∫

Ω
κrefθ̂∇ ln(1+ θ̃

θ̂
)●∇ ln(1+

θ̃

θ̂
) dv−∫

Ω
ρcV,ref ln(1+

θ̃

θ̂
)(ṽvv●∇θ̂) dv

+∫
Ω

θ̃

θ̂ + θ̃
ζmech(ŴWW +W̃WW)dv. (4.10)

The formula for the time derivative of the mechanical part Vmech of the constructed functional

follows from the following manipulation. Direct differentiation under the integral sign yields

dVmech

dt
(W̃WW∥ŴWW) = ∫

Ω
ρ

∂ψ1(I+ B̃2,GS)
∂B2,GS

∶
∂B2,GS

∂ t
dv+∫

Ω
ρ ṽvv●

∂ ṽvv

∂ t
dv. (4.11)

Using the evolution equation for the perturbation of left Cauchy–Green tensor (3.5b) the first

term of (4.11) translates to

∫
Ω

ρ
∂ψ1(I+ B̃2,GS)

∂B2,GS

∶
∂B2,GS

∂ t
dv = ∫

Ω
2ρa((I+B2,GS) ∂ψ1

∂B2,GS

(I+B2,GS)) ∶Ddv

−∫
Ω

ρ
µ

ν1(θ̂ + θ̃)
∂ψ1

∂B2,GS

(I+ B̃2,GS) ∶ f(I+ B̃2,GS)dv, (4.12)

where we have used the assumption (2.7c) and the identity

∫
Ω

ρ
∂ψ1(I+ B̃2,GS)

∂B2,GS

∶(ṽvv●∇) B̃2,GS dv = ∫
Ω

ṽvv●∇ψ1 (I+B2,GS) dv = 0. (4.13)

(The last equality follows from the Stokes theorem and from the fact that ṽvv vanishes on the

boundary.) Similarly, using the evolution equation for the velocity perturbation (3.5a), the second

term of (4.11) is recast into

∫
Ω

ρ ṽvv●
∂ ṽvv

∂ t
dv = −∫

Ω
2ν(θ̂ + θ̃)D̃ ∶ D̃dv−∫

Ω
2ρa((I+B2,GS) ∂ψ1

∂B2,GS

(I+B2,GS)) ∶Ddv. (4.14)
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Combining (4.12) and (4.14) in (4.11) and using the definition of ζmech, see (2.15b), we arrive at

the final formula for the time derivative of Vmech,

dVmech

dt
(W̃WW∥ŴWW) = −∫

Ω
ζmech(ŴWW +W̃WW)dv. (4.15)

Consequently, equations (4.10) and (4.15) yield the time derivative of the full functional Vneq

dVneq

dt
(W̃WW∥ŴWW) = −∫

Ω
κrefθ̂∇ ln(1+ θ̃

θ̂
)●∇ ln(1+

θ̃

θ̂
) dv−∫

Ω
ρcV,ref ln(1+

θ̃

θ̂
)(ṽvv●∇θ̂) dv

−∫
Ω

θ̂

θ̂ + θ̃
ζmech(ŴWW +W̃WW)dv. (4.16)

In virtue of assumption (2.16b), we know that the last term on the right-hand side of (4.16)

is nonnegative. The only term whose sign is not known a priori is the second term on the

right-hand side of (4.16). Its presence prohibits one from showing that the time derivative of

the functional Vneq is, for a non-constant θ̂ , a nonpositive quantity. Consequently, Vneq cannot

directly serve as a genuine Lyapunov functional.

4.3. Family of functionals Vm
th

As it has been shown in Dostalı́k et al. [5], the functional Vth is insufficient to yield the

asymptotic stability of the steady temperature field θ̂ via the Lyapunov method. This—rather

technical—difficulty can be dealt with by introducing a new temperature scale ϑ as ϑ
ϑref
=( θ

θref
)1−m

,

where m ∈ (0,1). By rescaling the temperature field one can identify the formula for the corre-

sponding specific Helmholtz free energy—which will be different from the one given by (2.5)—

and consequently, repeating the steps from Section 4.1, one can obtain a whole family of func-

tionals parameterized by m,

Vm
neq (W̃WW∥ŴWW) = ∫

Ω
ρcV,refθ̂

⎡⎢⎢⎢⎢⎣
θ̃

θ̂
−

1

m

⎛
⎝(1+

θ̃

θ̂
)

m

−1
⎞
⎠
⎤⎥⎥⎥⎥⎦

dv+∫
Ω

ρψ1(I+ B̃2,GS)dv+∫
Ω

1

2
ρ ∣̃vvv∣2 dv.

(4.17)

For any fixed m ∈ (0,1), functional Vm
neq remains nonnegative and vanishes if and only if the

perturbation W̃WW vanishes.

For further reference, let us introduce the notation Vm
th for the family of functionals

Vm
th (W̃WW∥ŴWW) =def ∫

Ω
ρcV,refθ̂

⎡⎢⎢⎢⎢⎣
θ̃

θ̂
−

1

m

⎛
⎝(1+

θ̃

θ̂
)

m

−1
⎞
⎠
⎤⎥⎥⎥⎥⎦

dv, (4.18)

that correspond to the thermal parts of functionals Vm
neq. Dostalı́k et al. [5] have shown that the
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time derivative of Vm
th reads

dVm
th

dt
(W̃WW∥ŴWW) = −∫

Ω
4

1−m

m2
κrefθ̂∇

⎡⎢⎢⎢⎢⎣
(1+ θ̃

θ̂
)

m
2

−1

⎤⎥⎥⎥⎥⎦
●∇
⎡⎢⎢⎢⎢⎣
(1+ θ̃

θ̂
)

m
2

−1

⎤⎥⎥⎥⎥⎦
dv

−∫
Ω

1−m

m
ρcV,ref

⎡⎢⎢⎢⎣(1+
θ̃

θ̂
)

m

−1
⎤⎥⎥⎥⎦(ṽvv●∇θ̂) dv

+∫
Ω

⎛⎜⎜⎝1−
1

(1+ θ̃
θ̂
)1−m

⎞⎟⎟⎠ζmech(ŴWW +W̃WW)dv, (4.19)

where ζmech(ŴWW +W̃WW) denotes the mechanical part of the entropy production. (Dostalı́k et al.

[5] have shown (4.19) for the Navier–Stokes–Fourier fluid with the entropy production term

ζmech = 2νD ∶D. However, all the algebraic manipulations in Dostalı́k et al. [5] hold also for more

general entropy production term ζmech.)

5. Stability of the non-equilibrium steady state

A brief inspection of the right-hand side of (4.16) reveals that the term with a priori unknown

sign, that is the term

∫
Ω

ρcV,ref ln(1+ θ̃

θ̂
)(ṽvv●∇θ̂) dv, (5.1)

might be shown to be negligible provided that the velocity perturbation ṽvv decays in time. This

property is easy to show for the Navier–Stokes–Fourier fluid, see Dostalı́k et al. [5] for details.

Our objective is to recover the same property for the considered class of viscoelastic models.

This piece of information can be obtained by the analysis of the mechanical part Vmech of the

functional Vneq, see Section 5.1.

Once we show that the norm of velocity perturbation is bounded by an exponentially de-

caying function, we can focus on the temperature perturbation only. Regarding the temperature

perturbation, it is however straightforward to reuse results by Dostalı́k et al. [5]. This is done in

Section 5.2.

5.1. Decay of perturbations – mechanical quantities

The formula (4.15) for the time derivative of the functional Vmech can be rewritten explicitly

as

d

dt
∫

Ω
(ρψ1(I+ B̃2,GS)+ 1

2
ρ ∣̃vvv∣2)dv = −∫

Ω
2ν(θ̂ + θ̃)D̃ ∶ D̃dv

−∫
Ω

ρ
µ

ν1(θ̂ + θ̃)
∂ψ1

∂B2,GS

(I+ B̃2,GS) ∶ f(I+ B̃2,GS)dv. (5.2)

Since ṽvv vanishes on the boundary, the Korn equality and the Poincaré inequality imply

1

CP

∥ṽvv∥2
L2(Ω) ≤ ∫

Ω
2D̃ ∶ D̃dv. (5.3)

12



Moreover, assumption (2.16c) gives us

ψ1(I+ B̃2,GS) ≤Cf
∂ψ1

∂B2,GS

(I+ B̃2,GS) ∶ f(I+ B̃2,GS), (5.4)

where Cf is a positive constant dependent on the choice of f.

Using inequalities (5.3), (5.4), and boundedness of ν and ν1 from below and above respec-

tively, we thus arrive at

d

dt
∫

Ω
(ρψ1(I+ B̃2,GS)+ 1

2
ρ ∣̃vvv∣2)dv ≤ −

2mins∈R+ ν(s)
ρCP

∫
Ω

1

2
ρ ∣̃vvv∣2 dv

−
µ

Cfmaxs∈R+ ν1(s) ∫Ω
ρψ1(I+ B̃2,GS)dv. (5.5)

Consequently, estimate (5.5) yields the following inequality for the time derivative of the func-

tional Vmech
dVmech

dt
(W̃WW∥ŴWW) ≤ −CmechVmech (W̃WW∥ŴWW) , (5.6)

where we have denoted

Cmech =def min{2mins∈R+ ν(s)
ρCP

,

µ

Cfmaxs∈R+ ν1(s)} . (5.7)

It then follows that

Vmech (W̃WW∥ŴWW) ≤ Vmech (W̃WW∥ŴWW)∣t=0
e−Cmecht

, (5.8)

which further implies

∥̃vvv∥2
L2(Ω) ≤

2

ρ
Vmech (W̃WW∥ŴWW)∣t=0

e−Cmecht
, (5.9a)

∫
Ω

ψ1(I+ B̃2,GS)dv ≤
1

ρ
Vmech (W̃WW∥ŴWW)∣t=0

e−Cmecht
. (5.9b)

Estimates (5.9) yield the desired result. The perturbations ṽvv and B̃2,GS vanish as time goes to

infinity. (See the assumption (2.7a).) Note also that (5.9b) implies only the decay of quantity

∫Ω ψ1(I+ B̃2,GS)dv, while this quantity might be difficult to interpret as a convergence of B̃2,GS

to zero in a norm. Still there is a relation between this quantity and a reasonable metric on the set

of spatially distributed symmetric positive definite matrices. (The metric is constructed using the

Bures–Wasserstein distance on the set of positive definite matrices, see Bhatia et al. [15].) For

details regarding this concept we refer the interested reader to Dostalı́k et al. [16].

5.2. Decay of perturbation – temperature

Having obtained an upper bound on the norm of the velocity perturbation, we reuse the re-

sults by Dostalı́k et al. [5] for the standard Navier–Stokes–Fourier fluid occupying a mechanically

isolated vessel with spatially non-uniform wall temperature. The authors show that the spatially

inhomogeneous steady temperature field θ̂ is stable irrespective of the initial temperature field.

The derivation rests upon the usage of the family of functionals Vm
th introduced in Section 4.3

and exploits the fact that ∥̃vvv∥
L2(Ω) is bounded from above by an exponentially decaying function.
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Further, the entropy production ζmech(ŴWW +W̃WW) must be a nonnegative quantity that vanishes at

equilibrium. Since these properties hold in our case as well, see (5.9a), we can directly gener-

alise the result of Dostalı́k et al. [5] to the viscoelastic models (Oldroyd-B, Giesekus, FENE-P,

Johnson–Segalman, Phan-Thien–Tanner) described in Appendix A.

In particular, one can show that for n,m ∈ (0,1), n >m > n
2

the functional

Ym,n

th
(W̃WW∥ŴWW) =def Vm

th (W̃WW∥ŴWW)−Vn
th (W̃WW∥ŴWW) (5.10)

decays to zero as time goes to infinity. Specifically, according to the definition (4.18), this trans-

lates to

∫
Ω

ρcV,refθ̂
⎡⎢⎢⎢⎣

1

n
(1+

θ̃

θ̂
)

n

−
1

m
(1+

θ̃

θ̂
)

m

+
n−m

mn

⎤⎥⎥⎥⎦dv
t→+∞ÐÐÐ→ 0. (5.11)

Using Dostalı́k et al. [5, Corollary 1] we also see that (5.11) implies the decay of the relative

entropy in any Lebesgue space Lp (Ω), p ∈ [1,+∞).
In order to obtain (5.11) one needs to show that all the terms on the right-hand side of (4.19)

are finite if we integrate them with respect to time from zero to infinity. This is where (5.9a)

comes into play. Finally, the convergence result (5.11) then follows from a lemma on the decay

of integrable functions, see Zheng [17, Lemma 1.2], applied to the functional Ym,n

th , see Dostalı́k

et al. [5] for details.

6. Conclusion

We have investigated the stability of a spatially inhomogeneous non-equilibrium steady state

in a thermodynamically open system. Specifically, we have dealt with an incompressible heat

conducting viscoelastic fluid occupying a vessel with spatially non-uniform wall temperature.

The steady state in this system is characterised by the zero velocity field vvv and a trivial B2,GS

field, while the temperature field θ is the solution of the steady heat equation.

Assuming that the governing equations possess the classical solution that exists for all times,

we have shown that the steady state is stable irrespective of the initial conditions and of the

shape of the vessel. (The perturbations decay to zero as time goes to infinity.) We have thus

generalised the results by Dostalı́k et al. [5], who have investigated the same stability problem

for the incompressible Navier–Stokes–Fourier fluid. Our analysis is general enough to capture

a wide range of viscoelastic models including the Oldroyd-B model, the Giesekus model, the

FENE-P model, the Johnson–Segalman model, and the Phan–Thien–Tanner model.
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Appendix A. Admissible viscoelastic models

Let us show that the Oldroyd-B model, the Giesekus model, the FENE-P model, the Johnson–

Segalman model, and the Phan–Thien–Tanner model satisfy the structural assumptions intro-

duced in Section 2.2 and Section 2.3. In particular, we show that all the assumptions imposed

on the scalar function ψ1 (which determines the specific Helmholtz energy) and the tensorial

function f (which determines the specific entropy production) are fulfilled. Let us reiterate the

requirements from Section 2.2 and Section 2.3 here.

First, for a given ψ1 ∶R3×3
>
→R, where R

3×3
>

denotes the set of symmetric positive definite 3×3

matrices, we need to verify that

ψ1(B2,GS) ≥ 0, ψ1(B2,GS) = 0 ⇐⇒ B2,GS = I, (A.1a)

∂ψ1

∂B2,GS

(B2,GS) = 0 ⇐⇒ B2,GS = I, (A.1b)

B2,GS
∂ψ1

∂B2,GS

(B2,GS) = ∂ψ1

∂B2,GS

(B2,GS)B2,GS, (A.1c)

hold for any symmetric positive definite tensor B2,GS.

Second, a given tensorial function f ∶ R3×3
>
→ R

3×3
>

must, for any symmetric positive definite

tensor B2,GS, meet the following requirements

f(B2,GS) = 0 ⇐⇒ B2,GS = I, (A.2a)

∂ψ1

∂B2,GS

(B2,GS) ∶ f(B2,GS) ≥ 0, (A.2b)

ψ1(B2,GS) ≤Cf
∂ψ1

∂B2,GS

(B2,GS) ∶ f(B2,GS), (A.2c)

where Cf is a positive constant dependent on the choice of f. The last assumption (A.2c) is crucial

for obtaining the stability result (5.9).
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Appendix A.1. Oldroyd-B model

As discussed in Section 2.1 we set a = 1 for the Oldroyd-B model and use the notation B2

instead of B2,GS for the additional tensorial quantity in the Cauchy stress tensor.

The “elastic” part ψ1 of the specific free energy for the Oldroyd-B model reads

ψ1(B2) =def
µ

2ρ
(TrB2 −3− lndetB2) . (A.3)

Using the identity lndetB2 = TrlnB2 we can write

ψ1(B2) = µ

2ρ
Tr(B2− I− lnB2) = µ

2ρ

3

∑
i=1

(λi−1− lnλi) , (A.4)

where {λi}3
i=1 denote eigenvalues of the symmetric positive definite tensor B2. Since the function

f (x)=def x−1− lnx is nonnegative for x> 0 and vanishes if and only if x= 1, we obtain the validity

of (A.1a).

The derivative of ψ1 with respect to B2 reads

∂ψ1

∂B2

(B2) = µ

2ρ
(I−B

−1
2 ) , (A.5)

and we immediately see that assumptions (A.1b) and (A.1c) are both fulfilled.

The tensorial function f for the Oldroyd-B model reads

f(B2) =def B2 − I. (A.6)

The requirement (A.2a) is obviously satisfied. To verify the validity of (A.2b) let us write

∂ψ1

∂B2

∶ f(B2) = µ

2ρ
Tr(B2−2I+B

−1
2 ) = µ

2ρ

3

∑
i=1

(λi−2+
1

λi

) . (A.7)

Since the function g(x) =def x−2+1/x is nonnegative for x > 0 and vanishes if and only if x = 1,

we see that (A.2b) is fulfilled.

Finally, we want to show that the inequality (A.2c) holds, which for the given ψ1 and f

translates to

TrB2−3− lndetB2 ≤CfTr(B2−2I+B
−1
2 ) . (A.8)

Taking Cf =def 1 and using the identity lndetB2 = TrlnB2 we can rewrite (A.8) as

0 ≤ Tr(B−1
2 + lnB2− I) . (A.9)

But the right-hand side of (A.9) is indeed nonnegative since

Tr(B−1
2 + lnB2− I) = 3

∑
i=1

( 1

λi

+ lnλi−1) , (A.10)

and the function h(x) =def 1/x+ lnx−1 is nonnegative for x > 0 and vanishes if and only if x = 1.

One can easily show that Cf = 1 is optimal, that is taking Cf smaller would violate (A.2c).
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Appendix A.2. Giesekus model

As discussed in Section 2.1 we set a = 1 for the Giesekus model and use the notation B2

instead of B2,GS for the additional tensorial quantity in the Cauchy stress tensor.

The “elastic” part ψ1 of the specific free energy for the Giesekus model reads

ψ1(B2) =def
µ

2ρ
(TrB2 −3− lndetB2) . (A.11)

This is the same specific free energy as in the case of Oldroyd-B model, and we already know

that this choice of Helmholtz free energy satisfies (A.1), see Appendix A.1.

The tensorial function f for the Giesekus model reads

f(B2) =def αB
2
2+(1−2α)B2−(1−α)I, (A.12)

where α ∈ (0,1) is a model parameter. Since B2 is a symmetric positive definite tensor it is

diagonalizable and we can thus easily show that (A.2a) indeed holds. To verify assumption

(A.2b) let us write

∂ψ1

∂B2

∶ f(B2) = µ

2ρ
Tr[αB

2
2 +(1−3α)B2−(2−3α)I+(1−α)B−1

2 ]
=

µ

2ρ

3

∑
i=1

(αλ 2
i +(1−3α)λi−(2−3α)+(1−α) 1

λi

) . (A.13)

It is straightforward to show that for α ∈ (0,1) the function gα(x) =def αx2 + (1− 3α)x− (2−
3α)+(1−α)1/x is nonnegative for x > 0, and that it vanishes if and only if x = 1. Assumption

(A.2b) is thus fulfilled. Finally, we want to show that the inequality (A.2c) holds, which for the

given ψ1 and f translates to

TrB2−3− lndetB2 ≤CfTr[αB
2
2+(1−3α)B2−(2−3α)I+(1−α)B−1

2 ] . (A.14)

Taking Cf =def
1

1−α and using the identity lndetB2 = TrlnB2, a simple manipulation reveals that

(A.14) is equivalent to

0 ≤
α

1−α
Tr[(B2 − I)2]+Tr(B−1

2 + lnB2− I) . (A.15)

However, the first term on the right-hand side of (A.15) is obviously nonnegative and the second

term is nonnegative as well as has been shown in the case of the Oldroyd-B model, see (A.10).

Appendix A.3. FENE-P model

As discussed in Section 2.1 we set a = 1 for the FENE-P model and use the notation B2

instead of B2,GS for the additional tensorial quantity in the Cauchy stress tensor.

The “elastic” part ψ1 of the specific free energy for the FENE-P model reads

ψ1(B2) =def
µ

2ρ
[−b ln(1− 1

b
TrB2)+b ln(1− 3

b
)−(1− 3

b
)−1

lndetB2] , (A.16)

where b > 3 is a model parameter and TrB2 < b. We want to show that

−b ln(1− 1

b
TrB2)+b ln(1− 3

b
)−(1− 3

b
)−1

lndetB2 ≥ 0. (A.17)
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Inequality (A.17) can be rewritten in the following form

b ln[ b−3

b−TrB2

(detB2) 1
3−b ] ≥ 0, (A.18)

and thus, it suffices to investigate whether

b−3

b−TrB2

(detB2) 1
3−b ≥ 1, (A.19)

holds. Since B2 is symmetric positive definite, the standard inequality of arithmetic and geomet-

ric means yields TrB2 ≥ 3(detB2) 1
3 . Consequently, it suffices to prove the following inequality

b−3

b−3(detB2) 1
3

(detB2) 1
3−b ≥ 1, (A.20)

which can be further rewritten as

3[(detB2) 1
3 −1]−(3−b)[(detB2) 1

3−b −1] ≥ 0. (A.21)

A simple analysis reveals that the function f(r,s)(x) =def r(x 1
r −1)− s(x 1

s −1), where r > 0, s < 0,

is nonnegative for x > 0 and vanishes if and only if x = 1. We have thus proved that ψ(B2) ≥ 0,

and that ψ(B2) = 0 implies detB2 = 1. It is then straightforward to check that ψ(B2) = 0, if and

only if B2 = I, and the verification of assumption (A.1a) is thus complete.

The derivative of ψ1 with respect to B2 reads

∂ψ1

∂B2

(B2) = µ

2ρ
[(1− 1

b
TrB2)−1

I−(1− 3

b
)−1

B
−1
2 ] , (A.22)

and we immediately see that assumption (A.1c) is fulfilled. Further, the fact that B2 is diagonal-

izable yields the validity of (A.1b).

The tensorial function f for the FENE-P model reads

f(B2) =def (1− 1

b
TrB2)−1

B2 −(1− 3

b
)−1

I. (A.23)

Diagonalization of the tensor B2 can be used to confirm the validity of requirement (A.2a). To

verify assumption (A.2b) let us write

∂ψ1

∂B2

∶ f(B2) = µ

2ρ
Tr[(1− 1

b
TrB2)−2

B2−2(1− 1

b
TrB2)−1 (1− 3

b
)−1

I+(1− 3

b
)−2

B
−1
2 ] .

(A.24)

The right-hand side of (A.24) can be rewritten using the eigenvalues of B2 as

µ

2ρ

3

∑
i=1

[(1− 1

b
TrB2)−2

λi−2(1− 1

b
TrB2)−1 (1− 3

b
)−1

+(1− 3

b
)−2 1

λi

]

=
µ

2ρ

3

∑
i=1

1

λi

[(1− 1

b
TrB2)−1

λi−(1− 3

b
)−1]

2

, (A.25)
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and we immediately see that the right-hand side of (A.25) is nonnegative.

Finally, we want to show that the inequality (A.2c) holds, which for the given ψ1 and f

translates to

−b ln(1− 1

b
TrB2)+b ln(1− 3

b
)−(1− 3

b
)−1

lndetB2

≤CfTr[(1− 1

b
TrB2)−2

B2−2(1− 1

b
TrB2)−1(1− 3

b
)−1

I+(1− 3

b
)−2

B
−1
2 ] . (A.26)

Taking Cf =def 1− 3
b

and using the identity lndetB2 = TrlnB2, a simple manipulation reveals

that (A.26) is equivalent to

(1− 3

b
)(1− 1

b
TrB2)−2

TrB2−6(1− 1

b
TrB2)−1

+b ln(1− 1

b
TrB2)

−b ln(1− 3

b
)+3(1− 3

b
)−1

+(1− 3

b
)−1

Tr[B−1
2 + lnB2− I] ≥ 0. (A.27)

The last term on the left-hand side of (A.27) is nonnegative, see (A.10). Hence, it suffices to

show that

(1− 3

b
)(1− 1

b
TrB2)−2

TrB2−6(1− 1

b
TrB2)−1

+b ln(1− 1

b
TrB2)−b ln(1− 3

b
)+3(1− 3

b
)−1

≥ 0. (A.28)

Since we know that 0 <TrB2 < b, let us write TrB2 = εb, where ε ∈ (0,1). Moreover, let us denote

fb(ε) =def (1− 3

b
)(1−ε)−2

εb−6(1−ε)−1 +b ln(1−ε)−b ln(1− 3

b
)+3(1− 3

b
)−1

. (A.29)

Inequality (A.28) then transforms into the question whether the function fb(ε) is nonnegative

for ε ∈ (0,1) and b > 3. A tedious but straightforward analysis of fb reveals that this is indeed the

case and assumption (A.2c) is thus verified.

Appendix A.4. Johnson–Segalman model

The “elastic” part ψ1 of the specific free energy for the Johnson–Segalman model reads

ψ1(B2,GS) =def
µ

2ρ
(TrB2,GS−3− lndetB2,GS) . (A.30)

We see that apart from the usage of the tensorial quantity B2,GS instead of B2, the specific free

energy of the Johnson–Segalman model is the same as of the Oldroyd-B model. Assumptions

(A.1) have thus been already verified in Appendix A.1.

The tensorial function f for the Johnson–Segalman model reads

f(B2,GS) =def B2,GS− I, (A.31)

and again we see that assumptions (A.2) have already been verified in Appendix A.1 since

the only difference between the tensorial function of the Johnson–Segalman model and of the

Oldroyd-B model lies in the different physical interpretation of its tensorial argument.
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Appendix A.5. Phan–Thien–Tanner model

The “elastic” part ψ1 of the specific free energy for the Phan–Thien–Tanner model reads

ψ1(B2,GS) =def
µ

2ρ
(TrB2,GS−3− lndetB2,GS) . (A.32)

The formula (A.32) is the same as for the Johnson-Segalman model and in turn as for the

Oldroyd-B model apart from its different tensorial argument. Assumptions (A.1) have thus been

already verified in Appendix A.1.

The tensorial function f for the Phan–Thien–Tanner model reads

f(B2,GS) =def epTr(B2,GS−I) (B2,GS− I) , (A.33)

where p>0 is a model parameter.3 From (A.33) it can be immediately seen that (A.2a) is fulfilled.

To verify the validity of (A.2b) let us write

∂ψ1

∂B2,GS

∶ f(B2,GS) = µ

2ρ
epTr(B2,GS−I)Tr(B2,GS−2I+B

−1
2,GS) . (A.34)

The nonnegativity of the right-hand side of (A.34) can then be obtained just as in the case of the

Oldroyd-B model, see (A.7).

It remains to verify assumption (A.2c) which for the given ψ1 and f translates to

(TrB2,GS−3− lndetB2,GS) ≤Cfe
pTr(B2,GS−I)Tr(B2,GS−2I+B

−1
2,GS) . (A.35)

Taking Cf =def e3p and using the identity lndetB2,GS = TrlnB2,GS, a simple manipulation reveals

that (A.35) is equivalent to

(epTrB2,GS −1)Tr(B2,GS−2I+B
−1
2,GS)+Tr(B−1

2,GS+ lnB2,GS− I) ≥ 0. (A.36)

Since p > 0, and TrB2,GS > 0, the factor epTrB2,GS −1 is positive. Moreover, both trace terms in

(A.36) have been already shown to be nonnegative, see (A.7) and (A.10). Requirement (A.2c) is

thus fulfilled.

3 For the sake of simplicity, we consider the exponential Phan–Thien–Tanner model as proposed by Phan Thien [12],

which is the model given by the tensorial function (A.33). There are other models referred to as the Phan–Thien–Tanner

model, see for example the linear Phan–Thien–Tanner model introduced in Phan Thien and Tanner [11]. In this case the

tensorial function f is given by by the formula

f(B2,GS) =def [1+ pTr(B2,GS − I)](B2,GS− I) ,

where p ∈ (0,1/3]. Assumptions (A.2) could be easily shown to hold for this case as well.
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