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Abstract

The spread of ideas in online social networks is a crucial phenomenon to un-

derstand nowadays the proliferation of fake news and their impact in democ-

racies. This makes necessary to use models that mimic the circulation of

rumors. The law of large numbers as well as the probability distribution of

contact groups allow us to construct a model with a minimum number of

hypotheses. Moreover, we can analyze with this model the presence of very

polarized groups of individuals (humans or bots) who spread a rumor as soon

as they know about it. Given only the initial number of individuals who know

any news, in a population connected by an instant messaging application, we

first deduce from our model a simple function of time to study the rumor

propagation. We then prove that the polarized groups can be detected and

quantified from empirical data. Finally, we also predict the time required by

any rumor to reach a fixed percentage of the population.
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1. Introduction

The extraordinary global increase in online social network usage, and the

ease of sending messages ubiquitously and almost instantaneously, have pro-

vided a fertile ground for the dissemination of fake news [1, 2]. In addition,

the use of these platforms can inevitably have deep social and political con-

sequences. For instance, a disinformation campaign became a topic of wide

public concern during the Brexit referendum in the UK, as well as during

the US presidential election, both in 2016 [3, 1, 4].

The seriousness of the situation due to the current and growing phe-

nomenon of fake news lies not only in the speed and ease of reaching broad

and very different strata of society but also in the negligible cost of this new

form of worldwide interactive communication. This is a novel and simulta-

neously complicated situation that makes it necessary to study rumor propa-

gation models in order to design appropriate countermeasures and avoid, for

example, their potential impact on destabilization of liberal democracies [2].

Nevertheless, online social networks cannot be considered solely as mere

media responsible for the propagation of fake news, since first they work in

an inverse manner spreading real news. For this reason, understanding how

ideas spread in social networks, as an element of both economic and political

marketing, becomes a fundamental task. Companies, as well as political

parties, that are interested in promoting their products or disseminating

their ideas to the population, can benefit from the use of new and cheaper

communication channels based on mobile applications such as WhatsApp
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(with millions of users worldwide), which are much more profitable than

traditional marketing strategies, publicity campaigns, etc.

In order to avoid the destabilizing effects due to the spread of fake news, it

is necessary to provide a suitable propagation model of rumors. In this sense,

it is essential to first identify the fundamental variables that characterize this

phenomenon. Given that there are great similarities between the spread of

news and rumors and the spread of infectious diseases, a classic approach to

study how information is disseminated is to define epidemiological models of

populations [5, 6]. Additionally, other studies focused on identifying the most

efficient spreaders in a network [7]. In [8], two models were presented with

the assumption that either spreaders are not always active or an ignorant

is not interested in spreading the rumor. The effect of homogeneity and

polarization, i.e. echo chambers, in the spreading of misinformation online

was studied in [9]. Finally, why rumors spread so quickly in social networks

was analyzed in [10]. It should be noted that an element common to all

these different approaches is that it is necessary to assume certain more or

less believable hypotheses.

In this study, we present a news dissemination model base on a proba-

bilistic approach that allow us to use the law of large numbers to determine

the probability function of sending messages. To the best of our knowledge,

there is no similar result for rumor spread models and we can only refer to

the discussion in [11]. One of our main contributions is that additional un-

realistic hypotheses are not necessary. Therefore, we provide a more general

rumor propagation model, which is also robust, without any limitation due

to simplifications in the hypotheses.
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In addition to reducing the number of necessary hypotheses, another ma-

jor issue when modelling is to obtain a faithful description of the reality that,

in the particular case of social networks, is manifested by its heterogeneity.

In our model, this heterogeneity is reflected in the fact that people are related

through groups, with different sizes and not with the same sensitivity to the

propagation of a message. In particular, the strongly polarized like-minded

population groups are one of the key elements to amplify the spread of ru-

mors. People belonging to this type of group will forwa all kind of news (false

or not) with the sole criterion that they are related to their own ideological

line.

It is interesting to note that news dissemination models hardly take into

account the different reactions that people show when faced with true and

false news. In this sense, there are two underlying problems for any model:

the first refers to the different reaction of people to the veracity/falsity of the

news and the second is related to how the certainty of the news is validated.

In order to give an answer to these problems with our model, we simply

focus on the propagation of the message. Thus, the authenticity or falsity

of the message will be determined solely by the probability of propagation.

Note that, except in very specific cases such us “the president has been

killed”, the information is judged according to the sender and is considered

true based only on the idiosyncrasy of the person who receives it (similarly

to those people who belong to the same ideological line will do it). On

the contrary, that information will be considered false by those who have a

different ideology, opposed to the sender’s. The continuous variations of the

ideological spectrum in the population imply the need to constantly evaluate
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the truth/falsity of a message. This phenomenon can be perfectly described

by means of the different probabilities of propagation of the message: the

more inclined the population is towards the conservatives, the greater the

probability of spreading news that damages the image of the liberals and

vice versa.

In fact, the probability of news propagation is a fundamental parameter

when modeling the dissemination of ideas, since, if most of the individuals in a

network propagate a message with low probability but a group, which we call

the group of uncritical senders (USG), does so uncritically with probability

100%, the USG will be identified as a very polarized group.

The USG label is surely well defined in the sense that humans, not robots,

accelerate the spread of false news more than the truth [12]. The fact that

people react differently when they receive the news, mainly depending on

whether or not they have an ideological affinity, makes the probability of

news propagation a key parameter to present and analyze our results.

We must be aware that social networks are dynamic, that is, they are con-

stantly changing. Because of this, the proposed models can only be useful if

they can show how the spread of news changes when the relevant parameters

of those models vary continuously. That information must be provided, as

we will, with an analytic formulation. Therefore, we present a predictable

model that can be used to eliminate or mitigate the dangerous consequences

of spreading fake news as, for instance, biasing the vote in government elec-

tions, misallocating resources after natural disasters or terrorist actions, mis-

guiding in the investment measures after the stock market crash, etc. All

this with a great political, social and economic impact, due to the fact that
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the number of people who are currently only informed of the news through

their social networks is increasing.

Finally, given that it is a well-known fact that news does not necessarily

have to be disseminated from a single source, but that there may be dif-

ferent sources from which the same news spreads in cascade to the entire

social network, we work with our propagation model of rumors but using

different initial conditions, that is, different seeds are considered in the pop-

ulation. These seeds represent different groups of individuals that initiate

the propagation of the same rumor in the network.

Our results show how the distributions of the propagation probability of

news in social networks change over time as a function of polarized groups of

uncritical senders. Particularly, we found that the probability of spreading

rumors varies from an exponential evolution to a logistic one. As a result,

simply observing how fake news is spread in a social network, we can detect

with our model the presence of a polarized group of uncritical individuals,

which becomes a very useful tool to design countermeasures to deactivate

such groups, if necessary.

The rest of this paper is structured as follows. In section 2, we present a

model of rumor propagation in a social network based on WhatsApp. This is

a numerical model defined from empirical data. In particular, the standard

distributions of the number of person-to-person contacts and of group sizes

were estimated experimentally. In addition, the key parameters that allows

us to analyze the phenomena of spreading rumors are identified and their

values are also estimated. In section 3, analytic expressions that fit the

numerical simulations are deduced. Based on these expressions, a theoretical
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model is proposed that captures the observed behavior and sets the basis

to interpret the dynamics that led to those results. In section 4, we discuss

the potential applications of our model and its predictive capabilities. We

conclude the paper in section 5.

2. Methodology

Taking into account that WhatsApp is one of the most popular messaging

application all over the world (e.g. it reaches a 70% of the total population

in Spain 1), we simulate our rumor propagation model in a social network

based on this application. In order to properly simulate message spreading

over this network, we must distinguish two types of contacts, person-to-

person and groups. We also need to know the standard distributions of the

number of person-to-person contacts and of group sizes. Both were estimated

experimentally as described below.

2.1. Statistical characterization of a WhatsApp network

A sample of 150 college students (age range 18-20 years) was used to ob-

tain the statistical distribution of person-to-person and groups in the What-

sApp network. Individuals were asked about the number of contacts in their

cell phone contact lists, the number of WhatsApp groups with three or more

members and the sizes of those groups (number of members including them-

selves). Moreover, they were asked about the number of frequent individual

WhatsApp contacts, defined as those to whom they would text with a con-

troversial message they learned from any source.

1https://www.messengerpeople.com/global-messenger-usage-statistics/#Spain
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In any contact list, there are many contacts that do not belong to any

group (meaning by group a set of persons linked by a common interest).

Hence, we posed the following question: in case they learned about a partic-

ularly “hot news”, to whom of their contacts would they expressly text for

commenting on it? Obviously, that “hot news” would not be sent to their

attorney or plumber and, depending on the topic, neither to a relative. Thus,

we define the groups of size two as those contacts in the contact list that,

although they may be members of any WhatsApp group, would receive a

message directly from the user about a news considered especially relevant.

Only these size-two groups constitute the set of person-to-person links of

each WhatsApp user.

From our sample data, we find out that the number m of person-to-person

contacts an individual has follows approximately a normal distribution

N(m,µ, σ) =
1

2πσ
e−

(m−µ)2

2σ2 (1)

where µ = 7.35 and σ = 4.38.

The group size distribution, for sizes of 3 ≤ N ≤ 30 members (that

included the majority of our samples), fits an exponential distribution

E(N) = 1− exp(−λ(N − a)) (2)

where coefficients are adjusted from the data as λ = 0.1113 ± 0.0019 and

a = 1.41± 0.12 (r2 = 0.9959). See Figure 1.

In summary, the groups between 3 and 30 individuals in size are charac-

terized by an exponential distribution function, while the groups of size 2, i.e.

person-to-person links, are characterized by a normal distribution function.
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Figure 1: WhatsApp empirical group size distribution (left) and the goodness of fit of the

cumulative distribution function (right) to an exponential (r2 = 0.9959). N represents the

number of individuals in a group (3 ≤ N ≤ 30), E(N) represents the empirical distribution

function, i.e. the fraction of groups of size ≤ N , and Eest(N) is the estimation of E(N).

2.2. The model

In this paper, we introduce a novel model where individuals are linked

either by person-to-person relations or by belonging to the same WhatsApp

group. These links fit the distributions obtained in section 2.1. It is worth

noticing that, initially, a given fraction of population, named the seed, knows

a rumor. This rumor may spread to other linked individuals at each itera-

tion during the numerical simulations. The rumor propagation proceeds

iteratively taking into account two main rules. First, the individual propaga-

tion probability at each iteration is given by a uniform distribution. Second,

there may also be a group of individuals, the so-called uncritical senders

group, which always propagates the rumor at each iteration, i.e. with an

individual propagation probability of 100%.

As the numerical simulations were repeated independently a large number

of times and then we averaged the result, the law of large numbers guaran-

tees that the final law of distribution followed by the rumor propagation is
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determined as well as the time required for a rumor to reach a given fraction

of the population. An important feature of the model is that it shows when

a population is polarized regarding a given rumor.

For the sake of enabling a better understanding of the model that is

developed in detail below, we provide here some useful definitions:

Burned: A person who knows the rumor is said to be a burned individual.

Observe that if an individual is burned, he remains in that state until

the end of the rumor propagation process.

Sender: A person who knows the message (a burned individual) and texts

it to any of his contacts is called a sender.

Receiver: Any individual (burned or not) in the population that is reached

by the message is said to be a receiver.

Seed: All those individuals who know the rumor at the beginning of its

propagation constitute the seed, i.e. the set of burned individuals at

the initial time t = 0.

Person-to-person relation: A direct link between two individuals of the pop-

ulation is called a person-to-person relation. This relationship is singled

out from the group relationship because it represents a one-way link.

If an individual i is connected with another individual j, then j may

receive text messages sent by i, but this does not imply that individual

j could also send messages to i.

Group: The set of three or more individuals in the population that are

interconnected, meaning that what one of the individuals sends to the
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group is received by all others in the group simultaneously.

Individual propagation probability (PIP ): The probability of the rumor

being sent by a burned individual, who knows the rumor, to one of

its contacts (person-to-person probability) or groups in the WhatsApp

network.

Individual initial probability (PII): The probability that individuals are

part of the seed. That is, the probability that an individual knows the

message at the beginning of the process of spreading the rumor.

Uncritical senders group (USG): The set of individuals who automatically

send the message to all of their contacts when they receive it is named

the uncritical senders group. Hence, PIP is always equal to 100% for

individuals in the USG.

USG membership probability (PUSG): The probability that individuals

belong to the USG. It represents the fraction of the population that

forms the USG. The size of the USG is fixed as an initial condition and

once fixed, and randomly chosen the individuals that are a part of it,

it does not change.

2.3. Model algorithms

The model consists of two main steps. First, an algorithm that generates

populations of connected individuals as described in section 2.1. Second,

another algorithm simulating the spreading rumors among these populations.
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2.3.1. Populations

In order to simulate a network with the statistical properties described

in section 2.1, we proceeded to implement an algorithm that reproduces

that structure. That is, given a population of Np individuals, we establish

connections between pairs of individuals following the normal distribution

(1) and also generate groups of 3 to 30 interconnected individuals with group

sizes given by (2).

When come to consider group construction, we will separate groups formed

by just 2 individuals from groups formed by 3 or more individuals; the rea-

son is that in two-person groups, connections are not bidirectional (as we

explained above), whereas for groups with 3 or more individuals it is.

We will assume a normal distribution (1) for the number of 2-groups

an individual belongs to, having the mean and standard deviation fitted

from our sample. From that distribution, the number of individuals nm

that are expected to have a number m of person-to-person connections was

computed, for m = 0, 1, . . . , 30. That is, first the number of individuals in

the population having zero person-to-person contacts, n0 = N(0, µ, σ) was

computed and then, recursively, the number of individuals having m person-

to-person contacts nm = N(m,µ, σ) − N(m − 1, µ, σ) for m = 1, . . . , 30.

Then the nm individuals having m contacts were chosen randomly from the

population, linking them to other individuals also randomly chosen. Notice

that these relationships, by their very nature, are not bidirectional given that

they are not proper WhatsApp groups, but the initial individual will send

messages to the destination individual, but that does not have to work in the

reciprocal.
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To compute the number of groups of size 3 or more an individual belongs

to, we will use the exponential distribution in (2) with the parameters fitted

from our sample. Specifically, the number of groups of size i is calculated as

E(i)−E(i−1) for i = 3, 4, . . . , N . Once known the number of groups of each

size (from 3 to 30 individuals), the individuals of the population belonging

to each group are randomly chosen.

Thirty populations with 10000 individuals each were simulated following

the previous procedure, taking into account that only 70% of the individuals

(the penetration of WhatsApp in Spanish population) should be connected

either person-to-person or to groups of sizes 3 to 30. Each of these simulations

provided a network of connections between individuals of the population.

2.3.2. Message spreading

Once the population has been simulated (see above) the rumor spreads

among its individuals according to the following rules:

1. The fraction of the population that knows the rumor, that is the initial

seed, is chosen initially from the connected population given by PIP .

2. One individual belonging to the see is randomly chosen

3. The groups to which that individual belongs are identified

4. That individual will pass the rumor to each of these groups with a

probability PIP ; for this, a uniformly distributed random value in [0, 1)

is generated for each group, and the rumor is spread to the group if

that value is less than PIP

Steps 2 and 3 are repeated until all seed individuals are exhausted.
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5. All the individuals that know the rumor become part of the seed, and

the propagation process is repeated 100 times; this number of iterations

is chosen because in most simulations the rumor reaches the entire

population before that time.

Once the initial seed and the USG have been chosen, according to the

individual initial probability (PII), the uncritical senders group membership

probability (PUSG), and the individual propagation probability (PIP ) that

characterize the initiation and propagation of the messages on the social

network, the algorithm proceeds according to the following rules:

i) The rumor is propagated among the individuals in the population for

100 iterations (the simulation unit of time).

ii) At each iteration, every burned individual in the population, that is,

every individual who knows the rumor, will communicate it to each of

its contacts with probability PIP .

iii) If an individual belongs to the USG and is burned, it will propagate

the message to all of its contacts (that is, PIP equals 1 for individuals

in the USG).

iv) After every iteration, burned individuals (and WhatsApp groups) are

recorded and counted.

Given that message transmission is a random process, message spreading

algorithm is run 50 times on each population using, for that population al-

ways the same initial seed. The result after finishing each run is the series of

numbers of burned individuals at each iteration. The final result is summa-

rized as the average number of these 50 series. Along the same lines, given
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that each population is computed as a random sample from a probability

distribution, in section 3 we will work with the results obtained by averaging

over the 30 populations, in order to characterize the temporal evolution of

the average number of burned individuals for each set of parameters PIP , PII

and PUSG.

3. Numerical results

To proceed with the simulations, the parameter space PII × PIP × PUSG
is sampled at 500 points given by the following tuples (u, v, w) where u, v ∈

{k · 10−2 : k = 1, 2, . . . , 10} and w ∈ {k · 10−2 : k = 0, 3, 5, 7, 10}. Each of

these 500 points characterizes individuals and groups in a simulated popula-

tion. For each of the 500 points, 30 such populations with 10000 individuals

each were randomly generated following the algorithm described in 2.3. No-

tice that although these populations are different, they are statistically the

same because they were generated using the same parameters at the same

point of the parameter space. For each of these 30 populations, a news was

spread over the network during 100 iterations, and this random process was

repeatedly simulated 50 times, choosing a different initial condition for each

of the 30 populations (the seed individuals who know the information at the

beginning of the propagation). The propagation time series was computed

as the average of the 50 simulations for a given population, resulting in 30

averaged spreading evolutions corresponding to the 30 statistically identical

populations. Finally, the average over the 30 populations was computed as

the propagation time series corresponding to one of the 500 points in the

parameter space.
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The goal of this numeric modeling is to fit an analytic expression that

summarizes the spreading of the news corresponding to the model described

above.

3.1. Case PUSG = 0

To see the effect polarized groups have on news spreading, it was first

needed to know how news spread without those groups (PUSG = 0). In this

section these results are shown and an analytic expression fitted to them.

The analysis is based on data from simulations obtained as the aver-

age number of burned individuals at the n-th iteration taking into account

all populations (30) and all 50 simulations performed on each population.

That is, the behavior of the function corresponding to the average number

of burned individuals at each iteration is studied:

f(n) =
Total of burned individuals at n-th iteration

no. of populations× no. of simulations×Np

where Np is the number of individuals of the population connected by What-

sApp, and n = 1, . . . , 100.

The space of parameters is sliced in sections, that is, we study how rumor

spread in populations for different values of PII ∈ [0, 0.1] and, for each of

these values, the behavior for different values of PIP ∈ [0, 0.1] is also studied.

The simulation results f(n) (see Figure 2) picture the average evolution

of the fraction of burned individuals after successive iterations (indexed by

n) that approach a continuous function F (t) dependent of time t.

For values of PII around 10%, function F (t) is well approximated by an

exponential of the form

Fexp(t) = 1− A exp(−t/a)
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Figure 2: Average number of burned individuals f(n) at each iteration n for different

values of PIP (left, PII = 3%) and PII (right, PIP = 2%). Fixed parameter: PUSG = 0.

The blue lines correspond to the fitting expression (3) in each case.

whereas for smaller values of PII a better fit is obtained using a logistic

function

Flog(t) =
1

1 +B exp(−2t/a)

Therefore, we construct a function that fits the data in the entire range by

changing from one form to the other through a parameter ε:

F (t) =
C exp[(1 + ε)(t− b)/a]− 1
2ε
1−ε + C exp[(1 + ε)(t− b)/a]

(3)

where a, b, ε and C are the fitted coefficients whose values depend on simula-

tion parameters PII and PIP (how, will be shown in what follows). Coefficient

a represents a characteristic time scale. Coefficient b has the meaning of a

time origin, thus can be taken as zero.

To fulfill the initial condition F (t = 0) = PII (the initial fraction is just

the seed), C had to be taken as a function of a, b, ε and PII given by:

C(a, b, ε) =
1 + 2ε

1−εPII

(1− PII) exp[(1 + ε)b/a]
(4)
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From the fitting of the simulation data for different PII and PIP , an

expression is given for ε in the form:

ε = 1 +
aaPII

1 + exp(bb/a)
(5)

where aa is less than zero, in order to produce an ε between 0 and 1. Likewise,

a is fitted to:

1/a = cc P ee
IP (6)

which leads to a characteristic time a tending to infinity, when the probability

PIP tends to zero (that is, if the propagation probability is very small, the

time a rumour will take to spread over the entire network will become very

large). The values of aa, bb, cc and ee can be found in table 1 (for PUSG = 0).

The power law (6) did not provide a good collapse of all the points towards

the fitting curve (see Fig. 5a). Thus, in order to achieve that collapse (see

Fig. 5b), a factor (1+ggPII) is considered to correct for the small dependency

that a showed on PII , resulting in an expression of the form

1/a = cc P ee
IP (1 + gg PII) (7)

Inserting into (3) the expressions for C, ε and a given by (4), (5) and (7)

an expression for F (t) is obtained.

It is remarkable that all the resulting expressions depend exclusively of

PIP , PII and PUSG so that the number of burned individuals at a given

iteration n, are given by (9) in terms of just these parameters. Hence, the

number of burned individuals can be computed at any time, given a point

(PUSG, PIP , PII) in the parameter space, or vice versa, that point in the

parameter space can be computed once the time required to burn a given

fraction of the connected population has been fixed.
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Figure 3: Average number of burned individuals f(n) at each iteration n for different

values of PUSG. Fixed parameters: PII = 2% and PIP = 1%. The results of fitting the

simulation data to the analytic expression (3) are also shown (blue lines).

3.2. Case PUSG 6= 0: Effect of the uncritical senders group

Assuming the presence of very polarized groups among the population,

what we call the uncritical senders group, it is necessary to see how their

existence modifies the spread of news just described. The introduction of

the USG affects the evolution of the fraction of the population a rumor

reaches at a given time, as the simulations show. Some results of these

numerical simulations are shown in Figure 3, together with their respective

fitting to expressions formally identical to (3), which shows its validity also

for PUSG 6= 0.

The relationship (5) between ε and 1/a obtained above for PUSG = 0 is

still valid for PUSG 6= 0, according to the numerical results (see Figure 4 and

table 1). Also expression (7) for 1/a in terms of PIP and PII remains valid
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Figure 4: Fitted values of the coefficient ε with respect to 1/a for different values of

parameter PII . Fixed parameter: PUSG = 3%. The graph of the fitted expression relating

both coefficients with PIP is also shown (blue lines).

(see Figure 5 and table 1).

Nevertheless, the effect of considering a USG in the network makes that

the coefficients aa, bb, cc, ee and gg in equations (5) and (7) become functions

of PUSG. The functional expressions of aa, bb, cc, ee and gg were derived

from the numerical results (for PUSG ∈ [0, 0.1]) as follows:

aa = aa1 + aa2PUSG + aa3PUSG
2

bb = bb1 + bb2PUSG
4/(1 + bb3PUSG

3)

cc = cc1 + cc2PUSG + cc3PUSG
2

ee = ee1 + ee2PUSG + ee3PUSG
2

(8)

where the values of the new coefficients are given in Table 2. Substituting

expressions (8) in equations (5) and (7), and these in equations (4) and (3),
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Figure 5: Left: Fitted values of the coefficient 1/a for different values of PIP and PUSG

(and of PII). The graph of the power law expression (6) is also shown (blue lines). Right:

Values of h(PII) = 1/a
1+ggPII

for different values of PIP and PUSG. Taking into account the

effect of PII on 1/a, the correction given by (7) is shown (green lines). Notice how the

data now collapse to the modified power law.

the general equation for the evolution of F (t) is obtained, exclusively in terms

of the parameters PIP , PII and PUSG, as was our goal.

3.3. Dynamical spreading model

In this section we present a theoretical model that captures the behav-

iors described above. For that, we will interpret our discrete time model in

terms of a continuous time model that may be derived from a differential

equation. For that, it is enough to see that PIP is a probability per unit time

of a message being propagated by one individual to another or to its group,

being that unit time the time separating one iteration from the next one.

Expression (3), describing the fraction of burned individuals as a function of

time turns out to be a solution of the following differential equation:

dF/dt =
2ε

a

[
1− ε

2ε
+ F

]
(1− F ) (9)
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If this equation is interpreted as a law of mass action, the coefficient A = 2ε
a

would stand for the spreading velocity towards the unburned population

(1 − F ) of news originating in the burned population F plus an “invisible”

population given by the additional term G = 1−ε
2ε

.

In order to find out the meaning of this “invisible” population (which is

constant along the spreading process), let us consider the case of PII → 0,

for which ε→ 1. Then, employing (5), equation (9) tends to

dF/dt = 1/a

[
aaPII

1 + exp(bb/a)
+ F

]
(1− F )

that is, the “invisible” population is proportional to the seed population that

knows the rumor at t = 0.

4. Discussion

For further clarification, we first summarize the procedure developed

above to obtain the function F (t), which depends only on parameters PIP ,

PII and PUSG. Next, we discuss our model and its capability to make pre-

dictions about the phenomenon of spreading rumors.

We outline below the steps necessary to adjust the experimental data and

find the function F (t).

First step: A partition of the parameter space is defined. For each of the

500 points in the partition, numerical simulations are performed and

the results obtained are analyzed as indicated below.

Second step: Coefficients a and ε are computed using (3). C is estimated

using (4), so that the initial conditions are fulfilled.
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Third step: We study the dependence of these coefficients on the parame-

ters PIP and PII (for PUSG fixed), using (5) and (7).

Fourth step: Using the data set that was fitted in the first steps, we deduce

a general expression of the function F (t) and also analyze its depen-

dence on PUSG (see (8)).

In section 3.2, the distribution of burned individuals, F (t), was deduced

as a function dependent only on the parameters inherent to the network,

PIP , PII and PUSG. This function becomes a fundamental tool for predicting

how long fake news will take to spread and cause problems or for estimating

the time necessary for messages, as for instances a marketing campaign or

specific information, to be disseminated among the target audience.

4.1. Time necessary for a rumor to reach a fraction of the population

One of the main results of this study is that the function F (t) can be used

to estimate the number of burned individuals at any time. An immediate

consequence, no less important, is that the time necessary for a rumor to

reach a given fraction of the population can also be calculated from this

function. In summary, and more formally, the number of iterations tX (or

nX , for discrete time in our model) that are necessary for a rumor to reach

a fraction of the population X, assuming that the message begins to spread

at time t = 0, can be calculated using (3).

tX = F−1(X) = b+
a

1 + ε
log

(
1 + 2ε

1−εX

(1−X)C

)
(10)

Therefore, the equation X = F (tX) provides an implicit relation between the

parameters inherent in the network, PII , PIP and PUSG, and the variables
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that define the necessary time tX and the fraction of the population X. As

a result, we can estimate the size of the seed (that is, the value of PII) such

that a given fraction X of the population is reached at time tX fixed, in a

network characterized by PIP and PUSG. In particular, the effect of the seed

(PII) and the size of the uncritical senders group (PUSG) can be studied to

obtain the result sought in a given population.

4.2. Time evolution from observed data

The function that models the propagation of a rumor in a network de-

pends, obviously, on the parameters associated with that particular rumor.

Our model can be used to estimate these parameters from empirical obser-

vations on how the rumor is spread. In fact, only four observations of the

number of individuals burned at four different times, since the beginning of

the propagation of a rumor, are sufficient to determine the coefficients that

fit the function F (t). Then, we can use this adjusted expression to calculate

the number of individuals burned at any time in the future.

As it is shown in figure 6, the fitted function (blue line) accurately follows

that obtained by numerically fitting the data (green dots). These approxima-

tions work for different values of PII . It should be noted that the adjustment

of the coefficients is done for a burned fraction of the population of less than

20%, so the function thus fitted can be used to predict when a catastrophe

will occur (i.e., a large-scale spreading of an idea). Last but not least, the

adjusted coefficients are obtained not only from small values of individuals

burned in the population but, and this is the most important, from values

that remain almost unchanged over time, see figure 6.
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Figure 6: Approximations of (t, F (t)) based on the evolution of the early times. From

left to right, the values of PUSG are 0%, 3% and 7%. Fixed parameter: PII = 5% and

PIP = 1%. The dotted line (green) corresponds to numerical simulation data (n, f(n)).

The four points used to approximate the coefficients of F (t) are highlighted in red.

4.3. Network structure inference

Knowing the number of burned individuals as a function of spreading

time allows us to infer the very structure of the network in which the news

is being disseminated. Once the propagation of a rumor for a given topic is

known, its current evolution f(n) is used to estimate the coefficients a, ε and

C in (3), and from them the parameters of the network, PII , PIP y PUSG,

can be calculated.

From equations (5) and (8), the value of the parameter PUSG is calculated.

Next, when entering in the function F (t) the initial value of PII , the estimated

value PUSG and the number of individuals burned X at time tX , we obtain

the value of parameter PIP .

Note that the calculation of PII and PUSG has to be performed for each

type of news, because each topic will have its own values for the parameters

PII and PUSG. Once these parameters are determined, the function F (t) can

be used to predict the propagation of similar topic news, and use that pre-

diction to design countermeasures, either to avoid further propagation, e.g.,

25



from a political point of view, or to improve the dissemination of news, e.g.,

with commercial or public information, such as the annual flu vaccination

campaign.

5. Conclusions

As far as we know, we present here a new approach to study the crucial

phenomena of rumor propagation through WhatsApp. It is noteworthy that

the results obtained in this paper, as well as our algorithms and main tech-

niques used, can be naturally extended to any other type of similar instant

messaging application.

One of our main contributions is to provide a manageable function of time

that describes the time evolution of rumor spreading taking into account only

person-to-person relationships and contact groups. To be more precise, fixed

the initial and propagation probabilities for each individual (PII and PIP ),

the function in (3) defines the fraction of the population who knows the rumor

at different times in terms of the parameters that characterize the structure

of the network and the dynamics of propagation. In fact, the values of these

parameters were estimated from the data obtained by numerical simulations

for different scenarios depending on the size of the uncritical senders group

(PUSG).

Conversely, we show that, given the temporal evolution of a rumor by a

function as in (3), it can be predicted how the message propagates throughout

the network and how much time it takes to burn a fraction of the population.

As a set of few parameters (PII , PIP and PUSG) typifies the structure of the

network, how a rumor spreads in any social network can be simulated simply
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by replacing different values of these parameters in the analytical expressions

we provide in this paper. Therefore, this information can be used to assess

how long it will take a rumor to become dangerous and, consequently, to make

decisions accordingly during that time in order to avoid the damages caused

by the disinformation. Moreover, the number of individuals that should be

burnt to ensure that the rumor reaches a fixed fraction of the population in

a given time can be calculated.

Finally, we also study the impact of the so-called uncritical senders group,

i.e. a group of individuals who automatically forward a message as soon as

they receive it. For all we know, this is a novel idea that allows us to simulate

the behavior of groups of highly polarized humans that disseminate fake news

with the vile purpose of influencing and causing major changes in society.

From our model, we can detect and estimate the size of a group of uncritical

senders in a social network by analyzing in particular how the presence of

this group changes the temporal evolution in the propagation of a rumor.

In summary, we present a model that shows how some few but key pa-

rameters influence the spread of a rumor and determine the speed with which

a rumor may reach a large part of the population. Furthermore, we study

how this rumor propagation may be manipulated both through information

(or disinformation campaigns) and a group of uncritical senders that actively

disseminate some types of news to the entire population.
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aa bb

PUSG Values Error Values Error

0% −0.0208± 0.0003 1.49% 7.32± 0.16 2.18%

3% −0.0663± 0.0006 0.91% 7.69± 0.09 1.23%

5% −0.1148± 0.0010 0.90% 8.28± 0.09 1.12%

7% −0.180± 0.002 1.12% 8.77± 0.11 1.31%

10% −0.328± 0.006 1.93% 9.47± 0.19 2.02%

cc ee

PUSG Values Error Values Error

0% 0.03204± 0.00011 0.33% 0.9381± 0.0015 0.16%

3% 0.03579± 0.00015 0.41% 0.9228± 0.0019 0.21%

5% 0.0391± 0.0002 0.51% 0.907± 0.002 0.26%

7% 0.0431± 0.0002 0.56% 0.888± 0.003 0.30%

10% 0.0521± 0.0004 0.77% 0.843± 0.004 0.43%

gg

PUSG Values Error

0% 0.00354± 0.00019 5.42%

3% 0.0036± 0.0002 6.70%

5% 0.0039± 0.0003 7.65%

7% 0.0045± 0.0003 7.54%

10% 0.0054± 0.0005 8.61%

Table 1: Coefficients and exponents obtained from fitting expressions (5) and (7) to data

from simulations with different values of PUSG.
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Parameter Value Error

aa1 -2.2 ±0.4

aa2 -63 ±18

aa3 -2410 ±170

bb1 7.319 ±0.010

bb2 1.09×106 ±0.09×106

bb3 49000 ±4000

cc1 2.405 ±0.010

cc2 4.7 ±0.5

cc3 -35 ±4

ee1 0.9375 ±0.0017

ee2 -0.25 ±0.08

ee3 -7.0 ±0.7

gg1 0.3541 ±0.0010

gg2 10800 ±600

gg3 4700 ±300

Table 2: Coefficients of equations (8).

31


	1 Introduction
	2 Methodology
	2.1 Statistical characterization of a WhatsApp network
	2.2 The model
	2.3 Model algorithms
	2.3.1 Populations
	2.3.2 Message spreading


	3 Numerical results
	3.1 Case PUSG=0
	3.2 Case PUSG =0: Effect of the uncritical senders group
	3.3 Dynamical spreading model

	4 Discussion
	4.1 Time necessary for a rumor to reach a fraction of the population
	4.2 Time evolution from observed data
	4.3 Network structure inference

	5 Conclusions

