
Dynamics of subfamilies of Ostrowski - Chun methods

B. Campos and P. Vindel
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Abstract

In this paper, we classify the fixed and critical points of the bi-parametric family of Ostrowski-Chun
methods applied on quadratic polynomials. We obtain the values of the parameters that reduce the number
of free critical points.

We select the one-parametric subfamilies with only one free critical point and we carry out a dynamical
study of these subfamilies. For each subfamily we study the parameter plane in order to consider which
numerical methods are more appropriate for solving nonlinear equations.

1 Introduction

Computers are a universal tool for solving a broad class of problems by implementing numerical methods. This
is the reason why they have become indispensable for much current scientific research. For the case of the
search of the roots of an equation, iterative methods are used. The iterative methods require at least one initial
estimate for the location of the root being sought. If this initial estimate is ”close enough” to a root then, in
general, the procedures converge to this root under standard conditions. The problem is, of course, how to
obtain such ”good” initial estimate. The study of the dynamics of iterative methods is a useful way to see what
initial conditions are most appropriate for a proposed problem.

The application of iterative methods for solving nonlinear equations f(z) = 0, with f : Ĉ→ Ĉ, gives rise to
rational functions whose iterates define a discrete dynamical system. In general, the study of this dynamics is
very complicated and it is not well-known. The simplest model is obtained when f(z) is a quadratic polynomial
and the iterative process considered is Newton’s method. The study of the dynamics of other iterative methods
used for solving nonlinear equations have been widely developed in recent years (see, for example, [1], [2], [3],[4],
[5], [6], [7], and references therein).

In recent studies, many authors ([8], [9], [10], [11], [12], [13], [14], [15], for example) have found interesting
dynamical behaviours, including periodicity and others anomalies. One of the main interests in these papers has
been the study of the parameter spaces associated to families of iterative methods, which allow us to distinguish
members with better behaviour.

In this paper we study a bi-parametric family with order of convergence four. The bi-parametric families
appear with a certain frequency in the design of new numerical methods since they allow to adjust the values
of the parameters in order to achieve a higher degree of convergence, see for example [16], [17], [18], [19], [20],
[21], [22], [23], or even for building methods with memory (see [24], for example). Some of these families have
very high order of convergence ([25], [26]) that complicates their dynamical study.

A dynamical study of an iterative method includes the calculus of the fixed and the critical points of the
system. The solutions of the initial equation are fixed points of the iterative system. The numerical method
fails if an initial condition goes to a fixed point different from the solution of the equation or to another strange
attractor. Then, it is interesting to analyze the stability of the strange fixed points. Critical points also play
an important role because every attractor attracts a critical point (see [27], [28]); then, the iteration of the
critical points detects the existence of strange attractors. Parameter planes are built by iterating the critical
points and give us information about the values of the parameters corresponding the iterative methods with
bad behaviour.

In this paper, we consider the bi-parametric family defined by a generalization of the Ostrowski and the Chun
methods introduced by A. Cordero et al. ([8], [9]) applied on quadratic polynomials. We make an exhaustive

1



study of the fixed and critical points in terms of the parameters. First, in Section 2, we consider that both
parameters are real and we study those bifurcation curves where the character and the number of fixed and
critical points change.

From this study we select, in Section 3, the one-parameter subfamilies defined by the bifurcation curves
previously obtained proving that the number of free critical points decreases on these curves. We select the
five subfamilies for which there is only one free critical point in order to carry out a dynamical study of such
methods; the fact of having only one free critical point allows us to draw the corresponding parameter plane.

These subfamilies are considered in Section 4. As there is only one parameter we consider it as a complex
parameter and provide a dynamical study on the complex plane. Observing the parameter planes obtained, we
can see that two of these subfamilies show very good behaviour, the black areas of no convergence of the critical
point to the roots are very small. We make a detailed study analyzing the stability of the strange fixed points
in order to locate these black areas. We also show dynamical planes corresponding to different values of the
parameter in order to visualize the basins of attraction of the roots and the strange attractors.

2 The bi-parametric family

In [8] the authors design new parametric families of iterative methods for nonlinear equations by using Ostrowski
and Chun methods, whose iterative schemes are:

xk+1 = yk −
f(xk)

f(xk)− 2f(yk)

f(yk)

f ′(xk)
and xk+1 = yk −

f(xk) + 2f(yk)

f(xk)

f(yk)

f ′(xk)

where yk = xk − f(xk)
f ′(xk)

is the step of Newton’s method. They design a new family as a generalization of these

two schemes:

yk = xk − α
f(xk)

f ′(xk)
; xk+1 = yk −

(
f(xk)

a1f(xk) + a2f(yk)
+
b1f(xk) + b2f(yk)

f(xk)

)
f(yk)

f ′(xk)
.

They show that the order of convergence of this new family is at least four if α = 1, a2 = a21(b2 − 2) and
b1 = 1− 1

a1
, with a1 6= 0. With these values of the parameters, in [9] the authors apply this family of methods

on the quadratic polynomials p(z) = z2+c in order to study its behavior. It is known (see, for example, [29, 30])
that the roots of a polynomial can be transformed by the conjugacy map h (z) with no qualitative changes on
the dynamics of the family of polynomials, where

h (z) =
z − i

√
c

z + i
√
c
.

This map, known as Möbius transformation, has the following properties:

(i) h(i
√
c) = 0, (ii) h(−i

√
c) =∞, (iii) h(∞) = 1.

By applying this conjugacy map, the operator of this class of numerical methods is conjugated to the rational
function

Oa1,b2 (z) =
−z4

(
(z + 1)

2 (
z2 + 4z + 5

)
− a1

(
b22 − b2

(
z3 + 4z2 + 5z + 4

)
+ 2 (z + 1)

2
(z + 2)

))
z4
(
a1 (b2 − 2)

2 − 5
)

+ z3 (−5a1 (b2 − 2)− 14)− 2z2 (2a1 (b2 − 2) + 7)− z (a1 (b2 − 2) + 6)− 1
.

For our study, we rename the parameters in order to simplify the calculations:

a = a1 (b2 − 2) and b = b2

obtaining the following operator

Oa,b (z) = z4
−5− 2a+ ab+ (−14− 5a) z + (−14− 4a) z2 + (−6− a) z3 − z4

−1 + (−6− a) z + (−14− 4a) z2 + (−14− 5a) z3 + (−5 + a (−2 + b)) z4
. (1)

We start our analysis by considering a and b as real parameters and studying the change in the number and
the nature of the fixed and critical points of the associated operator. This study allows us to find interesting
relations between these parameters that lead to one-parametric subfamilies with only one free critical point. We
continue our work making a more exhaustive study of the dynamics of these subfamilies in the complex plane.
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2.1 Fixed points

The first step of the dynamical study of the operator Oa,b (z) as a function of the parameters a and b consists
of calculating its fixed and critical points. As we will see, the number and the stability of the fixed and critical
points depend on these parameters.

Let us recall that a point z0 is a fixed point of F : Ĉ → Ĉ if F (z0) = z0. The basin of attraction of an
attracting fixed point z0 consists of the set of points that accumulate on z0 under iteration of F . A point z0
is called a critical point of F if F ′(z0) = 0. Moreover, any rational map of degree d has d + 1 fixed points
(including multiplicity) and 2d− 2 critical points (with multiplicity) (see [29], for example). In our case, there
are 9 fixed and 14 critical points.

As fixed points satisfy Oa,b (z) = z, we obtain the points z = 0, z = 1, z = ∞ and the roots of the sixth
degree polynomial

p6 (z) = 1 + (7 + a) z + (21 + 5a) z2 + (30 + a (8 + b)) z3 + (21 + 5a) z4 + (7 + a) z5 + z6. (2)

The points z = 0 and z = ∞ correspond to the roots of the quadratic polynomial p(z) = z2 + c and have
their own basin of attraction for all values of the parameters. The points z = 1 and the roots of the sixth degree
polynomial (2) are called strange fixed points, since they do not correspond to any root of the initial polynomial.
Strange fixed points can be attractors; so, a key part in the dynamical study of an iterative method is the search
of their basins of attraction, because in these regions the method fails.

Let us solve p6(z) = 0 in order to obtain the other 6 strange fixed points. As p6 (z) is a symmetric polynomial,
we make the change of variables

z +
1

z
= x

that transforms equation p6 (z) = 0 into the third order equation

16 + 6a+ ab+ (18 + 5a)x+ (7 + a)x2 + x3 = 0, (3)

whose solutions are

x1 =
−1

3
(7 + a) +

1

3

(
3
√
f + 3
√
g
)

x2 =
−1

3
(7 + a)− 1

6

(
3
√
f + 3
√
g
)
−
√

3

6
i
(

3
√
f − 3
√
g
)

x3 =
−1

3
(7 + a)− 1

6

(
3
√
f + 3
√
g
)

+

√
3

6
i
(

3
√
f − 3
√
g
)

where

f =
1

2
(16 + 21a+ 3a2 − 2a3 − 27ab−

√
∆1)

g =
1

2
(16 + 21a+ 3a2 − 2a3 − 27ab+

√
∆1)

and
∆1 = 4

(
5 + a− a2

)3
+
(
16 + 21a+ 3a2 − 2a3 − 27ab

)2
.

As parameters a and b are real, if ∆1 ≥ 0 the three roots x1, x2, x3 are real while we obtain one real and
two complex roots for ∆1 < 0.

Undoing the previous change of variables, the 6 roots of p6 (z) are given by:

z =
xi ±

√
x2i − 4

2
, i = 1, 2, 3. (4)

Therefore, the curves ∆1 = 0 and xi = ±2 are bifurcation curves that separate the (a, b)−plane into regions
with different type of roots.

The explicit formula for the bifurcation curve ∆1 = 0 is

b =
− (a+ 1)

(
2a2 − 5a− 16

)
± 2

√
(a2 − a− 5)

3

27a
.
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For solving xi = 2, we substitute this value in equation (3), obtaining

16 + 6a+ ab+ 2(18 + 5a) + 4(7 + a) + 8 = 0

that leads to the bifurcation curve

b =
−88− 20a

a
.

Following the same reasoning for condition xi = −2, we obtain −54ab = 0, that leads to the bifurcation
curves a = 0 and b = 0.

Let us remark that for x = 2 all the fixed points coincide with the fixed point z = 1. If x = −2 all the fixed
points coincide with z = −1 which is a preimage of z = 1 since Oa,b(−1) = 1.

The real or complex character of the strange fixed points for each region of the (a, b)-plane separated by
these bifurcations curves can be seen in the Figure 1. We use different colours in order to distinguish these
regions and we indicate the number of real (R) and complex (C) strange fixed points in each region.

Figure 1: Regions in (a, b)-plane where the real and complex character of strange fixed points is indicated.

In Figure 2 we show a zoom of the previous figure for small negative values of the parameter b.

Figure 2: A zoom of Figure 1.

Then, for given values of the parameters a and b, we know the number of real and complex strange fixed
points of the corresponding dynamical system. If we focus on a real study of the dynamical system, those values
of the parameters corresponding to regions where all the strange fixed points are complex will lead to a more
stable real dynamics.

2.2 Critical points

As commented above, every attractor has a critical point in its basin of attraction; then, the iteration of the
critical points tells us the existence of strange attractors. Parameter planes are built by iterating the critical
points, colouring in black the regions where the critical point goes to an attractor different from a solution of
the problem.

Critical points satisfy O′a,b (z) = 0. The derivative of our operator is given by
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O′a,b (z) = − z3 (1 + z)
4
p4 (z)

(1 + (6 + a) z + 2 (7 + 2a) z2 + (14 + 5a) z3 + (5− a (b− 2)) z4)
2 (5)

where p4 (z) is the symmetric fourth degree polynomial

p4 (z) = (−20− 8a+ 4ab) +
(
−80− 44a− 6a2 + 2ab+ 3a2b

)
z +

(
−120− 72a− 12a2 − 4ab− 4a2b

)
z2 +(

−80− 44a− 6a2 + 2ab+ 3a2b
)
z3 + (−20− 8a+ 4ab) z4.

Then, from (5) we obtain that the fixed points z = 0 and z = ∞ are also critical points of degree 3
and consequently, these fixed points (that are associated to the roots of the quadratic family) are always
superattracting points and have their own basin of attraction for any values of the parameters. As we have seen
above, the point z = −1 is a preimage of z = 1.

We obtain other four critical points given by the roots of p4 (z) . As p4 (z) is a symmetric polynomial, we
use again the change of variables

z +
1

z
= x

that transforms equation p4 (z) = 0 into the two order equation

(−80− 56a− 12a2 − 12ab− 4a2b) +
(
−80− 44a− 6a2 + 2ab+ 3a2b

)
x+ (−20− 8a+ 4ab)x2 = 0,

whose solutions are

x± =
80− 3(b− 2)a2 − 2(b− 22)a± a

√
∆3

8(−5 + a(b− 2))
,

where
∆3 = (b− 2)(−72 + 9a2(b− 2) + 196b+ a(76b− 72)).

Then, these four critical points are given by

c =
x± ±

√
x2± − 4

2
.

The curves ∆3 = 0 and x± = ±2 are bifurcation curves that separate the (a, b)−plane into regions with
different type of critical points.

From equation ∆3 = 0 we obtain the bifurcation curves:

b = 2,

b =
18(a+ 2)2

196 + 76a+ 9a2
.

From equations x± = ±2, we obtain the bifurcation curves:

a = −4,

b =
5 + 2a

a
,

b =
4(10 + 3a)

a
,

a = 0,

b = 0.

In Figure 3 we can observe the different regions of the (a, b)−plane defined by these bifurcation curves. We
use different colours in order to distinguish these regions and we indicate the number of real (R) and complex
(C) free critical points in each region.

Figure 4 gives a zoom of the previous one for small positive values of the parameter b.
Let us remark that, for given values of the parameters a and b, we know the number of real and complex

free critical points of the corresponding dynamical system. If we focus on a real study of the system, those
values of the parameters corresponding to regions where all free critical points are complex implies that there
is no other stable behaviour than the basins of attraction of the roots of the quadratic polynomial.
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Figure 3: Regions in (a, b)-plane where the real and complex character of free critical points is indicated.

Figure 4: A zoom of Figure 3.

3 One-parameter subfamilies with one free critical point

Let us see that the number of free critical points decrease on the bifurcation curves obtained above.
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• On the bifurcation curve b = 18(a+2)2

196+76a+9a2 , we have that

x± =
(28 + 16a+ 3a2)

(−14− 5a)
,

then

c1 = c3 =
−(28 + 16a+ 3a2) +

√
3a(2 + a)(4 + a)(14 + 3a)

2(14 + 5a)

and

c2 = c4 =
−(28 + 16a+ 3a2)−

√
3a(2 + a)(4 + a)(14 + 3a)

2(14 + 5a)
.

As c1c2 = 1, there is only one free critical point, since both points have the same dynamical behavior.
It is easy to show that if two critical points of this family satisfy ci = 1

cj
the dynamics of the system is

equivalent (see [31]) and there are only one free critical point.

For − 14
3 < a < −4 or −2 < a < 0 we have that ci ∈ C; for other values of a we have that ci ∈ R.

• For a = −4, we have that

p4(z) = −4(z − 1)2(4b− 3 + (−6− 2b)z + (4b− 3)z2.

Then, the critical points are z = 1 (corresponding to a fixed point) and

c± =
3 + b±

√
15b(2− b)

4b− 3
.

As c+c− = 1, there is only one free critical point.

Moreover, for b < 0 or 2 < b we have that c± ∈ C; for other values of b we have that c± ∈ R.

• On the bifurcation curve b = 5+2a
a , the four order coefficient of the polynomial p4 (z) vanishes and its

degree is reduced to three. In this case, the free critical points are the solutions of the equation

(5a+ 14) z3 +
(
4a2 + 20a+ 28

)
z2 + (5a+ 14)z = 0,

one of them is z = 0 (which is a fixed point) and the other two are

c± =
−2
(
a2 + 5a+ 7

)
±
√
a (2a+ 5) (2a+ 7) (a+ 4)

5a+ 14
.

It can be checked that c+c− = 1; then, for these values of the parameters, there is only one free critical
point. We can observe that c± ∈ C for −4 < a < −7/2 and −5/2 < a < 0; for other values of a we have
that c± ∈ R.

• On the curve b = 4(10+3a)
a we have that

p4 (z) = 10(z − 1)2(14 + 4a+ (28 + 18a+ 3a2)z + (14 + 4a)z2).

Then, the critical points are z = 1 (corresponding to a fixed point) and

c± =
−(28 + 18a+ 3a2)±

√
a (4 + a) (10 + 3a) (14 + 31)

4(2a+ 7)
.

As c+c− = 1, there is only one free critical point.

Moreover, c± ∈ C for b < −14/3 or b > −10/3 and c± ∈ R for other values of b.
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• For b = 0, we have that

x+ =
20 + 14a+ 3a2

−10− 4a
and x− = −2,

then

c1,2 =
−(20 + 14a+ 3a2) +

√
3a(2 + a)(4 + a)(10 + 3a)

4(5 + 2a)

and
c3 = c4 = −1.

The point z = −1 is a preimage of the strange fixed point z = 1. As c1c2 = 1, there is one free critical
point.

Moreover, −4 < a < − 10
3 or −2 < a < 0 we have that c1,2 ∈ C; for other values of a we have that c1,2 ∈ R.

• The cases a = 0 and b = 2 come together. As a = a1(b− 2) and a1 6= 0, we have that a = 0 if and only if
b = 2. In this case the operator of the corresponding numerical method is

O0,2(z) = z4
z2 + 4z + 5

5z2 + 4z + 1

and is derivative is:

O′0,2(z) = 20z3
(1 + z)4

(5z2 + 4z + 1)2
.

The point z = −1 is a preimage of strange fixed point z = 1, which is repelling since O′0,2(1) = 16
5 > 1.

Then, there are not other critical points than z = 0 and z =∞.

We summarize the previous calculus in the following propositions.

Proposition 3.1. For a = 0 and b = 2 the operator Oa,b (z) has not free critical points.

Proposition 3.2. The operator Oa,b (z) has only one free critical point for the following values of the parame-
ters:

b = 0,

b =
5 + 2a

a
,

b =
18(a+ 2)2

196 + 76a+ 9a2
,

a = −4,

b =
4(10 + 3a)

a
.

Some dynamical planes corresponding to values of b = 0 and b = 2 have been obtained in [9].
Let us remark the results obtained in the previous propositions. Since a critical point is needed in the basin

of attraction of any attractor, Proposition 3.1 shows that all the dynamical planes corresponding to the values
of the parameters a = 0 and b = 2 are divided into two basins of attraction associated to z = 0 and z =∞. In
this case, the resulting scheme corresponds to the Chun’s method.

On the other hand, the values of the parameters stated in Proposition 3.2 are those for which this bi-
parametric family has only one free critical point. In these cases the associated methods can show a more stable
dynamical behaviour since, at most, there is one strange attractor; that is, the dynamical planes are divided
into, at most, three different basins of attraction. Note that for b = 0 the resulting scheme corresponds to the
King’s family.

For any values of the parameters outside the lines described in Propositions 3.1 and 3.2, the bi-parametric
family has two free critical points. In this case, the system can present two different strange attractors.

In the following section we carry out a dynamical study of the subfamilies defined by Proposition 3.2.
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4 Dynamical study of the one-parametric subfamilies

In the following, we consider the families associated to the values obtained in Proposition 3.2 and call them S1,
S2, S3, S4 and S5. As they are one-parametric families, from now on, we consider the parameter as complex
and we introduce a new notation for the corresponding operators. For each subfamily, we draw the parameter
plane associated to one critical point. As we have seen, the critical points are related and there is one free
critical point.

Parameter planes are drawn by iterating the critical point and studying its asymptotic behaviour. A grid of
1501× 1501 points is considered. The critical point is iterated up to 100 times; if before reaching 100 iterations
a point w is close enough to z = 0 or z =∞ (|w| < 10−4 or |w| > 104 ), then we conclude that the critical orbit
converges to one of the roots of the polynomial and plot the parameter using a scaling of red colours depending
on the number of iterates taken before escaping. If the critical orbit has not escaped to z = 0 or z =∞ in less
than 100 iterates, then this value of the parameter is painted in black. Black parameters are, precisely, those
parameters for which the critical orbit can accumulate on an strange attractor. Hence, black parameters are
not good for the stability of the numerical method. Dynamical planes are obtained with the same number of
points, the same number of iterations and stopping criterium.

We first recall some definitions of complex dynamics, see [30] and [28] for a more complete study of this
subject. The book [29] presents a broad dynamical study of rational functions.

Given a rational map R : Ĉ → Ĉ, where Ĉ denotes the Riemann sphere, the set of its iterates can be
considered as a discrete dynamical system. The orbit O(z) of a point w ∈ Ĉ is given by the subsequent iterates
of w under R(z), i.e.

O(z) = {z, R (w) , R2 (w) , . . . , Rn(z), . . .}.

A point z0 ∈ Ĉ is called fixed if R (z0) = z0. A point z0 is called periodic of period p > 1 if Rp (z0) = z0 and
Rk (z0) 6= z0, k < p; the orbit of z0 is called a periodic orbit of period p. A point z0 is pre-periodic if it is not
periodic but it is eventually mapped under iteration of R(z) to a periodic one.

Fixed points are classified depending on their multiplier λ = R′(z0). A fixed point z0 is called:

• attractor if |λ| < 1 and superattractor if λ = 0;

• repulsor if |λ| > 1;

• indifferent or neutral if |λ| = 1.

The same classification can be used for periodic points of any given period p since they are fixed points of
the map Rp(z). The multiplier λ of a fixed point z0 determines the possible dynamics which might take place
in a small neighborhood of it (see [28]).

The basin of attraction A(z0) of an attracting point z0 consists of the set of points z ∈ Ĉ that accumulate
on z0 under iteration of R(z), i.e.

A (z0) = {z ∈ Ĉ : Rn (z)→z0 when n→∞}.

The dynamics of R(z) provides a totally invariant partition of the Riemann sphere. The Fatou set, F (R),

of a rational map R(z) consists of the points z ∈ Ĉ such that the family of iterates {R(z), R2(z), . . . , Rn(z), . . .}
is normal in some open neighborhood U of z. Its complement, the Julia set J (R), consists of the points where
the dynamics of R(z) is chaotic. The Fatou set is open and the Julia set is closed. The connected components
of the Fatou set are called Fatou components and are mapped among themselves under iteration.

The critical points of a rational map R(z) are defined as the z ∈ Ĉ where R(z) fails to be injective in any

neighborhood of z or, equivalently, the z ∈ Ĉ such that R′(z) = 0 (see [29], for example). Moreover, all periodic
Fatou components are related to critical points being that the basins of attraction of attracting and rationally
indifferent points contain, at least, a critical point (see, for example, [28]). Then, if there is a free critical point,
there can be values of the parameter for which the free critical point is in the basin of attraction of an attractor
different from z = 0 or z =∞. These values of the parameter are depicted in black in the parameter plane.

The simplest example of complex dynamics is given by the dynamical system that appears by iterating
Newton’s method on polynomials of degree two. In this case, the Fatou set consists of two basins of attraction
of the superattracting fixed points, corresponding to the roots of the polynomial, while the Julia set consists of
a straight line which separates these basins of attraction. Nevertheless, this behavior becomes more complicated
in the case of other families of iterative methods, as those cited in the introduction.

9



4.1 The subfamily S1

The one-parametric family S1 is obtained for b = 0 and corresponds to the King’s method, whose dynamics is
briefly studied in [7]. The associated operator is:

OS1a (z) = z4
5 + 2a+ (4 + a) z + z2

1 + (4 + a) z + (5 + 2a) z2
.

The fixed points are obtained by solving OS1a (z) = z or by making b = 0 in the expressions obtained in
Section 2.1. The points z = 0 and z =∞ are associated to the roots of the quadratic polynomial p(z) = z2 + c.
The strange fixed points are z = 1 and the solution of the fourth degree equation

1 + (5 + a) z + (10 + 3a) z2 + (5 + a) z3 + z4 = 0 (6)

The change of variables

z +
1

z
= x

transforms equation (6) into the second order equation

y2 + (5 + a)y + (8 + 3a) = 0,

whose solutions are

y± =
−5− a±

√
a2 − 2a− 7

2
.

The four solutions of the equation (6) are

exi =
y± ±

√
y2± − 4

2

for i = 1, ..., 4.
In this case, the critical points are z = 0, z =∞ and

c± =
−20− 14a− 3a2 ±

√
3a(2 + a)(4 + a)(10 + 3a)

4(5 + 2a)
.

As we have seen, c+c− = 1, then we have only one free critical point.
Now, we consider the parameter a complex; then, we write a = α+ βi. The parameter plane (α, β) for the

critical point c+ is shown in Figure 5. Black regions correspond to values of the parameter where the critical
point c+ does not converge to a root (z = 0 or z =∞).

We study the stability of a fixed point p by analyzing the regions of the complex plane where |OS1′a (p)| < 1.
In Figure 6, we show the curves where z = 1 and the strange fixed points are indifferent. The orange circle
corresponds to |OS1′a (1)| = 1. If |OS1′a (ex1)| = |OS1′a (ex2)| = 1 we obtain the cyan curve.

For values of the parameter on the two red cardioids, ex3 and ex4 are indifferent points. A zoom of the
Figure 6 is given in Figure 7.

The stability of the fixed point z = 1 is studied in the following proposition.

Proposition 4.1. The strange fixed point z = 1 satisfies one of the following statements.

1. If |a+ 226
55 | <

16
55 , then z = 1 is an attractor; moreover, it is a superattractor for a = −4.

2. If |a+ 226
55 | =

16
55 , then z = 1 is an indifferent fixed point.

3. For any other value of the complex parameter a, the point z = 1 is a repulsor.

Proof. The point z = 1 is attracting for values of the parameter such that

|OS1′a (1)| < 1.

10
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Figure 5: Parameter plane of the subfamily S1.

Figure 6: Curves in the parameter plane where the strange fixed points are indifferent.

(a) (b)

Figure 7: A zoom of the two red cardioids

We consider equation |OS1′a (1)| = 1, then∣∣OS1′α+βi (1)
∣∣ = 1→

∣∣∣∣ 8(4 + α+ βi)

10 + 3(α+ βi)

∣∣∣∣ = 1→ 64 |4 + α+ βi|2 = |10 + 3(α+ βi)|2 →

64 ((4 + α)2 + β2) = (10 + 3α)2 + 9β2 → (α+
226

55
)2 + β2 = (

16

55
)2

which defines a circle in the (α, β)−plane.

As a = −4 is inside this circle,
∣∣∣OS1′α+βi (1)

∣∣∣ < 1 for values of a = α + βi inside this circle, the strange

fixed point z = 1 is an attractor inside this circle, it is a repulsor outside this circle and it is indifferent along
its boundary.

Now, we study the stability of the strange fixed points ex1 and ex2.

11



Proposition 4.2. Let D1 be the region of the complex plane where the fixed points ex1 and ex2 are attractors.
Then, D1 satisfies the following statements.

1. The boundary of D1 is delimited by the circles c1 :
∣∣a+ 258

55

∣∣ = 63
220 and c2 :

∣∣a+ 258
55

∣∣ = 16
55 .

2. The region D1 corresponds to the disk containing c1.

Proof. The cyan curve in Figure 6 corresponds to the values of the parameter for which ex1 and ex1 are
indifferent points; then, this curve is the boundary of D1. In Figure 8(a) we can observe that this curve is

enclosed between the circles c1 :
(
α+ 258

55

)2
+β2 =

(
63
220

)2
and c2 :

(
α+ 258

55

)2
+β2 =

(
16
55

)2
. The stability of ex1

and ex2 is checked in Figure 8(b), where we can observe that |OS1′a (exi)| > 1 when a ∈ c2 and |OS1′a (exi)| < 1
when a ∈ c1, for i = 1, 2.

(a) ∂D1 delimited by c1 and c2 (b) Value of |OS1′a (ex1,2)| on c1 and c2

Figure 8: Stability of ex1(a) and ex2(a).

Then, the points ex1 and ex2 are attractors in the region bounded by the curve |OS1′a (ex1)| = |OS1′a (ex2)| =
1 containing the circle c1, and they are repulsors outside this region.

Similarly, we study the stability of the strange fixed points ex3 and ex4.

(a) ∂D2 delimited by C1 and C2 (b) Value of |OS1′a (ex3,4)| on C1

and C2

Figure 9: Stability of ex3(a) and ex4(a).

Proposition 4.3. Let D be the region of the complex plane where the fixed points ex3 and ex4 are attractors.
Then, D = D2 ∪D3 with D2 and D3 satisfying the following statements.

1. The boundary of D2 is contained in the region delimited by the cardioids

C1 : a = 1 + 2
√

2 +
1

4

13

100
− 1

2

13

100
cos t+

1

4

13

100
cos(2t) + ı

(
1

2

13

100
sin t− 1

4

13

100
sin(2t)

)
, 0 ≤ t ≤ 2π
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(a) ∂D3 delimited by C3 and C4 (b) Value of |OS1′a (ex3,4)| on C3

and C4

Figure 10: Stability of ex3(a) and ex4(a).

and

C2 : a = 1 + 2
√

2 +
1

4

14

100
− 1

2

14

100
cos t+

1

4

14

100
cos(2t) + ı

(
1

2

14

100
sin t− 1

4

14

100
sin(2t)

)
, 0 ≤ t ≤ 2π

2. The boundary of D3 is contained in the region delimited by the cardioids

C3 : a = 1− 2
√

2− 1

4

1

100
+

1

2

1

100
cos t− 1

4

1

100
cos(2t) + ı

(
1

2

1

100
sin t− 1

4

1

100
sin(2t)

)
, 0 ≤ t ≤ 2π

and

C4 : a = 1−2
√

2− 1

4

11

1000
+

1

2

11

1000
cos t− 1

4

11

1000
cos(2t) + ı

(
1

2

11

1000
sin t− 1

4

11

1000
sin(2t)

)
, 0 ≤ t ≤ 2π.

3. D2 corresponds to the region containing the cardioid C1 and D3 corresponds to the region containing the
cardioid C3.

Proof. The red curves in Figure 6 correspond to the values of the parameter for which ex3 and ex4 are indifferent
points; then, these curves form the boundary of D. Let us write it as ∂D2 ∪ ∂D3.

In Figure 9(a) we observe that ∂D2 is enclosed between the cardioids C1 and C2. We can observe in Figure
9(b) that |OS1a

′ (exi)| < 1 when a ∈ C1 and |OS1′a (exi)| > 1 when a ∈ C2, for i = 3, 4.
In Figure 10(a) we observe that ∂D3 is enclosed between the cardioids C3 and C4. We can observe in Figure

10(b) that |OS1′a (exi)| < 1 when a ∈ C3 and |OS1′a (exi)| > 1 when a ∈ C4, for i = 3, 4.
Then, the points ex3 and ex4 are attractors in the region bounded by the curves defined by |OS1′a (ex3)| =

|OS1′a (ex4)| = 1 containing the cardioids C1 and C3 and they are repulsors outside these regions.

Other black regions in the parameter plane correspond to the presence of attracting periodic orbits.
In the following figures we show dynamical planes for different values of the parameter a where the previous

results can be observed. In these figures, green regions correspond to the basin of attraction of z = 0, red
regions correspond to the basin of attraction of z =∞ and black regions correspond to the basin of attraction
of other attractors.

In Figure 11 we show the dynamical plane for a = −4.25. In this case, black regions correspond to the basin
of attraction of the point z = 1.

In Figure 12 we show the dynamical plane corresponding to a = −4.8 + 0.03i. In this figure, black regions
correspond to the basins of attraction of the fixed points ex1 = 1.90798 − 0.0443604i and ex2 = 0.523831 +
0.012179i.

In Figure 13 we show the dynamical plane corresponding to a = −1.83 + 0i. In this figure, black regions
correspond to the basins of attraction of the fixed points ex3 = −0.8160 + 0.5779i and ex4 = −0.8160−0.5779i.
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−2 0 2

−2

0

2

Figure 11: Dynamical plane for the family S1 and a = −4.25.

−2 0 2

−2

0

2

Figure 12: Dynamical plane for the family S1 and a = −4.8 + 0.03i.

−2 0 2

−2

0

2

Figure 13: Dynamical plane for the family S1 and a = −1.83.
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4.2 The subfamily S2

The subfamily S2 is obtained for b = 5+2a
a . The corresponding operator is:

OS2a (z) = z5
14 + 5a+ 2 (7 + 2a) z + (6 + a) z2 + z3

1 + (6 + a) z + 2 (7 + 2a) z2 + (14 + 5a) z3
(7)

and its derivative is:

OS2′a (z) = 5z4 (1 + z)
4 14 + 5a+

(
28 + 20a+ 4a 2

)
z + (14 + 5a) z2

(1 + (6 + a) z + 2 (7 + 2a) z2 + (14 + 5a) z3)
2 .

The strange fixed points for this subfamily are z = 1 and other six points exi obtained by making b = 5+2a
a in

the expressions of Section 2.1. The critical points are:

c± =
−2
(
7 + 5a+ a2

)
±
√
a (a+ 4) (5 + 2a) (7 + 2a)

14 + 5a
.

The parameter plane for this family is shown in Figure 14. Let us note that this subfamily, in contrast to
the previous one (Figure 5), presents good behaviour for real positive values of the parameter. Moreover, the
corresponding operator (7) indicates that its order of convergence is 5 for quadratic polynomials.

−6 −4 −2 0 2 4

−4

−2

0

2

4

Figure 14: Parameter plane of the subfamily S2.

The stability of the fixed point z = 1 is studied in the following proposition.

Proposition 4.4. The strange fixed point z = 1 satisfies one of the following statements.

1. If |a+ 1873
462 | <

40
231 , then z = 1 is an attractor; moreover, it is a superattractor if a = −4.

2. If |a+ 1873
462 | =

40
231 , then z = 1 is an indifferent fixed point.

3. For any other value of the complex parameter a, the point z = 1 is a repulsor.

The proof is similar to the proof of Proposition 4.1.
In Figure 15 we observe a dynamical plane where the black region corresponds to the basin of attraction of

z = 1. In the parameter plane given in Figure 14, we also observe a black disk at left of the attraction disk
of z = 1. This disk corresponds to the values of the parameter where the strange fixed points ex1 and ex2 are
attracting.

Proposition 4.5. Let D1 be the region of the complex plane where the strange fixed points ex1 and ex2 are
attractors. Then,

1. ∂D1 is delimited by the circles c1 :
∣∣a+ 2021

462

∣∣ = 33.5
231 and c2 :

∣∣a+ 2021
462

∣∣ = 34.5
231 .

2. The region D1 corresponds to the disk containing c1.
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Figure 15: Dynamical plane for a = −4.

The proof is similar to the proof of Proposition 4.2.
Moreover, as ex1(a) = ex2(a) = 1 for a = − 93

22 , we have that a = − 93
22 is a bifurcation point where the fixed

points z = 1, ex1(a) and ex2(a) change their stability.
This bifurcation can be observed comparing Figure 15 and Figure 16. In Figure 15, corresponding to a = −4,

the point z = 1 is an attractor and black regions correspond to the basin of attraction of z = 1. In Figure 16
corresponding to the dynamical plane obtained for a = −4.4, the point z = 1 has become repelling while the
two points ex1(a) and ex2(a) have become attracting; in this case, black regions are the basins of attraction of
ex1(a) and ex2(a).

−2 −1 0 1 2
−2

−1

0

1

2

−2 −1 0 1 2
−2

−1

0

1

2

Figure 16: Dynamical plane for a = −4.4.

We have observed numerically that the two symmetric black regions in Figure 14 located around the points
a = −2.42±1.53i correspond to the values of the parameter where there are one attracting 2-periodic orbit that
bifurcates to two attracting 2-periodic orbits when the parameter moves to the black regions located around
the points a = −2.40±1.65i. Moreover, the two small regions containing the points a = 1.94±3.14i correspond
to values of the parameter for which the strange fixed points ex3 and ex4 are attractors.
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4.3 The subfamily S3

This subfamily correspond to the value b = 18(a+2)2

196+76a+9a2 . The corresponding operator is:

OS3a (z) = z4
5 (14 + 5a)

2
+
(
196 + 76a+ 9a2

) (
(14 + 5a) z + 2 (7 + 2a) z2 + (6 + a) z3 + z4

)
(1 + (6 + a) z + 2 (7 + 2a) z2 + (14 + 5a) z3) (196 + 76a+ 9a2) + 5 (14 + 5a)

2
z4
.

The derivative of this operator is

OS3′a (z) = 20z3 (1 + z)
4

(
196 + 76a+ 9a2

) (
14 + 5a+

(
28 + 16a+ 3a2

)
z + (14 + 5a) z2

)2(
(1 + (6 + a) z + 2 (7 + 2a) z2 + (14 + 5a) z3) (196 + 76a+ 9a2) + 5 (14 + 5a)

2
z4
)2 .

The strange fixed points are z = 1 and other six points exi defined by the expressions of Section 2.1 for this
value of b.

The critical points are:

c± =
−
(
28 + 16a+ 3a2

)
±
√

3a (2 + a) (4 + a) (14 + 3a)

2 (14 + 5a)
.

The parameter plane is shown in Figure 17.

−6 −4 −2 0 2

−4

−2

0

2

4

Figure 17: Parameter plane of the subfamily S3.

The study of the stability of the strange fixed point z = 1 is carried out in the following proposition.

Proposition 4.6. Let us write the parameter a as α+ iβ and let us define the functions:

ϑ1(α) =

√
−243644− 156204α− 18711α2 − 128

√
5(−1302256− 624816α− 74439α2)

18711

ϑ2(α) =

√
−243644− 156204α− 18711α2 + 128

√
5(−1302256− 624816α− 74439α2)

18711

Then, the strange fixed point z = 1 satisfies one of the following statements.

1. The point z = 1 is attractor if

4(−8678− 21
√

1155)

8271
< α <

4(−8678 + 21
√

1155)

8271
and

−ϑ2(α) < β < −ϑ1(α) or ϑ1(α) < β < ϑ2(α).

Moreover, z = 1 is superattractor for a = 2
9 (−19± 4

√
5i).
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2. z = 1 is an indifferent fixed point for

4(−8678− 21
√

1155)

8271
< α <

4(−8678 + 21
√

1155)

8271
and

β = ±ϑ1(α) or β = ±ϑ2(α).

3. The point z = 1 is repulsor for any other value of the complex parameter a.

Proof. The point z = 1 is an attractor for values of the parameter such that

|O′a (1)| =
∣∣∣∣16(196 + 76a+ 9a2)

5(14 + 3a)2

∣∣∣∣ < 1

The fixed point is indifferent if
∣∣∣ 16(196+76a+9a2)

5(14+3a)2

∣∣∣ = 1. So, by considering a = α+ iβ as a complex parameter we

obtain

(8874096 + 6803552α+ 2117224α2 + 312408α3 + 18711α4 + (487288 + 312408α+ 37422α2)β2 + 18711β4 = 0

that implies the statements of the proposition. These curves can be seen in Figure 18. They are the boundaries
of the two black disks in the parameter plane (see Figure 17). In particular, for a = 2

9 (−19 ± 4
√

5i) we have

-4.6-4.4-4.2 -4 -3.8
-2.4
-2.3
-2.2
-2.1

-2
-1.9
-1.8
-1.7

-4.6-4.4-4.2 -4 -3.8
1.7
1.8
1.9

2
2.1
2.2
2.3
2.4

Figure 18: Curves in the parameter plane where z = 1 is indifferent.

that |O′a (1)| = 0, then z = 1 is a superattractor for this value of the parameter.

−10 0 10

−10

0

10

−4 −2 0 2 4

−4

−2

0

2

4

Figure 19: Dynamical plane of the family S3 for a = −4.2− 2i.

In Figure 19 we observe a dynamical plane for a = −4.2− 2i, where the black zone corresponds to the basin
of attraction of z = 1.

Numerically, we have observed that the cardioids located on the right of the region of attraction of z = 1
correspond to values of the parameter where two of the strange fixed points are attracting, as it can be observed
in the dynamical plane of Figure 20. As can be seen in Figure 21, another two strange fixed points are attracting
for values of the parameter in the small black region that is observed at the right in the parameter plane.

18



−4 −2 0 2 4

−4

−2

0

2

4

−4 −2 0 2 4

−4

−2

0

2

4

Figure 20: Dynamical plane of the family S3 for a = −4− 3i.
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Figure 21: Dynamical plane of the family S3 for a = 2.5.

If we move to the left of the region of attraction of z = 1 in the parameter plane, we find two small cardioids
that correspond to values of the parameter for which there is an attracting 2-periodic orbit. In Figure 22 we
show a dynamical plane where the black zones correspond to the basin of attraction of a periodic orbit of period
2, coming from the bifurcation of z = 1.

At the left of these two cardioids in the parameter plane, there are two smaller ones that correspond to values
of the parameter for which two attracting 2-periodic orbits appear. In Figure 23 we can observe a dynamical
plane where the black zones correspond to the basin of attraction of these periodic orbits.

4.4 The subfamily S4

This subfamily is obtained for a = −4. The corresponding operator is:

OS4b (z) = z4
−3 + 4b− 6z − 2z2 + 2z3 + z4

1 + 2z − 2z2 − 6z3 + (−3 + 4b) z4
.

The strange fixed points for this subfamily are z = 1 and other six points exi defined by the expressions of
Section 2.1 for this value of a. The derivative of the operator is

OS4′b (z) = 4z3 (z − 1)
2

(z + 1)
4 4b− 3− (2b+ 6) z + (4b− 3) z2

(1 + 2z − 2z2 − 6z3 + (−3 + 4b) z4)
2 .
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Figure 22: Dynamical plane of the family S3 for a = −4.5− 1.4i.
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Figure 23: Dynamical plane of the family S3 for a = −5− i.

This derivative vanishes for z = 1; then, the following result for the stability of the strange fixed point z = 1
holds.

Proposition 4.7. The point z = 1 is a superattractor for any value of the parameter b.

Moreover, as OS4b (−1) = 1, the point z = −1 is a pre-periodic point of z = 1. Then, we have the critical
points:

c± =
3 + b±

√
15b (2− b)

−3 + 4b
.

The parameter plane of this family is shown in Figure 24.
The black shapeless zones correspond to values of the parameter where the free critical point is in the basin

of attraction of z = 1. The black zones with cardioid shape correspond to values of the parameter where the
free critical point goes to other strange attractors. For example, we have observed numerically that for values
of the parameter in the cardioid on the left, two strange fixed points are attracting (see Figure 25); for values
of the parameter belonging to the big cardioid on the right there is an attracting periodic orbit of period two
(see Figure 26).
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Figure 24: Parameter plane of the subfamily S4 for complex b.
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Figure 25: Dynamical plane of the family S4 for b = −1.9.

4.5 The subfamily S5

The subfamily S5 is obtained for b = 4(10+3a)
a . The associated operator is:

OS5a (z) = −z4 5 (7 + 2a) + (21 + 5a) z + (7 + a) z2 + z3

1 + (7 + a) z + (21 + 5a) z2 + 5 (7 + 2a) z3
.

The strange fixed points for this subfamily are z = 1 and other six points exi obtained by making b = 4(10+3a)
a

in the expressions of Section 2.1.
The derivative of the operator is

OS5′a (z) = −10z3 (z + 1)
4 2 (7 + 2a) +

(
28 + 18a+ 3a2

)
z + 2 (7 + 2a) z2

(1 + (7 + a) z + (21 + 5a) z2 + 5 (7 + 2a) z3)
2 .

In this case, OS5a (−1) = 1 and OS5a (1) = −1 and OS5′a (−1) = 0; then, the following result holds.

Proposition 4.8. The double period orbit {−1, 1} is attracting for any value of the parameter a.

The critical points are:

c± =
−
(
28 + 18a+ 3a2

)
±
√
a (a+ 4) (10 + 3a) (14 + 3a)

4 (7 + 2a)
.
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Figure 26: Dynamical plane of the family S4 for b = 5.

The parameter plane for S5 is given in Figure 27. For values of the parameter in the bigger black areas the
free critical point is in the basin of attraction of the double period orbit {−1, 1}. The basin of attraction of
{−1, 1} can be observed in the dynamical planes given in Figure 28.

In the other black regions of the parameter plane, cardioid shaped, there exist other attractors. For example,
in Figure 29 we observe two 2-period orbits in addition to {−1, 1}.

−10 −5 0 5 10
−10

−5

0

5

10

Figure 27: Parameter plane of the subfamily S5 for a = α+ βi.

5 Final remarks

Summarizing the results obtained in the previous section, we can see that two of these subfamilies, S1 (the King’s
family) and S2, show very good behaviour, they correspond to b = 0 and b = 5+2a

a , respectively. Moreover,
the subfamily S2 has order of convergence 5 for quadratic polynomials. For these families, the values of the
parameter where there are strange attractors are located in very small regions.

The family S3, obtained for b = 18(a+2)2

196+76a+9a2 , presents zones of non-convergence greater than the previous
two families.

For the family S4, obtained for a = −4, the fixed point z = 1 is a superattractor for every value of the
parameter b; this fact implies that for all members of this family there are always initial conditions that converge
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(b) a = −3.7 + 0.5i

Figure 28: Dynamical planes of S5 for values of the parameter where the black regions correspond to the basin
of attraction of {−1, 1}.
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Figure 29: Dynamical planes of S5 for a = −3.9 + 2.1i.

to z = 1. The same occurs for the family S5, corresponding to b = 4(10+3a)
a , since there is an attracting periodic

orbit, {−1, 1}, for every value of the parameter.
On the other hand, given any of these families, the dynamical planes provided for different values of the

parameters, show the initial conditions that lead to a wrong result of the corresponding numerical method. As
we have pointed out, these initial conditions are located in the black regions of the dynamical planes, while
green and red regions correspond to initial conditions leading to one of the solutions searched.
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