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Poĺıgono Rı́o de San Pedro, s/n. 11510 Puerto Real, Cádiz. Spain

Abstract

In this paper we present a method to fit missing data -i.e., to fit a dataset con-
taining a region in which no data are provided- by means of a C1-quadratic patch.
Such a patch is constructed to faithfully extend the shape and the geometric fea-
tures of the dataset. To this end, a mesh of curves gathering the information
about the shape of the dataset will be considered and extended to the interior
of the hole. Next, a (unique) patch fitting such a mesh of curves will be com-
puted. Several numerical and graphical examples showing the effectiveness of the
proposed method are provided.

Keywords: Powell-Sabin finite element; missing data; surface reconstruction;
energy functional; shape-preserving; Bézier curves.

1. Introduction.

The problem of handling sets of scattered data points in which there is some
hidden region, some lack of information -usually due to imperfections of the
surface or solid to be scanned, to difficulties linked to the scan process, or to ac-
cessibility limitations, occlusions, reflecting spaces or surfaces parallel to camera-
is rather common. This situation arises in all sorts of fields in which image re-
construction is involved: engineering problems, 3D human body scanning, dental
reconstruction, archaeology, CAGD, Earth Sciences, computer vision in robotics,
image reconstruction from satellite and radar information, physics, etc. Several
papers in the literature address the question of fitting under these geometrical
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difficulties or, more in general, under obstacles due to the dataset itself or to
geometrical features or other additional constraints to be achieved.

Regarding the problem of fitting with additional drawbacks, we also find the
one of fitting missing data, i.e., handling of datasets containing regions where no
information -or information with not enough quality- is provided, or the more
general of having a surface -understood as the graphic of a bivariate function-
suffering from such a lack of information -a hole-. Most of the fitting missing data
methods considered up to now are developed for arbitrary dataset points, i.e.,
they do not specifically consider the particular geometric feature of the dataset
to be fitted. Applying these common fitting methods very often give rise to
surfaces that tend to be ‘flat’ insofar as a reasonable way to define a patch is
by minimizing some kind of measure, like the stretching or the bending energy.
As a consequence, most of the existing methods work well for certain functions
(as long as they are ‘flat’), but they do not lead to proper results in other cases.
To illustrate this fact we can consider, for example, the case of filling a hole
of information in the top of a semisphere: Depending on what the role of the
fitting patch will be, we may want to fill the hole with a ‘minimal’ criteria -i.e.,
minimizing some linked measure-, or we may want to fill the hole by a bending
patch with semispherical shape. It is desirable then to develop methods to fit
missing or unstructured data, or to fill holes, providing fitting or filling patches
restoring characteristics of the models ([1]), sharp features ([2]) or fulfilling some
specific geometrical constraints of industrial or design type, in such a way that
the fitting patch will be no longer flat but faithful to the shape of known dataset.
In short, we may be more interested in obtaining a global fitting function faithful
to the dataset that in obtaining a minimal fitting patch.

With the aim of obtaining fitting patches somehow inheriting the shape of
the known information, several approaches have been considered: e.g., in [3] the
authors propose a method consisting of minimizing energy functionals to extend
the shape of the dataset towards the interior of the hole by means of a patch
fitting not only the data, but also some of its ‘estimated’ partial derivatives.
Nevertheless, most approaches do not specifically adapt to the particular shape
of the data to be fitted. In this work we propose a fitting method over missing
data which, for each specific dataset, ‘calibrates’ its shape by means of several
representative curves. These curves will be extended over the missing data pre-
serving, as much as possible, the shape they have over the known data, becoming
somehow the cornerstones of the global fitting surface. Such wireframe of curves
will therefore play an essential role as long as, not only will identify the behavior
-near the boundary of the missing data- of the surface to be fitted, but it will
also determine the geometry of the fitting patch, that is required to preserve the
shape of the known surface.

All over the fitting process, we will be interested in obtaining C1-splines with
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the minimum possible degree in order to simplify computational aspects. That’s
why we choose the C1-quadratic Powell-Sabin finite element and, insofar we want
to work with this finite element, the first step we will have to carry out will be
to fit the scattered data points by means of a C1-quadratic fitting surface. Next,
the fitting method we propose will consist mainly of three steps:

i) To the define the wireframe of curves inside the known surface gathering
the information about its shape;

ii) To extend such a wireframe of curves towards the interior of the hole;

iii) To construct a fitting patch over the filled wireframe of curves in ii).

The single-variate fitting process referred to in ii) will be carried out by means
of Bézier curves, which give a more natural and wide frame to work with geometric
features as tangent lines, osculating planes or curvature and torsion ([4] is a basic
handbook for Bézier techniques). Regarding iii), it is to mention that a surface
fitting method based on one-dimensional fittings was for the first time considered
in [5]. Nevertheless, the method therein proposed suffers from two drawbacks:
on the one hand, it sits on a cartesian wireframe of curves, restricting then to
‘measure’ the shape of the surface along straight lines parallel to the axis and
not allowing, thus, to consider other paths better gathering the shape of the
surface. On the other hand, the fitting method in [5] considers just interpolation
of function and derivatives values at boundary points of the curves to be fitted,
both drawbacks leading to a more restrictive fitting frame as long as derivatives
values on their own do not, in general, give a complete insight of the geometry
of a surface.

The fitting method we propose in this work leads, especially in the case of
more irregularly shaped functions, to more accurate fitting patches. This fact
is a direct consequence of improving two of the main aspects of previous fitting
methods:

i) The wireframe over which the fitting patch lies is obtained by means of
Bézier techniques, which allows to more faithfully extend inside the hole
the shape of the surface to be fitted;

ii) The fitting patch fits a wireframe which is general enough -no longer cartesian-
to more faithfully gather the information of the surface to be fitted.

Moreover, this method constitutes, to our knowledge, the first one in which
the fitting patches are obtained by means of Bézier curves, that more properly
deal with geometric features.

The paper is organized as follows: in Section 2 we briefly present a review of
some papers in the literature regarding the general problem of fitting data and
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the more specific one of fitting data under additional drawbacks. In Section 3 we
briefly recall the basic concepts on Powell-Sabin triangulations and Bézier curves
that will be used throughout the work. In Section 4 we deal with the problem
that we want to solve: we fix the notation to be used, we formulate the problem
and we show the existence and uniqueness of the solution. Section 5 is devoted
to present several graphical and numerical examples which show the effectiveness
of the method proposed. We end up with a conclusions section.

2. A brief review of fitting data methods.

Among the techniques commonly applied in data fitting problems we find,
for example, B-splines, radial basis functions (RBF), algebraic fitting or discrete
energy minimization.

RBF-fitting methods (see e.g. [6] or [7]) have the advantages that are mesh-
free and that they become a powerful tool when handling multidimensional fitting
data, while B-spline fitting methods become computationally harder when fine
meshes are considered. On the contrary, using B-splines has the advantage that
insofar as basis functions have small local supports, they lead to sparse matrix
that, moreover, are symmetric and definite positive under some conditions on the
basis functions. Besides, B-splines are easier to implement than RBF since they
are piecewise polynomial functions, usually with low degree.

Algebraic surface fitting, consisting in fitting a dataset by means of a polyno-
mial implicit surface f(x, y, z) = 0 where the coefficients of f are usually chosen
to minimize the mean square distance from the dataset to the implicit surface, is
a natural approach to the fitting problem. Apart from the fact that manipulating
polynomials is computationally more efficient than doing it with arbitrary ana-
lytic functions, algebraic surfaces provide enough generality to accurately model
almost all complicated rigid objects. On the contrary, this kind of fitting often
suffers from instability and numerical problems (see e.g. [8] or [9] and references
therein).

Discrete energy minimization is an extended model in computer vision. One
key advantage of this method is that it allows to handle a great variety of prob-
lems related to this researching field, like image denoising, segmentation, motion
estimation object, recognition and image editing. Nevertheless, modern vision
problems involve complex models and larger datasets that give rise to hard en-
ergy minimization problems (see e.g. [10] or [11] and references therein).

Among the existing techniques developed to handle fitting data with addi-
tional constraints we find the biharmonic optimization, used to overcome the
problem of the flatness of the surfaces or regions that some methods based on
minimization of stretching or bending energy provide (see e.g. [12]); transfi-
nite interpolation, used e.g. in [13] to construct a Hermite interpolant matching

4



values and normal derivatives of a given function on the boundary of a simply
connected planar domain; or other advanced techniques, like the one developed
in [14], where algorithms to handle weakly defined control points by means of
B-spline surfaces are provided.

Two interesting papers in the surface modeling field are [15] and [16]. In
[15] a freeform modeling framework for unstructured triangle meshes based on
constraint shape optimization is presented. As in this paper, in [15] the authors
also consider the minimization of quadratic energy functionals that is carried out
by means of the corresponding Euler-Lagrange equations leading to surfaces with
minimal area, minimal surface bending, or minimal variation of linearized curva-
ture. On the other hand, in [16] the authors explore discretizations of Laplacian
and Laplacian gradient energies PDE’s on meshes by using mixed finite elements,
and they demonstrate applications in several geometric modeling problems, such
as hole filling.
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