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ABSTRACT

In this paper, reduced-order models (ROMs) are constructed for the Ablowitz-Ladik equation (ALE),
an integrable semi-discretization of the nonlinear Schrödinger equation (NLSE) with and without
damping. Both ALEs are non-canonical conservative and dissipative Hamiltonian systems with the
Poisson matrix, depending quadratically on the state variables and with quadratic Hamiltonian. The
full-order solutions are obtained with the energy preserving midpoint rule for the conservative ALE
and exponential midpoint rule for the dissipative ALE. The reduced-order solutions are constructed
intrusively by preserving the skew-symmetric structure of the reduced non-canonical Hamiltonian
system by applying proper orthogonal decomposition with the Galerkin projection. For an efficient
offline-online decomposition of the ROMs, the quadratic nonlinear terms of the Poisson matrix are
approximated by the discrete empirical interpolation method. The computation of the reduced-order
solutions is further accelerated by the use of tensor techniques. Preservation of the Hamiltonian and
momentum for the conservative ALE, and preservation of dissipation properties of the dissipative
ALE, guarantee the long-term stability of soliton solutions.

Keywords Hamiltonian systems, nonlinear Schrödinger equation, proper orthogonal decomposition, discrete
empirical interpolation, tensors
MR2000 Subject Classification: 65M06; 65P10; 37J05; 37M15; 76B15

1 Introduction

The nonlinear Schrödinger equation (NLSE) is used frequently for modeling wave propagation phenomena in different
areas of physics, chemistry, and engineering. It is one of the most important models of mathematical physics, with
application to different fields such as plasma physics, nonlinear optics, water waves, bi-molecular dynamics, and
many other fields. Ablowitz-Ladik equation (ALE) [1] represents an integrable discretization of NLSE [24, 36, 38].
There are two classes of geometric integrators for Hamiltonian systems; symplectic and energy preserving integrators.
Unfortunately, it is not possible, in general, to preserve both energy and the symplectic form at the same time. The ALE
is a non-canonical Hamiltonian system with a state-dependent Poisson structure, so that the symplectic integrators are
not applicable. Therefore, the ALE is integrated in time with the energy preserving discrete gradient methods. The
average vector field (AVF) method and the mid-point rule exactly preserve the energy (Hamiltonian) and the quadratic
invariants such as the momentum and norm of the ALE [16]. The linearly damped NLSE and the associated damped
ALE are linearly perturbed non-canonical Hamiltonian systems, i.e., conservative systems with added linear damping.
Discrete gradient methods have been also used in dissipative settings. In order to preserve the dissipation of energy,
momentum, and norm with the correct rate, the damped ALE is integrated in time with exponential mid-point rule
[30].
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Model order reduction (MOR) allows to construct low-dimensional reduced-order models (ROMs) for the high di-
mensional full-order models (FOMs). The full-order solutions are projected on low dimensional reduced spaces with
the proper orthogonal decomposition (POD) [8, 37], which is a widely used ROM technique. Applying the POD
with the Galerkin projection, the dominant POD modes are extracted from the snapshots of the full-order solutions.
We refer to the recent book [7] for an overview of the available MOR techniques. Conservation of nonlinear invari-
ants like the energy is not, in general, guaranteed with conventional ROM. The violation of such invariants often
results in a qualitatively wrong or unstable reduced system, even when the high-fidelity system is stable. It is well
known that conservation law plays an important role in conservative PDEs such as the NLSE with quasi-periodic
solutions and solitons. The stability of the ROMs over long-time integration has been investigated in the context of
Lagrangian systems [13], and for port-Hamiltonian systems [14]. For canonical Hamiltonian systems, like the linear
wave equation, Sine-Gordon equation, NLSE, singular value decomposition (SVD) based symplectic model reduction
techniques with POD Galerkin projection are constructed with orthogonal [35], and non-orthogonal bases [10] cap-
turing the symplectic structure of Hamiltonian systems in order to ensure long term stability of the reduced model.
For parametric Hamiltonian systems, symplectic bases are generated using greedy approaches in [3, 12]. Parallel
to these, energy (Hamiltonian) preserving ROMs have been developed for non-canonical Hamiltonian PDEs like the
Korteweg-de Vries (KdV) equation [20, 29, 39] and NLSE [25], and with state-dependent Poisson structure such as
rotating shallow water equations [26, 27]. These are all global ROM techniques, that maintain the globalized proper-
ties such as the symplectic structure or the Hamiltonian of the full order data in the reduced order representation do
not possess a global low-rank structure. These approaches can provide robust and efficient reduced models, but they
require a sufficiently large approximation space to achieve accurate solutions. This is due the fact that in Hamiltonian
PDEs, non-dissipative phenomena do not possess a global low-rank structure. Hence, local reduced spaces seem to
be more effective for this systems. Recently, localized ROM have been developed for Hamiltonian PDEs, which are
more effective than the global POD based ROMs. A reduced basis method is developed in [22] for non-canonical
Hamiltonian systems that preserves general Poisson structure by ”freezing” the phase space manifold structure in each
discrete temporal interval, then recasts the local problem in canonical form. In this way, a local reduced model is
constructed in canonical Hamiltonian form. In [23], a rank-adaptive structure-preserving dynamical reduced-based
method is constructed relying on a residual error estimator. The FOM is approximated on local reduced spaces that are
adapted in time using dynamical low-rank approximation techniques. In [32], nonlinear structure-preserving model
reduction is proposed where the reduced phase space evolves in time. The reduced system is obtained by a symplectic
projection of the Hamiltonian vector field onto the tangent space of the approximation manifold at each reduced state
as in dynamical low-rank approximation. Also for dissipative Hamiltonian systems, structure-preserving ROMs have
been developed in [2, 34]. We refer to [21] for an overview about the structure-preserving ROMs for Hamiltonian
systems.

In this paper, we develop ROMs for the conservative and damped ALEs while preserving its physical properties
like conservation/dissipation of the Hamiltonian and the momentum which is a quadratic invariant. We construct
energy preserving ROMs for conservative ALE with state-dependent Poisson matrix following the approach in [20, 29]
where the authors construct an energy preserving ROM for the KdV equation in non-canonical Hamiltonian form
with constant skew-symmetric matrix and by the AVF or mid-point method. Following the same approach with an
additional linear damping term, a ROM is constructed that preserves the dissipation of the energy and the momentum
of the dissipative ALE. An important feature of the ROMs is the offline-online decomposition. The computation of
the FOM and the construction of the POD basis are performed in the offline stage, whereas the reduced system is
solved by projecting the problem onto the low-dimensional reduced space in the online stage. The nonlinear term in
the Poisson matrix is approximated with the hyper-reduction technique, i.e., discrete empirical interpolation method
(DEIM) [15, 17], so that offline and online stages are separated. For dynamical systems such as the ALEs with wave-
type solutions, a relatively large number of POD modes are needed to represent the physical behavior of the system
in reduced-order form. Therefore, the reduced-order system should be solved efficiently. Here, the quadratic reduced
system is solved utilizing tensor techniques [5, 6, 26] by the use of MULTIPROD [28] in order to speed up online
computations.

Construction of the efficient structure-preserving ROM for non-canonical Hamiltonian systems with a state-dependent
Poisson matrix, such as the conservative and dissipative ALEs, is challenging. The main contributions of the paper
can be summarized below:

• Considering the conservative ALE equation in skew-gradient form and applying the energy preserving mid-
point method, the reduced Hamiltonian and momentum are preserved, which guarantees the long-term sta-
bility of the solutions.

• Dissipation of the reduced Hamiltonian and momentum of the linearly perturbed ALE is preserved with the
correct rate by the ROMs by integrating in time with the exponential mid-point method.
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• Approximation of the nonlinear terms with DEIM enables offline-online decomposition. The solutions of the
resulting linear-quadratic system are accelerated by applying tensor techniques.

• The soliton solutions of the conservative and dissipative ALEs are captured accurately by the ROMs in long
time integration.

The paper is organized as follows. In Section 2, the high fidelity discretization that preserves the conserva-
tion/dissipation property of the conservative/damped ALEs is presented. In Section 3, the structure-preserving ROMs
with POD and DEIM are described. Two numerical tests in Section 4 demonstrate the structure-preserving properties
of the ROMs. The paper ends with some conclusions in Section 5.

2 Discretization of the conservative and dissipative Ablowitz-Ladik equations

The NLSE is a well-known nonlinear partial differential equation (PDE) with a broad spectrum of applications, rang-
ing from wave propagation in nonlinear media to nonlinear optics, molecular biology, quantum physics, quantum
chemistry, and plasma physics. We consider the NLSE described by

iψ̇ = −ψxx − 2γ|ψ|2ψ, (1)

under periodic boundary conditions, ψ(−L, t) = ψ(L, t), for t ∈ (0, T ] with a final time T > 0, and with a prescribed
initial condition, ψ(x, 0) for x ∈ (−L,L) , where ψ(x, t) denotes the complex-valued wave function. The NLSE (1)
is completely integrable for γ > 0, i.e., there exists infinitely many integrals such as energy, momentum and norm
[40, 38].

ALE [1] represents an integrable Hamiltonian semi-discretization of the NLSE (1) [24, 36, 38]

iψ̇n = − 1

h2
(ψn+1 − 2ψn + ψn−1)− γ|ψn|2 (ψn+1 + ψn−1) = 0, (2)

with h = 2L/N ; ψn = ψ(xn, t); xn = −L + (n − 1)h; n = 1, . . . , N + 1. The solutions of the equation (2)
converge to the solutions of the NLSE (1) when the step-size h → 0. Under unitary time dependent transformation
ψn → wne

−2it/h2

, the ALE (2) can be written as a non-canonical Hamiltonian system [24, 38]

iẇn = − 1

h2
(wn+1 − wn−1)

(
1 + γh2|wn|2

)
. (3)

Separating the real and complex parts as w = p+ iq, the equation (3) yields the coupled system

ṗn = − 1

h2

(
1 + γh2

(
p2
n + q2

n

))
(qn+1 + qn−1) ,

q̇n =
1

h2

(
1 + γh2

(
p2
n + q2

n

))
(pn+1 + pn−1) .

(4)

Setting p = (p1, . . . , pN )T and q = (q1, . . . , qN )T , the ALE (4) is given in matrix-vector form as the following
non-canonical Hamiltonian system(

ṗ
q̇

)
=

(
0 −M(p, q)

M(p, q) 0

)(
∇pH(p, q)
∇qH(p, q),

)
(5)

with the quadratic Hamiltonian H(p, q), and the matrix M(p, q) with nonlinear terms are given by

H(p, q) =
1

h2

N∑
n=1

(pnpn−1 + qnqn−1) , M(p, q) = diag (m1, . . . ,mN ) , mn = 1 + γh2
(
p2
n + q2

n

)
. (6)

Under the above setting, the gradients of the Hamiltonian reduce to

∇pH(p, q) = Dp, ∇qH(p, q) = Dq, D =
1

h2


0 1
1 0 1

. . . . . . . . .
1 0

 . (7)

Besides the Hamiltonian, there exist quadratic invariants, i.e., Casimirs, such as the momentum I whose discrete form
is given by

I(p, q) =

N∑
n=1

(
qn
pn+1 − pn−1

2h
− pn

qn+1 − qn−1

2h

)
. (8)

3
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For the solution vector z = (pT , qT )T , the ALE (5) is a 2N -dimensional skew-gradient ODE of the form
ż = S(z)∇zH(z), (9)

where the skew-symmetric matrix S(z) is given by

S(z) =

(
0 −M(p, q)

M(p, q) 0

)
.

Being a discrete gradient integrator, the AVF method given below, preserves the Hamiltonian (6) and the quadratic
invariants such as the momentum (8), of the ALE (5) [16]

zk+1 − zk

∆t
= S

(
zk+1 + zk

2

)∫ 1

0

∇zH(ξzk+1 + (1− ξ)zk)dξ, k = 1, . . . ,K. (10)

The AVF method is equivalent to the midpoint rule for quadratic Hamiltonians such as the ALE (5)

zk+1 − zk

∆t
= S

(
zk+1 + zk

2

)
∇zH

(
zk+1 + zk

2

)
, k = 1, . . . ,K. (11)

The damped NLSE
iψ̇ = −ψxx − 2γ|ψ|2ψ − iµψ, (12)

with the damping factor µ, describes resonant phenomena in nonlinear media, the nonlinear Faraday resonance in a
vertically oscillating water and the effect of phase-sensitive amplifiers on solitons in optical fibers [19]. The Ablowitz-
Ladik discretization of the damped NLSE (12) yields

ṗn = − 1

h2

(
1 + γh2

(
p2
n + q2

n

))
(qn+1 + qn−1)− µpn,

q̇n =
1

h2

(
1 + γh2

(
p2
n + q2

n

))
(pn+1 + pn−1)− µqn,

(13)

which represens a linearly perturbed non-canonical Hamiltonian system [30]. In matrix-vector form, the system (13)
is a skew-gradient system with a damping term

ż = S(z)∇zH(z)− µz. (14)

The energy or the Hamiltonian and the momentum dissipate like
d

dt
I = −µI ⇒ I(z(t)) = e−µtI(z0).

Dissipation of the energy is expressed in form of the energy balance equation [30] given by

H(eX1Y1)−H(eX0Y0) = 0, RH = ln

(
H(Y1)

H(Y0)

)
+ ∆tµ. (15)

Similarly, the dissipation of the momentum (8) is given as [30]

e2X1I(Y1)− e2X0I(Y0) = 0, RI = ln

(
I(Y1)

I(Y0)

)
− 2∆tµ. (16)

The AVF method and the mid-point rule do not guarantee the correct rate of energy dissipation, i.e., the energy may
be over or under damped [30]. The exponential mid-point rule preserves the correct dissipation rate of the energy and
dissipative dynamics of the quadratic Casimirs such as the momentum and norm [30]. Approximation of the gradient
of the Hamiltonian with

∇̄H(eX1zk+1, eX0zk) =

∫ 1

0

∇H(ηeX1zk+1 + (1− η)eX0zkdη, (17)

yields the exponential midpoint rule [9, 30]

eX1zk+1 − eX0zk

∆t
= S

(
eX1zk+1 + eX0zk

2

)
∇̄H(eX1zk+1, eX0zk), k = 1, . . . ,K, (18)

where Xα = µ(tk+α − tk+ 1
2
). The exponential mid-point rule (18) preserves the dissipation rate of the invariants of

the damped ALE (13)
Ik+1 = e−µ∆tIk, k = 1, . . . ,K.

The midpoint rule (11) for the conservative ALE (5) and the exponential midpoint rule (18) for the dissipative ALE
(13) are time-reversible, therefore second order convergent, and unconditionally stable time integrators.
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3 Reduced-order modelling

The ROM for the damped ALE differs only by adding the linear damping term, therefore we describe the construction
of the ROMs for the conservative ALE (5) whose compact form is given by (9).

3.1 POD reduced skew-gradient system

The low-dimensional ROMs are constructed by projecting the full-order system onto a low dimensional reduced space
spanned by POD basis. The computation of the POD basis modes rely on a set of discrete solutions of the FOMs. To
this end, let Sp and Sq denote the matrix of solution snapshots given by

Sp =
[
p1 · · ·pK

]
∈ RN×K , Sq =

[
q1 · · · qK

]
∈ RN×K ,

where pk, qk ∈ RN , k = 1, . . . ,K, are the fully discrete solution vectors of the full-order ALE (5) through the mid-
point rule (11). Then, the POD basis modes are taken as the left singular vectors related to the most dominant singular
values from the singular value decomposition (SVD) of the snapshot matrices Sp and Sq

Sp = WpΣpZ
T
p Sq = WqΣqZ

T
q ,

where for ∗ ∈ {p, q}, W∗ ∈ RN×K and Z∗ ∈ RK×K are orthonormal matrices whose column vectors are the
left and right singular vectors, respectively, and Σ∗ ∈ RK×K is the diagonal matrix containing the singular values
σ∗,1 ≥ σ∗,2 ≥ · · · ≥ σ∗,K ≥ 0. For some positive integer Nr � min{N,K}, let V∗ ∈ RN×Nr denotes the truncated
matrix of POD modes consisting of the first Nr left singular vectors from W∗. For easy notation, we take the same
number of POD modes for each component ∗ ∈ {p, q}, but it can be taken different number of POD modes for either
component p and q. The POD matrix V∗ is the minimizer of the least squares error

min
V∗∈RN×Nr

||S∗ − V∗V T∗ S∗||2F =

K∑
j=Nr+1

σ2
∗,j ,

where ‖ · ‖F is the Frobenius norm. Once the POD modes are obtained, an approximation to the full-order solutions
of (5) from the reduced space spanned by the POD modes, can be written as

p ≈ p̂ = Vppr, q ≈ q̂ = Vqqr, (19)

where pr, qr : [0, T ] 7→ RNr are the coefficient vectors. The coefficient vectors are the solution of the 2Nr-
dimensional reduced system

żr = V Tz S(ẑ)∇zH(ẑ), (20)

which is constructed by the Galerkin projection of the FOM (5) (or (9)) onto the reduced space. In the ROM (20),
zr = (pTr , q

T
r )T : [0, T ] 7→ R2Nr is the vector of coefficients, ẑ = Vzzr = (p̂T , q̂T )T : [0, T ] 7→ R2N is the vector of

reduced approximations, and the block diagonal matrix Vz contains the matrix of POD modes for each state variable

Vz =

(
Vp

Vq

)
∈ R2N×2Nr .

On the other hand, the reduced system (20) is not a skew-gradient system like the FOM (9). To recover a reduced
skew-gradient system from the reduced system (20), we formally insert VzV Tz ∈ R2N×2N between S(ẑ) and∇zH(ẑ)
[20, 29]. This results in the POD reduced skew-gradient system

żr = Sr(zr)∇zr
H(zr), (21)

where Sr(zr) = V Tz S(Vzzr)Vz ∈ R2Nr×2Nr is the reduced skew-symmetric matrix and ∇zr
H(zr) =

V Tz ∇zH(Vzzr) ∈ R2Nr is the reduced discrete gradient of the Hamiltonian. Then, the skew-gradient structure of
the reduced system (21) yields

d

dt
H(ẑ) =

d

dt
H(Vzzr) =

[
V Tz ∇zH(Vzzr)

]T
żr

= [∇zr
H(zr)]

T
Sr(zr) [∇zr

H(zr)] = 0,

which means that the Hamiltonian H(ẑ) is preserved by the POD reduced skew-gradient system (21).

The approach that preserves the skew-symmetry of the reduced system (21) also preserves the energy dissipation
property for dissipative systems such as the damped ALE [20]. Both the reduced systems are solved by the same time
integrators as for the related FOMs, i.e., the POD reduced ALE (21) is solved in time with the implicit midpoint rule
(11), whereas the POD reduced system of the dissipative ALE (14) is solved with the exponential midpoint rule (18).

5
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3.2 POD-DEIM reduced skew-gradient system

The explicit form of the POD reduced skew-gradient system (21) reads as(
ṗr
q̇r

)
=

(
0 −V Tp M(Vzzr)Vq

V Tq M(Vzzr)Vp 0

)(
V Tp ∇pH(Vzzr)
V Tq ∇qH(Vzzr)

)
, (22)

where M(Vzzr) = M(Vppr, Vqqr) = M(p̂, q̂) is given as in (6), i.e., M(Vzzr) = diag (m1, . . . ,mN ) with mn =
1 + γh2

(
p̂2
i + q̂2

i

)
, n = 1, . . . , N . Using the diagonal structure of the matrix M(Vzzr), setting the nonlinear vector

m = (m1, . . . ,mN )T , and inserting the discrete gradients of the Hamiltonian in (7), i.e., ∇pH(z) = Dp and
∇qH(z) = Dq, the system (22) can be rewritten in the following explicit form

ṗr = −V Tp
[
m� (VqV

T
q DVqqr)

]
,

q̇r = V Tq
[
m� (VpV

T
p DVppr)

]
,

(23)

with � denoting the element-wise product of vectors. The POD reduced system (23) still depends on the dimension
of the FOM, due to the nonlinear vector function m = (m1, . . . ,mN )T : [0, T ] 7→ RN . This can be circumvent
applying the DEIM [17, 15]. The idea is to interpolate the nonlinear vector m using only Nd � min{N,K} entries.
For this goal, one needs to compute the interpolation basis and an operator which selects the interpolation points and
calculate the empirical basis. Let Φ = [φ1, . . . , φNd

] ∈ RN×Nd denotes the Nd-dimensional interpolation basis. The
interpolation basis {φ1, . . . , φNd

} is constructed by applying the POD to the snapshot matrix Sm of the nonlinear
vector, given by

Sm = [m1 · · ·mK ] ∈ RN×K , (24)

where mk = m(tk) denotes the nonlinear vector computed by the fully discrete solutions of the FOM (5) at t = tk.
In other words, the DEIM basis modes φi ∈ RN are determined as the p left singular vectors related to the first Nd
largest singular values from the SVD of the snapshot matrix Sm. Once the DEIM basis matrix Φ is obtained, the
nonlinearity can be approximated as

m(t) ≈ Φc(t), (25)

where c(t) : [0, T ] 7→ RNd is the vector of time-dependent coefficients to be determined. In order to uniquely solve for
the coefficient vector c, the overdetermined system (25) needs to be projected by multiplication from left by a matrix,
say P, so that the product P>Φ is invertible. The matrix P is indeed a selection matrix which is determined by a greedy
algorithm based on the system residual [15]. Alternatively, the Q-DEIM [17] uses a different selection criteria for the
sampling points than the original DEIM algorithm [15]. The Q-DEIM leads to better accuracy and stability properties
of the computed selection matrix P using the pivoted QR-factorization of Φ>. In the sequel, we use Q-DEIM for the
calculation of the selection matrix P, see Algorithm 1.

Algorithm 1 Q-DEIM algorithm.

1: Input: Basis matrix Φ ∈ RN×p
2: Output: Selection matrix P
3: Perform pivoted QR factorization of Φ> so that Φ>Π = QR
4: Set P = Π(:, 1 : p)

After computation of the selection matrix P, the coefficient vector c(t) is uniquely determined by solving the projected
linear system P>Φc(t) = P>m(t), by which the approximation (25) becomes

m(t) ≈ Ψmr(t), (26)

where the matrix Ψ := Φ(P>Φ)−1 ∈ RN×Nd is a constant matrix which can be precomputed in the offline stage.
The reduced nonlinear vector mr(t) := P>m(t) : [0, T ] 7→ RNd , is computed in the online stage with the reduced
dimension Nd � N . In fact, the reduced nonlinear vector mr(t) is nothing but Nd selected entries among the N
entries of the nonlinear vectorm.

Inserting the DEIM approximation m ≈ Ψmr into the reduced system (23), we obtain the POD-DEIM reduced
skew-gradient system

ṗr = −V Tp
[
(Ψmr)� (VqV

T
q DVqqr)

]
,

q̇r = V Tq
[
(Ψmr)� (VpV

T
p DVppr)

]
.

(27)

6
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3.3 The reduced quadratic system

The system (27) contains the precomputable constant matrices to be computed in the offline stage, and the reduced
terms to be computed in the online stage, but they are still not separated. The precomputable constant matrices and
the reduced terms can be separated by the use of tensor techniques, so that the solution of the POD-DEIM reduced
skew-gradient system (27) is accelerated. We first rewrite the reduced system (27) in which Kronecker product ⊗
takes place of component-wise product�. This can be handled by using a selection matrix G ∈ RN×N2

satisfying the
identity G(a⊗ b) = a ◦ b for any vectors a, b ∈ RN . The matrix G is generally called as a matricized tensor. Then,
in terms of Kronecker product, the reduced system (27) yields

ṗr = −V Tp G
[
(Ψmr)⊗ (VqV

T
q DVqqr)

]
,

q̇r = V Tq G
[
(Ψmr)⊗ (VpV

T
p DVppr)

]
.

(28)

Using the properties of Kronecker product, the system (28) further reduces to

ṗr = −V Tp G
(
Ψ⊗ (VqV

T
q DVq)

)
(mr ⊗ qr) ,

q̇r = V Tq G
(
Ψ⊗ (VpV

T
p DVp)

)
(mr ⊗ pr) ,

(29)

where it needs only the computation of the nonlinear vectors mr ⊗ pr : [0, T ] 7→ RNrNd and mr ⊗ qr : [0, T ] 7→
RNrNd in the online stage, and the terms V Tp G

(
Ψ⊗ (VqV

T
q DVq)

)
∈ RNr×(NrNd) and V Tq G

(
Ψ⊗ (VpV

T
p DVp)

)
∈

RNr×(NrNd) are constant matrices to be computed in the offline stage. By DEIM approximation with tensor setting,
online computations scale with O(NdN

2
r ), whereas it scales with O(NrN

2) if DEIM approximation is not used.

Apart from the computational efficiency in the online stage, we also follow a computationally efficient ap-
proach in the offline stage for the calculation of the constant matrices G

(
Ψ⊗ (VqV

T
q DVq)

)
∈ RN×(NrNd)

and G
(
Ψ⊗ (VpV

T
p DVp)

)
∈ RN×(NrNd). Let us consider the calculation of the constant matrix Ĝ :=

G
(
Ψ⊗ (VqV

T
q DVq)

)
. Since it scales with the dimension of FOM, the explicit calculation of the matrix Ĝ is in-

efficient. Using the structure of Ĝ, the matrix Ĝ is given in MATLAB notation without constructing the matricized
tensor G explicitly by

Ĝ =

 Ψ(1, :)⊗ (VqV
T
q DVq)(1, :)

...
Ψ(N, :)⊗ (VqV

T
q DVq)(N, :)

 . (30)

However, the computation in (30) needs N for loops in which a matrix product is done. This drawback can be
overcome by the use of MULTIPROD [28] which handles multiple multiplications of the multi-dimensional arrays via
virtual array expansion. More clearly, by the properties of Kronecker product, the ith row of the matrix Ĝ in (30) is
given equivalently by

Ĝ(i, :) = (vec(Ψ(i, :)>(VqV
T
q DVq)(i, :))

>, i = 1, . . . , N. (31)
For each i = 1, . . . , N , all the operations in (31) can be done at once by MULTIPROD as follows: we reshape the
two-dimensional array (matrix) Ψ ∈ RN×Nd as a three-dimensional array Ψ̃ ∈ RN×1×Nd , and then we compute
MULTIPROD of (VqV

T
q DVq) ∈ RN×Nr×1 and Ψ̃ ∈ RN×1×Nd in 2nd and 3th dimensions, which results in the

three-dimensional array
Ĝ = MULTIPROD(VqV

T
q DVq, Ψ̃) ∈ RN×Nr×Nd , (32)

where the tensor Ĝ collects all the matrix product of two matrices of sizes Nr × 1 and 1 × Nd within N iterations.
Finally, the required matrix Ĝ ∈ RN×(NrNd) is obtained by reshaping the tensor Ĝ in (32) into a two-dimensional
array of dimension N × (NrNd). Hence, utilizing the MULTIPROD, all the matrix products are done simultaneously
in a single loop, which decreases the computational cost in the offline stage.

4 Numerical results

In this section, we illustrate the energy and momentum preserving properties for the conservative ALE and preservation
of the dissipative structure of the damped ALE. The POD and DEIM basis are truncated according to the following
relative cumulative energy criterion

min
1≤p≤K

∑p
j=1 σ

2
j∑K

j=1 σ
2
j

> 1− κ, (33)
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where κ is a user-specified tolerance, and p = Nr or p = Nd.

The accuracy of the ROMs is measured by the time averaged relativeL2-norm errors between FOM and ROM solutions

‖ψ − ψ̂‖rel =
1

K

K∑
k=1

‖ψk − ψ̂k‖L2

‖ψk‖L2

(34)

Conservation of the discrete invariants such as the energy (6) and momentum (8) of the conservative ALE (2) are
measured using the time-averaged relative errors for the FOM and ROM

‖H‖abs =
1

K

K∑
k=1

|H(wk)−H(w0)|
|H(w0)|

, ‖I‖abs =
1

K

K∑
k=1

|I(wk)− I(w0)|
|I(w0)|

. (35)

Similarly the dissipation rate of the discrete invariants such as the energy (15) and momentum (16) of the damped
ALE (13) are measured using the time-averaged relative errors for the FOM and ROM

‖RH‖abs =
1

K

K∑
k=1

|RH(wk)−RH(w0)|
|RH(w0)|

, ‖RI‖abs =
1

K

K∑
k=1

|RI(wk)−RI(w0)|
|RI(w0)|

. (36)

4.1 Conservative ALE

We consider the ALE (2) with soliton solution for γ = 1. The initial data is taken as [36]

ψ(x, 0) = 2ηe2iξxnsech(2ηxn),

where xn = −50 + 0.5(n − 1), n = 1, . . . N , with N = 200, h = 0.5, η = 0.05, and ξ = 0.5. The time step is set
as ∆t = 0.01 for 0 < t ≤ 50. The snapshot matrices are computed by saving the full discrete solutions p and q at
every five time steps, and they are of size 200×500. Figure 1 shows the normalized singular values, where normalized
means that the first normalized singular value is one. The singular values of the snapshots corresponding to the state
variables and to the nonlinear term decay slowly. The slow decay of the singular values is the characteristic for the
problems with complex wave and transport phenomena [4, 31]. The rate of the decay of singular values is related
to the Kolmogorov r−width which is a classical concept of nonlinear approximation theory as it describes the error
arising from a projection onto the best-possible space of a given dimension r. It determines the linear reducibility of
the underlying systems, which can be connected to the POD spectrum [33], therefore the selection of optimal number
of POD/DEIM modes is important. By the use of much larger number of POD and DEIM modes, the conserved
quantities in the reduced form are preserved, resulting accurate and stable solutions in long-term integration In our
simulations, we set the tolerances κ = 10−4 and κ = 10−6 in (33), giving 21 POD and 21 DEIM modes. The relative
FOM-ROM error (34) is 9.55e-03, whereas, the relative energy and momentum errors are 1.90e-04 and 2.29e-04,
respectively.

50 100 150 200

10
−5

10
0

Index i

σ
i/
σ
1

 

 
p

q

m

Figure 1: Decay of singular values for the states and the nonlinearity

In Figure 2 the Hamiltonian and momentum are preserved over the time without a drift, which ensures the stability
of the solitons. In Table 1, the relative FOM-ROM errors (34) and time-averaged errors 35 of the invariants do not
decrease much with increasing number of POD/DEIM modes. Therefore, the ROM solutions in Figure 3 accurately
capture the full-order solutions.
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Figure 2: Preservation of the energy (left) and momentum (right)

Figure 3: Solution profiles and error plot

Table 1: Time-averaged solution and energy/momentum errors

# POD/DEIM Modes ‖ψ − ψ̂‖rel ‖H‖abs ‖I‖abs
20 1.06e-02 2.95e-04 2.95e-04
30 1.56e-03 4.82e-06 3.50e-06
40 1.73e-03 3.06e-07 3.29e-06
50 1.79e-03 2.21e-07 5.70e-06

4.2 Damped ALE

We consider the damped NLSE (12) with one soliton solution with γ = 1 and µ = 0.01 [19]. The solutions are
computed with a time step ∆t = 0.01 in the time interval t ∈ [0, 60], and on the spatial domain x ∈ [−64, 64] with
the mesh size h = 0.25. The resulting ALE is of size N = 512. The Initial condition is taken as

ψ(x, 0) =

√
2

2
exp

(
i
x+ p

2

)
sech

(
x+ p

2

)
,

with the initial phase p = 20. The full order solutions are saved at every five time steps, for which the snapshot
matrices are of size 512× 300.

In Figure 4, singular values of the snapshots for the damped ALE show a similar decay behavior as for the conservative
ALE. The number of the POD and DEIM modes are calculated as Nr = 40 and Nd = 49, corresponding to the
tolerances κ = 10−5 and κ = 10−7, respectively. In order to fulfill the energy and momentum balance in Figures
5-6, the tolerances are taken as one order smaller than for the conservative ALE. The relative FOM-ROM error (34) is
7.22e-03.

Setting the tolerances κ = 10−4 and κ = 10−7 in (33), results in Nr = 40 and Nd = 49 POD and DEIM modes,
respectively. The relative FOM-ROM error (34) is 7.09e-03, whereas the relative energy and momentum balance

9
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Figure 4: Decay of singular values for the states and the nonlinearity
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Figure 5: Energy (left) and residual of energy balance (right)
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Figure 6: Momentum (left) and residual of momentum balance (right)

errors (36) are 1.38-04 and 5.24e-04, respectively. The solution error and residuals of the energy/momentum balances
are saturated around 50 POD/DEIM modes in Table 2, similar to the conservative ALE in Figure 1. The FOM/ROM
solutions in Figure 7 are almost identical, and the energy and momentum dissipate with correct rates in Figures 5-6.
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Figure 7: Initial soliton and soliton solutions at final time

Table 2: Time-averaged solution and energy/momentum balance errors

# POD/DEIM Modes ‖ψ − ψ̂‖rel ‖RH‖abs ‖RI‖abs
20 2.24e-01 9.64e-02 1.95e-01
30 3.89e-02 3.19e-03 8.55e-03
40 7.07e-03 1.38e-04 5.25e-04
50 1.70e-03 5.39e-05 1.65e-04
60 7.23e-04 5.04e-05 1.51e-04

5 Conclusions

In this paper, structure-preserving ROMs are constructed for the conservative and dissipative ALEs. The reduced
system can be identified by accurately preserved reduced energy and momentum for the conservative and dissipative
ALEs in long time integration, that mimics those of the high-fidelity system and ensures the stability and robustness
of the reduced-order soliton solutions. Relatively large number of POD and DEIM modes show the limitation of the
linear MOR techniques such as POD and DEIM for problems associated with transport and wave type phenomena as
in this paper. The nonlinear model order reduction on manifolds [11] or kernel methods [18] can produce accurate
solutions in low dimensional reduced spaces, which will be subject of future research.
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