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Abstract

Applying Prediction-Based Control (PBC) xn+1 = (1 − αn)f(xn) + αnxn with stochastically perturbed
control coefficient αn = α+ ℓξn+1, n ∈ N, where ξ are bounded identically distributed independent random
variables, we globally stabilize the unique equilibrium K of the equation xn+1 = f(xn) in a certain domain.
In our results, the noisy control α + ℓξ provides both local and global stability, while the mean value α of
the control does not guarantee global stability, for example, the deterministic controlled system can have a
stable two-cycle, and non-controlled map be chaotic. In the case of unimodal f with a negative Schwarzian
derivative, we get sharp stability results generalizing Singer’s famous statement ‘local stability implies global’
to the case of the stochastic control. New global stability results are also obtained in the deterministic settings
for variable αn and, generally, continuous but not differentiable at K map f .
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conditions, negative Schwarzian derivative, noise-induced stability
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1. Introduction

We consider the map
xn+1 = f(xn), x0 > 0, (1)

where f : [0,∞) → [0,∞) is a continuous function with one positive unstable equilibrium K, f(x) > x
for x ∈ (0,K), 0 < f(x) < x for x ∈ (K,∞). Non-negativity of xn is assumed following a long tradition
of population dynamics models, and the equilibrium K of f is unstable; moreover, f can exhibit chaotic
behaviour for maps such as Ricker, logistic, and others.

Various methods were applied to alleviate chaotic behaviour, some of them combined the current and
the past values of xn. In contrast to this approach, Prediction-Based Control (PBC) proposed by Ushio and
Yamamoto [26] computed the weighted average between the state variable x and some iterate of the map
fk(x) (a predicted, or a potential future value) xn+1 = (1 − α)fk(xn) + αxn, which in the simplest case
k = 1 is

xn+1 = (1− α)f(xn) + αxn, x0 > 0, α ∈ [0, 1). (2)

PBC was proved to be an efficient stabilization tool [18, 20, 25]. Moreover, some modification was considered
recently in [9].

While generally for parameter-based stabilization, increasing α does not lead to stability of the unique
positive equilibrium point K, i.e. for a stabilizing β∗, instability can be observed for some α ∈ (β∗, 1), there
is a critical β∗, such that for any α ∈ (β∗, 1), K is a globally stable equilibrium of (2).

Consider the case when f is a three times differentiable unimodal function with two equilibrium points
zero and K, a unique critical point c ∈ (0,K) (maximum), f ′(0) > 1, f ′′(x) < 0 for all x ∈ (0, c) and a
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Schwarzian derivative

(Sf)(x) =
f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

, (3)

which is negative on (0,∞) excluding the unique critical point c. Under these conditions, local stability of K

implies global stability, and once f ′(K) < −1, the sharp stabilizing constant α0 :=
−f ′(K)− 1

−f ′(K) + 1
determines

the minimal value leading to stabilization [18]. The idea goes back to [24]. As local stability guaranteed
by the fact that the derivative of the right-hand side of (2) at K which is a weighted average of f ′(K) and
one exceeds -1, is easily established, this leads to the fact that for any α ∈ (α0, 1), K is a globally stable
equilibrium of (2), see [18]. The main result of the paper is that this constant is no longer sharp in the
stochastic case and can be improved when the control is perturbed by noise, which is rigorously justified for
a symmetric continuous or discrete distribution.

Our main goal is to stabilize globally the equilibrium K applying PBC with stochastically perturbed
variable control coefficient αn = α+ ℓξn+1, n ∈ N, where ξ are bounded identically distributed independent
random variables,

xn+1 = (1− α− ℓξn+1)f(xn) + (α+ ℓξn+1)xn, x0 > 0. (4)

Once f satisfies some smoothness criterion being at least one-sided Lipschitz continuous at K, such control
always exists even with ℓ = 0. However, our purpose is to find the smallest possible value of the parameter α
and the range for the noise level ℓ which provide global stability of K with probability one (almost surely).
This is a two-parameter (α, ℓ)-problem, also dependent on the choice of the distribution for ξ. A bound is
constructed for a couple (α, ℓ) guaranteeing convergence of a solution to the unique positive equilibrium. For
a map with negative Schwarzian derivative (3), we get a sharp stabilization criterion which is, unlike most
stochastic results, global. It also clearly illustrates that the range of α includes smaller control values than
in the deterministic case [18, 24].

Let us notice that local stabilization of an unstable equilibrium is possible with noise only. However,
without any other control, for a chaotic map the attracting neighbourhood of K can be very small, less
than 10−9 [7]. Most relevant results on local stability of the stochastic difference equation compared to
the present paper can be found in [7, 16], where unbounded noise ξ and continuously differentiable f were
considered (see also [1, 2, 4]). This approach is due to Khasminskii [15] and H. Kesten [17]; it was used later
in many publications. Our main theorems are based on the Kolmogorov’s Law of Large Numbers which is
used to compute the values of ℓ and α ensuring local stability with any given probability, and on a corollary
of the Borell-Cantelli Lemma, guaranteeing that a solution eventually enters however small, but prescribed
in advance, neighbourhood of K, leading to global stability with the probability one.

Stabilizing effect of noise attracted a lot of attention recently due to its significant role in sustaining
healthy neuronal activities and avoid sustainable oscillations [21]. In contrast to [21], we consider bounded,
not Gaussian noise, which is assumed to be more realistic in biological and health-related systems.

The main result of the paper proves global asymptotic stability of the solution to (4) under the assumption
that there is local stochastic asymptotic stability of K with probability not less than 1 − γ in the interval
(K − δ,K + δ) for the initial value, where δ = δ(γ) depends on γ ∈ (0, 1) chosen arbitrarily. The control
parameters α and ℓ have also to satisfy α + ℓ > β∗, α < β∗, where β∗ is a control level ensuring global
asymptotic stability for deterministic equation (2). The control α + ℓξ provides both local and global
stability, while the mean value α does not necessarily guarantee global (and maybe even local) stability of
K.

Continuity of f and the fact that (f(x) − K)(x − K) < 0 on (0,K) ∪ (K,∞) allow us to deal with a
smaller interval [f2m, fm] around K, where fm is a maximum of f on [0,K], and f2m is a minimum of f on
[K, fm]. Then, the solution to (4) reaches [f2m, fm] in a finite number S0 of steps and remains there. Keeping
a control level greater than β∗ for some prescribed finite number of steps allows a solution x to get from
[f2m, fm] into the initial interval (K−δ,K+δ), from where x converges to K. Applying Borel-Cantelli lemma
(see Lemma 2), we conclude that there exists a random moment N such that the required control intensity
occurs for a certain prescribed number of steps in a row, which implies global stability.

2



Generally speaking, the function f is not assumed to be continuously differentiable at K, which allows to
distinguish between the left-side Lipschitz-type constant L− and the right-side L+ at K, and find a control
parameter for local, as well as global stability, using L− and L+, instead of their maximum. The simplest

result about local stability in the deterministic setting is obtained when α ∈ (α0, 1), α0 := L+L−−1
(L++1)(L−+1) ,

which, to the best of our knowledge, is a new result. For L− = L+ = L, a well-known condition of
α > (L− 1)/(L+ 1) follows, see e.g. [5, Remark 1].

When local stability is due to the stochastic control, the proof applies the Kolmogorov’s Law of Large
Numbers (see Lemma 3), once

E ln
(
[L− − (α+ ℓξ))(L− + 1)][L+ − (α+ ℓξ))(L+ + 1)]

)
< 0 (5)

is satisfied. For some distributions of ξ, we show that when ℓ > 0, condition (5) gives smaller value of α than
α0. Notice that if f is a unimodal function satisfying the conditions of [18] elaborated above, any parameter

α > α0 := −f ′(K)−1
−f ′(K)+1 provides local, as well as global stability of deterministic equation (2). We calculate the

values of ℓ for certain types of noise ξ such that the global stability for (4) holds with some α < α0.
Even though there is always β∗ which guarantees global stability for (2), we are interested in the smallest

possible one. In many population biology models, like chaotic Ricker and logistic, using just the left-hand-side

L− and the right-hand-side L+ global Lipschitz-type constants gives much bigger value than α0 := −f ′(K)−1
−f ′(K)+1 ,

as L+L−−1
(L++1)(L−+1) > α0. It appeared advantageous to split [f2m,K] into several subintervals and pair each one

with its image by the map (1 − α0)f(x) − α0, calculating L
−
i and L+

i , Lipschitz constants for the left and
the right intervals. The point is that, while the left constants are very large, low right constants alleviate
for them. For Ricker and bobwhite quail [19] models, L−

i and L+
i compensate each others: when the left

one is getting bigger, the right one is getting smaller, so the expression
L−

i L+
i −1

(L+
i +1)(L−

i +1)
which can be used for

calculating β∗, remains less than a control value α0 computed without this splitting.
Our approach to the proof of global stability for the deterministic equation is based on the results of

[13, 14, 22], see also [11, 12]. As discovered in [12], a unique equilibrium of f is globally stable if and only if
f2 has no two-cycles. We cite this statement as in [10, Corollary C.4].

Lemma 1. Let g : [a, b] → [a, b] be continuous, then its fixed point x∗ is globally asymptotically stable relative
to [a, b] if and only if g2(x) > x, x < x∗ and g2(x) < x, x > x∗ , for all x ∈ (a, b) \ {x∗}, and either g(a) < b
or g(b) > a.

When the conditions of [18] are satisfied, local stability implies global stability in the deterministic
case. We extend this sharp result to the stochastic case: some version of local condition (5) implies global
stability with probability 1. While the main results of the paper refer to global stability of stochastically
perturbed maps, there are new findings for deterministic equations with variable control, or for continuous
non-smoothf .

In [8], PBC was used to stabilize simultaneously multiple equilibrium points of (1). It was supposed
that f(x) − x changes its sign at each Kj , j = 0, . . . j0, and at each K2i+1, f satisfies a one-side Lipschitz
condition. The control was defined, based on the minimum L of the left and right-side Lipschitz constants,
whenever available. There was a total of j0 ≥ 4 equilibrium points Kj , and every second one, K2i+1, was
stabilized. The minimum number of stabilized equilibriums was 2, when j0 = 4, so the case of the unique
positive equilibrium was not considered in [8]. Compared to [8], the present paper has the following common
features: sharp results are achieved by careful computation of the minimal control constant allowing to
avoid a two-cycle; also, common tools are used, in particular, the proofs in the case when the control is
stochastically perturbed are based on the Borel-Cantelli Lemma. However, the models are different: roughly
speaking, [8] is focused on pulse stabilization with PBC at each 2kth step, while we focus on the original map
and classical PBC. While conditions in [8] are not easy to verify, we obtain sharp results for smooth unimodal
functions with a negative Schwarzian derivative when global stability can be established by checking easily
verifiable local conditions, and our method of finding the best control in deterministic settings is different in
the present paper from [8].
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The rest of the paper is structured as follows. In Section 2, we formulate properties of the noises ξn
and state two important results applied in the proof of the main theorems: the Kolmogorov’s Law of Large
Numbers and a corollary of the Borel-Cantelli Lemma. We also define properties of auxiliary functions that
are later used in the paper. Section 3 discusses global stability for deterministic equation (2) when control
parameter is either constant or variable. In Section 4 we establish conditions when local stability implies the
global stability when the control is stochastically perturbed as in (4): in Section 4.1 local stability holds for
the deterministic value of control while in Section 4.2 stochastic local stability was obtained by application
of the Kolmogorov’s Law of Large Numbers, which is the main result of the paper. In the case when f is
unimodal with a negative Schwarzian derivative [18], in Section 4.3 we show that stochastic perturbation of
the control can improve the sharp deterministic constant for the average control. In Section 5, we calculate
the control parameter which provides global stability based on the left and the right global Lipschtiz constants
and generalize this to several intervals with different Lipschitz constants. Section 6 contains examples and
simulations which illustrate our results. All proofs are deferred to the Appendix.

2. Assumptions and Auxiliary Statements

Denote by [x] the largest integer not exceeding x, N0 := N ∪ {0}, “s.t” stands for “such that”.

2.1. Assumptions on the noise

Introduce a complete filtered probability space (Ω,F , {Fn}n∈N,P), where the filtration (Fn)n∈N is
naturally generated by the sequence of independent identically distributed random variables (ξn)n∈N, i.e.
Fn = σ {ξ1, . . . , ξn}. The standard abbreviation “a.s.” is used for either “almost sure” or “almost surely”
with respect to the probability measure P, and “i.i.d.” for “independent identically distributed”, to describe
random variables. For a detailed introduction to stochastic concepts and notations, we refer the reader to
[23].

In this paper we consider bounded noises and control perturbations, which is a natural assumption in
population dynamics.

Assumption 1. (ξn)n∈N is a sequence of i.i.d. random variables such that |ξn| ≤ 1, ∀n ∈ N, and, for each
ε > 0, P{ξ ∈ (1− ε, 1]} > 0.

The following lemma was proved in [6] and is a corollary of the Borel-Cantelli Lemma.

Lemma 2. Let sequence (ξn)n∈N satisfy Assumption 1. Then, for each nonrandom S ∈ N, ε ∈ (0, 1) and a
random moment M we have

P{there exists a random moment N >M : ξN+i ∈ (1− ε, 1), i = 0, 1, . . . , S} = 1.

For simulations in the present paper, we consider discrete, as well as continuous random variables ξn
with a symmetric distribution. As an example of discrete distribution, we use Bernoulli random variable ξ,
which takes the values of 1 and -1 with probability 1/2 each, has the zero mean and the second moment
µ2 = 1. As an example of continuous random variable we use continuous uniformly distributed on [−1, 1]
random variable ξ, which has the mean zero and the second moment µ2 = 1/3.

The Kolmogorov Law of Large Numbers is cited below, see Shiryaev [23, P. 391].

Lemma 3. Let (vn)n∈ N be a sequence of i.i.d. random variables with µ := Evn, E|vn| < ∞, n ∈ N. Then,

a.s.,
1

n

n∑
k=1

vk → µ as n→ ∞.

Corollary 1. Under the assumptions of Lemma 3, for each ε > 0 there exists a random N (ε) such that

(µ− ε)n ≤
n∑

k=1

vk ≤ (µ+ ε)n, for n ≥ N (ε), a.s. (6)

Also, for each γ ∈ (0, 1), there exist a nonrandom N = N(γ, ε) and Ωγ ⊂ Ω with P(Ωγ) > 1 − γ, such that
(6) holds on Ωγ for n ≥ N .
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2.2. Assumptions on f and properties of auxiliary functions

Assumption 2. Let f : [0,∞) → [0,∞) be a continuous function with one positive locally unstable equilib-
rium K > 0, f(x) > x for x ∈ (0,K), 0 < f(x) < x for x ∈ (K,∞), f(0) = 0.

For f satisfying Assumption 2, we introduce the values

xmax is the largest point of maximum of f on [0,K], fm := max{f(x), x ∈ [0,K]} = f(xmax),

f2m := inf{f(x), x ∈ (K, fm)}.

The constant fm is well defined for any continuous f and, since our purpose is to stabilize the unstable
equilibrium K, we have 0 < f2m < K < fm.

Assumption 3. The function f satisfies Assumption 2, and for some L− ≥ L+ > 1,

f(x)−K ≤ L−(K − x), if x ∈ (xm,K), K − f(x) ≤ L+(x−K), if x ∈ (K, fm). (7)

Everywhere in the paper we assume L− ≥ L+ > 1. Assumptions 2-3 are satisfied for many common
population dynamics maps, such as unstable Ricker, logistic and Beverton-Holt models, where L− ≥ L+ > 1.
Because of this, we concentrate on functions f which are steeper to the left than to the right of K. The case
L+ ≥ L− > 1 is similar, so we omit discussing it.

Define
G(β, x) := (1− β)f(x) + βx, β ∈ [0, 1), x ≥ 0. (8)

The properties of G, which are widely used in this paper, are stated in the next lemma, partially they were
justified in [8, Lemma 2.2].

Lemma 4. Let f satisfy Assumption 2 and G be defined as in (8). Then

(i) G(1, x) = x, G(0, x) = f(x), x ∈ [0,∞), G : [0, 1]× R → R is a continuous function.

(ii) f(x) > G(b, x) > G(a, x) > x, if 1 > a > b > 0 and x < K, while f(x) < G(b, x) < G(a, x) < x, if
1 > a > b > 0 and K < x.

(iii) For β ∈ (β0, 1) ⊂ (0, 1), and β̂ := β−β0

1−β0
, we have G(β, x) = (1− β̂)G(β0, x) + β̂x.

(iv) G(β, ·) :
[
f2m, fm

]
→

[
f2m, fm

]
for all β ∈ [0, 1).

(v) If xGmax is the largest point of maximum of G(β, x) on [0,K], β ∈ [0, 1) then xmax ≤ xGmax.

Set, for β ∈ (0, 1), L± from (7) and L := max{L+, L−},

L±(β) := (1− β)L± − β, L(β) := (1− β)L− β. (9)

Define also

Ψ(u, v) :=
uv − 1

(u+ 1)(v + 1)
= 1− 1

u+ 1
− 1

v + 1
, (u, v) ∈ (−1,∞)× (−1,∞). (10)

The next lemma states some useful properties of functions L±(·) and Ψ(·, ·).

Lemma 5. Let Assumptions 2-3 hold, and L− > L+. Using notations from (9) and (10), we have

(i) The functions L+(β) and L−(β) are monotone decreasing for β ∈ [0, 1].

(ii) L+(β) < L−(β) for β ∈ [0, 1), L±(1) = −1, L±
(

L±

L±+1

)
= 0, L±

(
L±−1
L±+1

)
= 1.

(iii) L+(β) ∈ [0, 1], L−(β) ∈ [1,∞) when β ∈
[
L+−1
L++1 ,min

{
L−−1
L−+1 ,

L+

L++1

}]
.

(iv) L−(β) ≤ 1 if β ≥ L−−1
L−+1 , L±(β) ≤ 0 if β ≥ L±

L±+1 .

(v) The function Ψ(·, ·) increases in each argument, does not exceed one and is positive for uv > 1.
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(vi) The quadratic equation L+(β)L−(β)− 1 = 0 in β has a positive discriminant, its smallest solution

β
0
= Ψ(L−, L+) =

L−L+ − 1

(L− + 1)(L+ + 1)
, (11)

while the largest solution is equal to 1. Moreover, for L−L+ > 1, we have β
0

∈ (0, 1), β
0

∈[
L+−1
L++1 ,min

{
L−−1
L−+1 ,

L+

L++1

}]
, and β

0
= L+−1

L++1 if L+ = L−.

(vii) The inequality L+(β)L−(β) < 1 holds when β ∈ (β
0
, 1). Moreover, L+(β)L−(β) < 1 if and only if

Ψ(L−, L+) < β.

In terms of G, defined as in (8), equations (2) and (4) can be written as

xn+1 = G(αn, xn) = (1− αn)f(xn) + αnx, x0 > 0, n ∈ N, (12)

where αn ∈ [0, 1] is a variable parameter, which can be deterministic or stochastic in the form αn = α+ℓξn+1.
Next lemma shows that

[
f2m, fm

]
is a trap which can be reached after a finite explicitly computed number

of steps.

Lemma 6. Let Assumption 2 hold, β∗ ∈ (0, 1), β∗ ∈ (β∗, 1) and β∗ ≤ αn ≤ β∗. Let x be a solution to (12)
with x0 > 0. Then there exists a finite number S0 = S0(β∗, β

∗, x0) ∈ N such that xn ∈
[
f2m, fm

]
, for n ≥ S0.

3. Global stability of the deterministic equation

In this section we discuss global stability of deterministic equations (2) and (12). Note that global

stability of K for α ∈
(

L−

L−+1 , 1
)
was proved in [5], and generalized to variable α in [3]. The results of this

section are based on Lemma 1 and [14, Theorem 3].

Lemma 7. Let Assumption 2 hold, L− > L+ and G(β, x) be defined as in (8) and

β∗ := inf S, where S := {β ∈ (0, 1) : G2(β, x) < x, x ∈ (f2m,K), G2(β, x) > x, x ∈ (K, fm)}. (13)

Then S is non-empty, and for any α ∈ (β∗, 1), any solution x to (2) with x0 > 0 satisfies lim
n→∞

xn = K.

Remark 1. Lemma 1 and the definition of S in (13) yield that the parameter β∗ is sharp for determin-
istic equation (2) to guarantee global asymptotic stability. In general, finding the best control β∗ is not
trivial. However, stochastic perturbations still can decrease the mean value β∗ of the stabilizing control, see
Sections 4.1, 4.3 and relevant examples.

Note that definition (13) does not exclude existence of the point x∗ ∈ [f2m, fm] such that G2(β∗, x∗) = x∗,
so when α = β∗ the solution to (2) is not globally asymptotically stable and there is a two-cycle (x∗, G(β∗, x∗)).

For each x ∈ [f2m,K], we have G2(β∗, x) ≥ x, while x ∈ [K, fm] implies G2(β∗, x) ≤ x.

The following theorem is the main result of this section.

Theorem 1. Let Assumption 3 hold, β∗ be defined as in (13), β∗ ∈ (β∗, 1), β
∗ ∈ (β∗, 1) and αn ∈ [β∗, β

∗].
Then

(i) The solution to (12) with any x0 > 0 converges to K.

(ii) For any x0 > 0 and δ > 0 there is a finite number of steps S1 = S1(x0, β∗, δ) s.t. xn ∈ (K − δ,K + δ)
for n ≥ S1.

The proof of Theorem 1 is based on Lemma 1 and Lemma 8 below.

Lemma 8. Let Assumption 3 hold, β∗ be defined as in (13), β∗ ∈ (β∗, 1), and β∗ ∈ (β∗, 1). Let x be a
solution to (12) with αn ∈ [β∗, β

∗]. If xn < K for some n ∈ N and s > n then xs > xn, while if xn > K for
some n ∈ N and s > n then xs < xn.

6



4. Global stability induced by noise

Now we proceed to the case when the control is stochastically perturbed as in (4) and establish global
stability conditions. Let β∗ be defined as in (13), so that deterministic equation (2) is globally stable for
any α > β∗. We concentrate on the case when deterministic equation (2) is locally stable for α > α0, where
α0 < β∗. We show, under some restrictions, that introduction of noise into the control allows to get the
stability result for (4) for an intermediate value of the parameter α0 < α < β∗ and a corresponding noise
level ℓ > 0. In other words, stochastically perturbed control α+ ℓξ provides both local and global stability,
while control with the mean value α does not lead to global stability of K.

The shape of function f guarantees that any solution gets into the interval [f2m, fm] after a finite number
of steps S1, which depends on the initial value x0. This interval is the first trap: a solution necessarily gets
into this interval and stays there forever. If the deterministic control satisfies β > β∗, there is a finite number
of steps S2 after which a solution of (2) gets into the second trap (K − δ0,K + δ0), from where it converges
to K. Thus, if α + ℓ > β∗, by applying the Borel-Cantelli Lemma 2, we conclude that starting from some
random moment N , control α+ ℓξn remains greater than β∗ for at least S2 number of steps in a row. This
allows a solution of (4) to get into the second trap. Therefore xn ∈ (K − δ0,K + δ0) for n > S1 +N + S2,
and lim

n→∞
xn = K. We have to stress that, in stochastic settings, even though local stability is established

with any given probability 1− γ, γ ∈ (0, 1), on respected initial values interval, global attractivity holds a.s.
In Section 4.1, we state global stability when local stability is provided by the deterministic control α0. In

this case, the coefficients of the stochastically perturbed control α+ℓξ are easily calculated, independently of
the distribution of the noise ξ, see (14) below: the average part α which provides the global control satisfies

α >
α0 + β∗

2
. By application of Lemma 3, in Section 4.2 we prove a theorem on global stability when

local stability is ensured by a stochastically perturbed control ᾱ0. Note that ᾱ0 ≤ α0, where α0 provides
deterministic local stability. In this case it is not so easy to estimate the average part α of the global control,
it just should satisfy local condition (17) and some more restrictions. In Section 4.3, we consider a unimodal
function f with a negative Schwarzian derivative. For such f in deterministic setting, local stability with a
parameter α0 implies the global one [18, 24]. However, with noise, the minimum deterministic constant α0

providing stability is no longer sharp in the sense that the control α + ℓξ stabilizes for some α < α0 and
ℓ > 0, which is illustrated in the cases of Bernoulli (taking the values of ±1 with the probability of 0.5 each)
and continuous uniformly distributed on [−1, 1] types of noise.

4.1. Deterministic local stability implies global stability

Theorem 2. Let Assumptions 1, 2 hold, the value of β∗ be defined as in (13), δ0 ∈ (0,K), and α0 ∈ (0, 1).
Let a solution x to (2) with any α > α0 and x0 ∈ (K − δ0,K + δ0) satisfy lim

n→∞
xn = K, and

α ∈
(
α0 + β∗

2
, β∗

)
, ℓ ∈ (β∗ − α, min{α− α0, 1− α}). (14)

Then a solution x to (12) with (α, ℓ) from (14) and any x0 > 0 satisfies lim
n→∞

xn = K a.s.

Note that α0 can be found as α0 = −f ′(K)−1
−f ′(K)+1 if f is differentiable at K, and as α0 = Ψ(L̃−, L̃+) if it is

not. The latter statement is confirmed in the next Lemma 9.
Let, instead of Assumption 3, local Lipschitz-type conditions hold:

f(x)−K ≤ L̃−[K − x] if x ∈ [K − θ,K], K − f(x) ≤ L̃+[x−K] if x ∈ [K,K + θ]. (15)

Lemma 9. Let conditions (15) hold, Ψ be defined in (10), α > Ψ(L̃+, L̃−) and L̃−(α) be as in (9). Then
lim
n→∞

xn = K for each solution x to (2) for any x0 ∈ (K − θ/L̃−(α),K + θ).
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4.2. Stochastic local stability implies global stability

Now we proceed to more elaborate situations, where local stability is provided by the noise perturbations
of control, which was proved by the application of the Kolmogorov’s Law of Large Numbers, Lemma 3. We
follow the ideas of [7, 16] and also [1, 2, 4].

The proof of the main result, Theorem 3, consists of two main steps. On the first step, we show that,
when (α, ℓ) are chosen appropriately, a solution to (4) changes sides of K at each step. Then we prove
modified local stability: for each ν ∈ (0, 1) we find a δ0 = δ0(ν) > 0 s.t. as soon as xt ∈ (K − δ0,K + δ0),
t ∈ N is arbitrary, we get lim

n→∞
xn = K on the set which probability is not less than 1− ν. The second step

uses Borel-Cantelli Lemma 2 and is similar to the one in the proof of Theorem 2.
We assume that (15) holds with some θ > 0. In this section we concentrate on f that changes the side of

K at each consecutive step, i.e. (f(x)−K)(K − x) > 0 in (K − θ,K + θ), which implies that the solution of
equation (1) alternates its position relative to K at each step. To guarantee this, we assume that, for some
a1, a2 > 0,

f(x) > a1(K − x) +K, x ∈ (K − θ,K), f(x) < a2(K − x) +K, x ∈ (K,K + θ). (16)

We use constants a1 and a2 to impose assumptions on a control parameter to guarantee that the solution of
equation (12) also changes its position relative to K at each step.

Instead of assuming α > Ψ(L̃−, L̃+), where Ψ was defined in (10), as in the case of deterministic local
stability, see Lemma 9, we introduce the condition

E ln
∣∣L−(α+ ℓξ)L+(α+ ℓξ)

∣∣ = −λ0 < 0. (17)

Here λ0 > 0 is a positive number, and L±(β) = (1− β)L̃± − β.
Lemma 10 below states that conditions (15), (16), (17) and

α+ ℓ ≤ min

{
a1

a1 + 1
,

a2
a2 + 1

}
(18)

guarantee local stochastic stability with any a priori given probability 1−γ, γ ∈ (0, 1). However, the smaller
γ is, the smaller δ0 in the local stability interval (K − δ0,K + δ0) is required.

Lemma 10. Let Assumptions 1, 2 and conditions (15), (16) hold, and (α, ℓ) satisfy (17) and (18). Then,
for each γ ∈ (0, 1) and δ0 > 0, there exists Ωγ ⊆ Ω, P(Ωγ) ≥ 1 − γ, s.t. for any solution x to (4) with
x0 ∈ (K − δ0,K + δ0), we have lim

n→∞
xn = K on Ωγ .

Since Lemma 10 is a partial case of Step (ii) in the proof of the Theorem 3, its proof is omitted.

Theorem 3. Let Assumptions 1,2 and conditions (15), (16) hold, and β∗ be defined in (13). Then lim
n→∞

xn =

K a.s., for any solution x to (4) with x0 > 0 and (α, ℓ) satisfying (17), (18) and

α ∈ (0, β∗), ℓ ∈
(
β∗ − α,min{α, 1− α}

)
. (19)

Remark 2. It is straightforward to check that (17) is satisfied if α > β
0
= Ψ(L̃−, L̃+), ℓ = 0. For Bernoulli

distributed noises ξn, it can be simply shown that there are (α, ℓ), α < β
0
and ℓ > 0 s.t. (17) holds. Indeed,

in the case of Bernoulli distributed ξ,

E ln
[
L−(α+ ℓξ)L+(α+ ℓξ)

]
=

1

4
ln (V(α, ℓ)) ,

V(α, ℓ) :=
[
(L− − α(L− + 1))2 − ℓ2(L− + 1)2

] [
(L+ − α(L+ + 1))2 − ℓ2(L+ + 1)2

]
.

(20)

By Lemma 5 (vi), L−(β
0
)L+(β

0
) = 1, so V(β

0
, 0) = 1. Then there exists ℓ > 0 s.t. each bracket on the

second line of (20) becomes smaller but remains positive, so V(β
0
, ℓ) < 1. Now we can choose β1 ∈ (0, β

0
)

s.t. V(β1, ℓ) < 1. Thus by introducing noise into control, we can allow smaller average control values, see
more details for continuously differentiable unimodal f in Section 4.3.
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4.3. Unimodal continuously differential f : when local implies global stability

To ensure equivalence of local and global deterministic stability, we impose additional restrictions on f .

Assumption 4. Let f satisfy Assumption 2, be unimodal three times differentiable with a unique critical
point c ∈ (0,K) (maximum), f ′(0) > 1, f ′′(x) < 0 for all x ∈ (0, c) and a negative Schwarzian derivative
(3) everywhere but at c.

If f satisfies Assumption 4, local stability of K implies the global one. Moreover, this is also true for

PBC of f [18]. Under Assumption 4, the value of the parameter α > α0 :=
−f ′(K)− 1

−f ′(K) + 1
provides local,

as well as global stability of (2), see [18], we can choose β∗ = α0. If α < α0, we get
d

dx
G(α,K) < −1,

which means, due to smoothness, that in some neighbourhood of K, we get (x−K)(G(α, x)−K) < 0 and
|G(α, x)−K| > |x−K|, thus K is repelling solutions in a certain neighbourhood.

In this section we show that, for each f satisfying Assumption 4, in the cases of Bernoulli and uniformly
distributed noises ξ, we can decrease the mean value to α < α0, so that the stochastic control α+ ℓξn with
a specially chosen ℓ < min{α, 1− α}, provides global stability of the solution x to (4) with probability one.

By [18], we can take β∗ = α0. We only consider α <
−f ′(K)− 1

−f ′(K) + 1
, which implies L(α) > 1 (otherwise,

we get stability without noise). Set

L0 := −f ′(K), α0 :=
−f ′(K)− 1

−f ′(K) + 1
. (21)

Remark 3. Further, we use the expression E ln [(1− α− ℓξ)L0 − α− ℓξ] which should be negative for local
stability. If ℓ = 0, we get 0 < (1 − α)L0 − α < 1, or α ∈ (α0, 1), where α0 is from (21), which is the
well-known sharp stability condition in the deterministic case [18].

Theorem 4. Let Assumptions 1, 4 hold, L0 and α0 be defined as in (21). Assume that, for some α ∈ (0, α0),
ℓ ∈ (α0 − α,min{α, 1− α}), λ1 > 0, either

α+ ℓ <
L0

L0 + 1
, E ln [(1− α− ℓξ)L0 − α− ℓξ] = −λ1 < 0 (22)

or
Emax {ln [(1− α− ℓξ)L0] , ln[α+ ℓξ]} = −λ1 < 0 (23)

holds. Then lim
n→∞

xn = K a.s., for any solution x to (4) with x0 > 0.

The next theorem demonstrates that when f satisfies Assumption 4 and ξ has a symmetric distribution,
we can decrease the average value of the control, compared to the minimal deterministic one α0.

Theorem 5. Let f satisfy Assumption 4, L0 and α0 be defined as in (21), Assumption 1 hold, random
variables ξn have a symmetric (around zero) distribution, and be either continuous or discrete with a countable
number of states. Then there exist α ∈ (0, α0) and ℓ ∈ (α0 − α,min{α, 1− α}) s.t. α0 < α + ℓ < L0

L0+1 and
(22) holds.

Remark 4. Note that the values of α < α0 and ℓ established in Theorem 5 are not supposed to be optimal
(for example, the minimal α), we just show that they exist for either continuous or discrete distribution
of ξ. For each particular distribution we can find smaller values of α by calculating E ln[L0(α + ℓξ)] =
E ln[L0 − (α+ ℓξ)(L0 + 1)].

When ξ has a Bernoulli distribution, we get E ln[L0(α+ ℓξ)] =
1
2 ln

[
[L0 − α(L0 + 1)]2 − ℓ2(L0 + 1)2

]
, so

(22) holds when [
L0

L0 + 1
− α

]2
− 1

(L0 + 1)2
< ℓ2 < min

{[
L0

L0 + 1
− α

]2
, α

}
. (24)

9



For example, for L0 > 2, the values α =
L0 − 1− L0−2

2

L0 + 1
, ℓ =

L0−2
2 + 0.5

L0 + 1
satisfy α ∈ (0, α0) and (24), a

similar example can be found for L0 ∈ (1, 2].

When ξ has the uniform continuous on [−1, 1] distribution, we obtain E ln[L0(α+ ℓξ)] = 1
2

∫ 1

−1
ln[L0(α+

ℓu)]du, so (22) holds when

ln[L0(α)] <
1

6

[
ℓ(L0 + 1)

L0(α)

]2
. (25)

Using estimation of the integral, example pairs (α, ℓ) can be found with α ∈ (0, α0) for which (25) is valid.
Example 1 considers the Ricker model with a control perturbed by the Bernoulli or the continuous noise.

The simulation results for the Bernoulli perturbations illustrate that parameters computed using (24) are
quite sharp. Similar calculations can be implemented for the uniform distribution illustrating sharpness of
(25).

5. Determining control of the deterministic equation

In this section we discuss situations when we are able to find the parameter β∗ which guarantees global
stability of the solution to deterministic equation (2). In all results β∗ might be not optimal (the Ricker
model demonstrates this, see Example 1) even though it is much better than controls found in [3, 4] based
on the global constants.

We are going to use the method of envelope functions suggested by Cull [14]. The next result from [14,
Theorem 3, P. 996] is slightly adapted to our needs.

Lemma 11. Let ϕ(x) be a monotone decreasing function which is positive on (d1, d2) and ϕ(ϕ(x)) = x,
K ∈ (d1, d2). Assume that f(x) is a continuous function s.t. ϕ(x) > f(x) for x ∈ (d1,K), ϕ(x) < f(x) for
x ∈ (K, d2), f(x) < x for x > K, f(x) > x for x ∈ (d1,K), f(x) > 0 on (d1, d2). Then, for all x ∈ (d1, d2),
lim
k→∞

f (k)(x) = K.

When ϕ is such as in Lemma 11, we say that ϕ envelopes f , see [14].
We start with the case when the function f satisfies only Assumption 3.

Proposition 1. Let Assumption 3 hold, 1 < L+ ≤ L−, β
0
be defined as in (11). Then lim

n→∞
xn = K for

each solution x to (2) with α ∈ (β
0
, 1) and x0 > 0.

Now we generalize Proposition 1 to the case when the interval [xm, fm] is split into several subintervals
and f satisfies a Lipschitz condition with different constants on each of them. In many population dynamics
models, such as Ricker’s and logistic, using just the left-hand-side L− and the right-hand-side L+ Lipschitz
type constants does not give the best possible value for the control parameter. Models like Ricker’s have
the property that to the left of K the Lipschitz-type constants are much larger than the derivative at K,
while to the right of K they are quite small. In the following we are going to use such situation and find
a better low bound for the control than β

0
. First, we construct a piecewise function which can be used as

ϕ in Lemma 11 for corresponding function G(α, x). Consider finite sequences (ai)i=0,1,...,m, (C−
i )i=0,...,m−1,

(C+
i )i=0,...,m−1, (bi)i=0,...,m−1,

0 < am < . . . a2 < a1 < a0 := K,

C−
i , C

+
i > 0, C−

i C
+
i = 1, bi+1 = −C−

i (ai+1 − ai) + bi, i = 0, . . . ,m− 1, b0 := K,
(26)

and a piecewise function ϕ : (0,∞) → (0,∞), ϕ(K) = K, is defined for i = 0, . . .m− 1 by

ϕ(x) = −C−
0 (x−K) +K, a1 ≤ x ≤ K, ϕ(x) = −C+

0 (x−K) +K, K ≤ x ≤ b1,

ϕ(x) = −C−
1 (x− a1) + b1, a2 ≤ x < a1, ϕ(x) = −C+

1 (x− b1) + a1, b1 < x ≤ b2,

ϕ(x) = −C−
i (x− ai) + bi, ai+1 ≤ x < ai, ϕ(x) = −C+

i (x− bi) + ai, bi < x ≤ bi+1.

(27)
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For each i = 0, . . . ,m− 1, we have bi+1 = ϕ(ai+1). Also, when ai+1 ≤ x ≤ ai,

ϕ(ϕ(x)) = −C+
i (C−

i (x− ai) + bi − bi) + ai = x,

and, when bi ≤ x ≤ bi+1,
ϕ(ϕ(x)) = −C−

i (C+
i (x− bi) + ai − ai) + bi = x.

So ϕ is a monotone decreasing function which is positive on (0, bm), since ϕ(bm) = am and ϕ(ϕ(x)) = x.
Now we proceed to equation (2). Let (26) hold, L−

i , L
+
i > 0, i = 0, . . . ,m− 1, L−

0 L
+
0 > 1,

f(x)−K ≤ L−
0 (K − x), a1 ≤ x ≤ K, K − f(x) ≤ L+

0 (K − x), x > K, (28)

α0 = Ψ
(
L−
0 , L

+
0

)
, (29)

and, for i = 1, . . . ,m, L±
i (α) := L±

i − α(L±
i + 1),

bi(α0) = L−
i−1(α0)(ai − ai−1) + bi−1(α0), b0 := K,

f(x)− f(ai) ≤ L−
i (ai − x), ai+1 ≤ x ≤ ai, f(bi(α0))− f(x) ≤ L+

i (x− bi(α0)), bi(α0) ≤ x.
(30)

Remark 5. We assume L−
0 L

+
0 > 1 since otherwise the equilibrium K is locally stable. We also assume

without loss of generality that L−
i−1(α0) > 0 for all i = 1, . . . ,m. Indeed, if, for some i, we have L−

i−1(α0) < 0,
it means that bi(α0) < bi−1(α0), so we exclude ai from the sequence in (26).

Proposition 2. Let Assumption 3 and conditions (26), (28)-(30) hold and also

α0 ≥ max
i=1,...,m

{
L−
i L

+
i − 1

(L−
i + 1)(L+

i + 1)

}
. (31)

If xn is a solution to (2) with any α > α0 and x0 > 0 then lim
n→∞

xn = K.

Proposition 2 is illustrated in Example 2 (a).

Remark 6. By Lemma 9, conditions (28)-(29) provide stability of the solution to (2) with α > α0 on the
interval

(
a1,L−

0 (α0)(a1−K)+K
)
. Therefore, Proposition 2 proves that when conditions (30)-(31) hold, the

local stability implies the global one.

We also can deal with the case when there is i0 < m s.t. α0 < Ψ
(
L−
i0
, L+

i0

)
and find a bigger parameter

ᾱ which guarantees global stability of the solution to (2). It is discussed in Remark 7 in the Appendix and
illustrated in Example 2 (b).

When f is continuously differentiable, we can get an explicit result computing α0 which ensures global
stability.

Assumption 5. Let f satisfy Assumption 2, be continuously differentiable with f ′(x) < 1 for x ∈ [xmax, fm],
and for α0 defined in (21),

α0 > Ψ

(
f ′(G(α0, x)), f

′(x)

)
for each x ∈ [xmax,K). (32)

Note that since Assumption 2 holds, there is no local stability at K, and therefore f ′(K) < −1, so α0 is
well defined. Also, any α ∈ (α0, 1) leads to local stability of K for (2).

Proposition 3. Let Assumption 5 hold, and α ∈ (α0, 1). Then lim
n→∞

xn = K, where x is a solution to (2)

with x0 ∈ (0,∞).

To illustrate Proposition 3, we consider the bobwhite quail map [19]

g(x) = x

(
0.55 +

3.45

1 + x9

)
, x > 0, (33)

where K ≈ 1.2347, f ′(K) ≈ 2.521, α̃ ≈ 1.521
3.521 ≈ 0.4319, xmax ≈ 0.811, Ψ(a, b) = ab−1

(a+1)(b+1) . Fig. 1 shows

that α̃ ≥ maxx∈[xmax,K] Ψ(g′(x), g′(G(α̃, x))) = maxx∈[xmax,K] envel(x).
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Figure 1: The envelope function envel(x) := Ψ (g′(x), g′(G(α̃, x))) for x ∈ [xmax,K] ≈ [0.81, 1.2347] compared
to the bound for the control α which is α̃ ≈ 0.4319. We observe that α̃ ≥ maxx∈[xmax,K] envel(x) leading to
both local and global stability for α ∈ (α̃, 1).

6. Examples and simulations

Example 1. Consider Ricker’s function f(x) = xer(1−x), x ≥ 0, which satisfies β∗ = α0 = −f ′(1)−1
−f ′(1)+1 .

(a) Let r = 3.5, then −L0 = f ′(1) = 1 − r = −2.5, α0 = β∗ = 3/7 ≈ 0.4285. In the case of Bernoulli

distributed ξ we apply formula (24) from Remark 4 and get that ℓ should satisfy
√

(0.71− α)2 − 0.0811 <
ℓ < min{(0.71−α), α}, see the domain in Fig. 2. Taking α = 0.368 we should have ℓ ∈ (0.1877, 0.342). This
case is illustrated by the bifurcation diagram in Fig. 3, left. The runs for ℓ = 0.2 and α = 0.3, 0.36, 0.37 in
Fig. 4 also confirm this.

For uniformly distributed ξ we apply inequality (25) from Remark 4, which is satisfied when α = 0.405
and ℓ = 0.2, which coincides with what we observe on the bifurcation diagram in Fig. 3, right.

 0.05
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 0.4

 0.45

 0.3  0.32  0.34  0.36  0.38  0.4  0.42
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is

e

control α

Stabilizing noise for α, r=3.5

Figure 2: The domain of the Bernoulli noise ℓ leading to stability for the Ricker model with r = 3.5 and PBC
with a given α is above the red solid line. In addition, ℓ < α limits the allowed values below the quadrant
bisect (the dashed blue line).

(b) Let now r = 3, then −L0 = f ′(1) = 1 − r = −2, α0 = 1/3 = 0.33(3). For Bernoulli distributed
ξ, the domain for (α, ℓ) based on condition (24) from Remark 4, is described in Fig. 5. We conclude that
for α > 0.283, ℓ = 0.2, the equilibrium K is globally stable. The bifurcation diagram for ℓ = 0.2 on Fig. 6
confirms it.

Simulations illustrate sharpness of our theoretical computations: the final bifurcation leading to stability
in Fig. 6 is quite close to theoretically computed α = 0.283. Applying Figs. 3 and 6, or calculating directly
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Figure 3: Bifulcation diagrams for the Ricker map stabilized by PBC with r = 3.5 and α perturbed by (left)
the Bernoulli noise taking values ±0.2; (right) uniformly distributed in [−0.2, 0.2] noise.
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Figure 4: Runs of the controlled Ricker model with α = 3.5, the Bernoulli noise taking values ±0.2 and (left)
α = 0.3, (middle) α = 0.36, (right) α = 0.37.

by formulas (24), (25), we can find smaller average stabilizing value α of the stochastic control, but it might
involve larger noise intensity ℓ.

Example 2. (a) Consider a piece-wise linear function with a unique positive fixed point K = 32

f(x) :=



51x/28, x ∈ [0, 28),
−6x+ 219, x ∈ [28, 29) = [a3, a2),
−5x+ 190, x ∈ [29, 31) = [a2, a1),
−3x+ 128, x ∈ [31, 32) = [a1,K),
−2x+ 96, x ∈ [32, 33) = [K, b1),
−1.4x+ 76.2, x ∈ [33, 38) = [b1, b2),
−1.2x+ 68.6, x ∈ [38, 50) = [b2, b3),
8.6, x ≥ 50.

(34)

For function f defined by (34), Assumptions 3 and conditions (26),(28)-(30) hold with K = 32, xmax = 28,
fm = 51, a1 = 31, a2 = 29, a3 = 28 = xmax, b1 = 33, b2 = 38, b3 = 39,

L−
0 = 3, L+

0 = 2, α0 = Ψ(2, 3) ≈ 0.416(6),

L−
1 = 5, L+

1 = 1.4, Ψ(5, 1.4) ≈ 0.416(6), L−
2 = 6, L+

2 = 1.2, Ψ(6, 1.2) ≈ 0.4025.

Since α0 = Ψ(2, 3) ≥ max{Ψ(5, 1.4),Ψ(6, 1.2)}, condition (31) holds and we can apply Proposition 2 and
conclude that lim

n→∞
xn = K for any α > α0 and x0 > 0. If, for calculating global stability control, we use

maximum of left and right Lipschitz type constants with respect to the equilibrium K, L− = 51−32
32−28 = 4.75

and L+ = 2 we arrive at Ψ(4.75, 2) = 0.49275 > 0.4166 = α0, which shows the advantage of Proposition 2
comparing to Proposition 1.

Now we perturb the control with the noise ℓξ, where ξ has a Bernoulli distribution, and apply Theorem
3, which allows to decrease the control average α. Based on the above, we need only to show that α+ ℓ > α0,
and check condition (17) with L−(α + ℓξ) = L−

0 − (α + ℓξ)(L−
0 + 1) = 3 − 4(α + ℓξ), L+(α + ℓξ) =
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Figure 6: Bifulcation diagrams for the Ricker map with r = 3.0 stabilized by PBC with α perturbed by the
Bernoulli noise taking values ±0.2

L−
0 − (α+ ℓξ)(L−

0 + 1) = 2− 3(α+ ℓξ). Condition (17) holds if

V(α, ℓ) :=
[
(L−

1 − α(L−
1 + 1))2 − ℓ2(L−

1 + 1)2
] [

(L+
1 − α(L+

1 + 1))2 − ℓ2(L+
1 + 1)2

]
=

[
(3− 4α)2 − 16ℓ2

] [
(2− 3α)2 − 9ℓ2

]
< 1.

By direct calculations we show that, when α = 0.36, ℓ = 0.2 we have α + ℓ = 0.56 > 0.417 > α0, and
V(0.36, 0.2) ≈ 0.8724 < 1.

Fig. 7 (left) illustrates that non-controlled map (34) is chaotic, as the theory predicts, there is convergence
to the equilibrium without noise for α = 0.417 (second), and, while for the value of control α = 0.35 we get a
stable two-cycle (third), addition of the Bernoulli noise with ℓ = 0.2 leads to stabilization (right). Note that
for ℓ = 0.2, the control value α = 0.35 < 0.36 which is theoretically predicted above.

(b) Consider a continuous function with a unique positive fixed point K = 32

f2(x) :=



50x/28, x ∈ [0, 28),
−5x+ 190, x ∈ [28, 31),
−3x+ 128, x ∈ [31, 32),
−2x+ 96, x ∈ [32, 33),
−1.7x+ 86.1, x ∈ [33, 45),
9.6, x ≥ 45.

(35)
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Figure 7: Numerical runs for (34) in the cases of (first) no control; (second) α = 0.417, ℓ = 0 (third) α = 0.35,
ℓ = 0 (right) α = 0.35, ℓ = 0.2.

We have the same α0 = 5
12 ≈ 0.416 as in (a), however α0 < Ψ(L+

2 , L
−
2 ) = Ψ(5, 1.7) = 0.4629. Note that α0

does not provide global stability: we apply Lemma 1, and for x = 28 we get G2(α0, 28) ≈ 26.7455 < 28.
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Figure 8: Numerical runs for (35) in the cases when there is no noise and (left) no control; (middle) α = 0.417;
(right) α = 0.463.

Fig. 8 (left) illustrates multi-stability and chaotic features of map (35), the control α = 0.417 providing
local stability still leads to a two-cycle (middle), while the value of α = 0.463 (right) leads to global stability.
Fig. 8 illustrates that, generally, local stabilization does not make the equilibrium a global attractor, since
there may also be a stable two-cycle, see also [24].

Example 3. Consider the function

f(x) =



π+2
π−2x, x ∈ (0, 1− 2/π],

(1− x)
(
1.5 + 0.5 sin 1

x−1

)
+ 1, x ∈ (1− 2/π, 1),

1, x = 1,

(1− x)
(
1.25 + 0.25 sin 1

x−1

)
+ 1, x ∈ (1, 1 + 2/π),

1− 3/π, x ≥ 1 + 2/π.

(36)

which is not differentiable at the unique positive equilibrium 1, and there is no monotonicity in any neigh-
bourhood of 1. For its graph see Fig. 9. We have L− = 2, L+ = 1.5, so, by Proposition 1, α0 = β

0
=

L̃−L̃+−1
(L̃−+1)(L̃−+1)

= 2
3×2.5 ≈ 0.266.

In condition (18) we have a1 = a2 = 1, so in order to apply Theorem 3, we need to have α + ℓ < 0.5,
α+ ℓ > β

0
= 0.266, α < β

0
= 0.266, and for the Bernoulli noises, it should be

V(α, ℓ) :=
[
(L− − α(L− + 1))2 − ℓ2(L− + 1)2

] [
(L+ − α(L+ + 1))2 − ℓ2(L+ + 1)2

]
=

[
(2− 3α)2 − 9ℓ2

] [
(1.5− 2.5α)2 − 6.25ℓ2

]
< 1.

We can check by straightforward calculations that the values (α, ℓ) = (0.23, 0.2) and (0.22, 0.19) satisfy the
above conditions. Thus, introduction of noise decreases the average of the control.

While the bifurcation diagram in Fig. 10 (left) illustrates chaotic behaviour for α > 0.2, for ℓ = 0.05
stabilization is observed for smaller α > 0.142 in the case of the Bernoulli noise, see Fig. 10 (middle) and
for α > 0.142 in the case of the uniform continuous noise in Fig. 10 (right). These control values are lower
than theoretically predicted. Possible reasons for this phenomenon are discussed in Section 7.
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Figure 9: The graph of the function (36) without control.
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Figure 10: Bifurcation diagrams for map (36) and (left) no noise, (middle) Bernoulli noise taking values
±0.05, (right) continuous noise uniformly distributed on [-0.05,0.05].

7. Conclusions and Discussions

Discrete maps are a handy way to describe abundance of semelparous populations. Though simple one-
dimensional maps, such as Ricker, for larger values of the parameter can exhibit chaotic behavior, which is
not frequently observed in nature. It is sometimes referred to a stabilizing influence of random perturbations,
in particular, associated with an environmental noise. In the current paper, we considered control with a
prescribed average and randomness. Can this average be reduced by incorporating noise, and what are the
conditions on this average, and admissible noise amplitudes? We give, generally, a positive answer to this
question, establishing relevant estimates. This is coherent with experimental observations that introducing
noise can either stabilize population size or at least reduce its variation.

The main results of the present paper can be summarized as follows:

1. A strict bound for the control parameter leading to global stability is outlined in Theorem 1, and a
smaller average control is allowed in the stochastic settings, provided that α + ℓ is above the critical
deterministic bound, see Theorem 2.

2. In the case of a unimodal map, we extend the results of [18, 24] to the stochastic case in Theorem 4,
which is quite a challenging task, taking into account local in general character of convergence in the
stochastic case. To the best of our knowledge, this is the first result of this type. In addition to
the general statement, for symmetric distributions, we justify that the average control level ensuring
stability is lower in the presence of noise (Theorem 5), qualitatively confirming the stabilizing effect
of noise.

3. In the deterministic case, some improvement for global stabilization can be achieved when a series of
local Lipschitz constants is taken into account (Proposition 2) in the sense that the control intensity
α can be smaller.

The results are verified with numerical simulations illustrating sharpness of the constants when local and
global stability are equivalent, and the fact that in the case of sufficient conditions, the required control in
examples can be lower than theoretically predicted. For instance, in Example 3 the bifurcation diagram in
Fig. 10 corresponding to the noise perturbed control demonstrates that stabilization is achieved for lower
than theoretically predicted average values α of the control. Note that when there is no noise, the chaotic
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behavior stops exactly as predicted theoretically, at α0 ≈ 0.266. However, as soon as noise is present, the
necessary average control value is dropped significantly to ≈ 0.142. We suggest that there could be several
reasons for that. One of them is concerned with the fact that when the computer does simulations, it
assumed that the function f in (36) is equal to 1 in some small, but still significant for stochastic stability
neighbourhood of 1, so it simulates a slightly different function. Therefore, in this case, this is local stability
with α = 0 for the corresponding equation, and for calculation of parameters for the global stability we can
apply Theorem 2, which gives us α > 0.133 and ℓ > 0.266− α. Taking α = 0.142 gives ℓ > 0.124. However,
the simulation demonstrates that global stability is achieved for smaller value ℓ = 0.05. We conjecture that
the reason for that is an oscillating nature of the function (36) and the noise lingering at the intervals where
the function takes smaller values.

The present paper leads to several open questions and lines of research:

• For specific types of symmetric distributions, construct sharp stabilization criteria from Theorem 4 and
also deduce easily verifiable sufficient conditions. How does the situation change for non-symmetric
distributions with the zero mean? In addition, can the method and the results be generalized to the
case of unbounded, for example, normal distributions?

• The deterministic results are significantly based on some monotonicity properties of f in some neigh-
bourhood of the unique positive equilibrium. Can the results be adapted to a strongly oscillatory case?
Example 3 sheds some light on the possibility to extend the results of the present paper to the case
when f is oscillatory near K.

• Everywhere in the current paper we considered the multiplicative noise in the control term. However,
it is also interesting as to study additive ‘environmental’ noise

xn+1 = (1− α)f(xn) + αxnb+ ℓξn+1, x0 > 0, α ∈ [0, 1),

for which only a blurred equilibrium can be stabilized in some sense.
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8. Apendix

8.1. Proof of Lemma 5
The statements of Parts (i)-(v) are straightforward. By (ii), L+(1)L−(1) = 1. Part (v) implies

L+(β
0
)L−(β

0
) =

[
L+ − (L+ + 1)

(
1− 1

1 + L+
− 1

1 + L−

)][
L− − (L− + 1)

(
1− 1

1 + L+
− 1

1 + L−

)]
= 1,

so (vi) holds. The quadratic polynomial L+(β)L−(β) has a positive coefficient of β2 and two roots: one and
β0 < 1. Thus, L+(β)L−(β) < 1 holds when β ∈ (β

0
, 1), which concludes the proof of Part (vii).

8.2. Proof of Lemma 6
If x0 ∈ [f2m, fm] the result follows from Lemma 4 (iv) with S0 = 1. Assume that x0 ∈ (0, f2m) and let

∆1 := inf{f(x)−x : x ∈ [x0, f
2
m)} > 0 as f2m < K, G(αn, x)−x = (1−αn)(f(x)−x), for each αn ∈ (β∗, β

∗)
and 1− αn > 1− β∗. Then

G(αn, x)− x > (1− β∗)∆1, x ∈ [x0, f
2
m], N− :=

[
f2m − x0

∆1(1− β∗)

]
+ 1.

Reasoning inductively and assuming that xi = G(βi, xi−1) ∈ (xi−1, f
2
m], i = 1, . . . , k, k ≤ N−, we get

xk+1 = G(αk+1, xk)− xk + xk ≥ G(β∗, xk)− xk + xk ≥ ∆1 + xk ≥ · · · ≥ k∆1 + x0.

So after at most N− steps the solution reaches [f2m, fm]. Recall that by definition of fm the solution cannot
jump over fm. In the case x0 > fm we find N+ in a similar way and let S0 := max{N−, N+}.

8.3. Proof of Lemma 7

Note that it is enough to consider only x ∈ [f2m, fm]. Fix some α > L−

L−+1 , then, by Lemma 5 (i),(iv) we

have L+(α) < L−(α) < 0, and

G(α, x)−K = (1− α)(f(x)−K) + α(x−K) < [(1− α)L− − α](K − x) = L−(α)(K − x) < 0, x ∈ (f2m,K),

K −G(α, x) < [(1− α)L+ − α](x−K) = L+(α)(K − x) < 0, x ∈ (K, fm).

This implies x < G(α, x) < G2(α, x) for x ∈ (f2m,K) and x > G(α, x) > G2(α, x) for x ∈ (K, fm), so α ∈ S.
Further, we notice that, since S ≠ ∅, for each α > β∗ = inf S there is β1 ∈ S s.t. α > β1, which,

by Lemma 4(ii), implies that G(α, x) > G(β1, x) for x > K and G(α, x) < G(β1, x) for x < K. If x ∈
(f2m,K) and G(α, x) > K, there is x̂ ∈ (x,K), s.t. G(α, x) = G(β1, x̂). Since β1 ∈ S we have G2(α, x) =
G(α,G(β1, x̂)) > G2(β1, x̂) > x̂ > x, which, by Lemma 1, yields the result. Other cases are either similar or
have been considered above. Note that the proof of the second part of Lemma 7 follows the scheme of [13,
Theorem 3], even though we do not impose any monotonicity restriction on f .

8.4. Proof of Lemma 8
Once xn − K does not change the sign, or if it changes the sign once, it is true. Assume xn < K,

the case xn > K is similar. For the proof it is enough to show that when a solution moves to the right
of K and then to the left of K, at the moment of the first return to (0,K) it will be on the right of
xn. Let s1 = min{s > n : xs > K}, s2 = min{s > s1 : xs < K}, and both sets be not-empty. Let
s1 > n + 1, s2 > s1 + 1. Then, xn < xn+1 ≤ xs1−1 < K < xs1 , xs1 > xs1+1 ≥ xs2−1 > K > xs2 .
Since xs1 > xs2−1 > K > xs1−1 and αs2 > β∗, we have xs1 = G(αs1 , xs1−1) ≤ G(β∗, xs1−1). Due to the
continuity of G(β∗, ·), there is x̄ ∈ (xs1−1,K) s.t. G(β∗, x̄) = xs2−1. Since β∗ > β∗ we have G2(β∗, x̄) > x̄
and since xs2−1 > K we have G(αs2 , xs2−1) ≥ G(β∗, xs2−1). Then xs2 = G(αs2 , xs2−1) ≥ G(β∗, xs2−1) =
G(β∗, G(β∗, x̄)) = G2(β∗, x̄) > x̄ > xs1−1 > xn, so xs2 > xn, i.e. the first return of the solution to (0,K) is
to the right of xn.

If s1 = n + 1, s2 > s1 + 1, we have xn < K < xn+1, and we can start the reasoning as in the first
case for xn+1 instead of xn. If s1 = n + 1, s2 = s1 + 1, we have xn < K < xn+1, xn+2 < K < xn+1.
So xn+1 = G(αn+1, xn) ≤ G(β∗, xn) and for some x̄ ∈ (xn,K) we have G(β∗, x̄) = xn+1. Thus xn+2 =
G(αn+2, xn+1) ≥ G(β∗, xn+1) = G(β∗, G(β∗, x̄)) > x̄ > xn, and again the first return of solution to (0,K) is
to the right of xn.
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8.5. Proof of Theorem 1

(i) Consider first x0 ∈ [f2m, fm]. Assume the contrary that a solution does not converges to K. By
Assumption 2, there is an infinite number of points xn on both sides of K, (xn)n∈N0 = (xni)i∈N0 ∪ (xnj )j∈N0 ,
xni

∈ (0,K), xnj
∈ (K,∞). Lemma 8 implies that a solution to (12) is a union of two monotone subsequences:

the first one is in (0,K) and increasing, the second one is in (K,∞) and decreasing. If (xn)n∈N does not
converge, there are non-negative a and b and N̄ ∈ N, s.t. xn /∈ [K−a,K+b] for all n ≥ N̄ . If we assume that
one of a, b is equal to zero, we get that one of the sequences, say xni

, converges to K, then from continuity
of f , the other sequence of fm(xni) also converges to K.

Define

∆∗ := min

{
inf

u∈[f2
m,K−a]∪[K+b,fm]

|G(β∗, u)− u| , inf
u∈[f2

m,K−b/L−]∪[K+a/L−,fm]

∣∣G2(β∗, u)− u
∣∣} , (37)

and note that ∆∗ > 0 by Assumptions 2, Lemma 1, definition (13), and by the choice of β∗.
Let xi ∈ [f2m,K − a] for some i > N̄ . Applying Lemma 4 (iii), we get

xi+1 − xi = G(αi+1, xi)− xi =

(
1− αi+1 − β∗

1− β∗

)
G(β0, xi) +

αi+1 − β∗
1− β∗

xi − xi

=
1− αi+1

1− β∗
[G(β∗, xi)− xi] >

1− β∗

1− β∗
∆∗ = ∆∗.

If in addition, G(αi+1, xi) > K + b, there is x̄i ∈ (xi,K) s.t. G(αi+1, xi) = G(β∗, x̄i). By Assumption 3 we
have G(β∗, x̄i) ≤ K + L−(K − x̄i), so K + b < G(αi+1, xi) = G(β∗, x̄i) ≤ K + L−(K − x̄i), which implies

b < L−(K − x̄i), K − x̄i >
b

L− , x̄i ∈
(
xi,K − b

L−

)
⊂

(
f2m,K − b

L−

)
.

Recalling that G(αi, x) > G(β∗, x) for x > K, we get

G(αi+1, G(αi, xi)) > G(β∗, G(αi, xi)) = G(β∗, G(β∗, x̄i)) = G2(β∗, x̄i) > x̄i > xi,

which, by (37), implies G(αi+1, G(αi, xi))−xi > G2(β∗, x̄i)− x̄i > ∆∗. So, if the solution changes the side of
K at two successive steps, returning to [f2m,K − a], we have xi+2 > xi +∆∗. Following the same argument
as in the proof of Lemma 8, we actually can get xi+m > xi + ∆∗, where i + m is the first moment after
returning to [f2m,K − a].

Therefore the solution xi, which starts in [f2,K − a], moves right with the step of the length bounded
below by ∆∗. If it remains on the left of K, it eventually moves to the right of K − a in a finite number
of steps, which contradicts to our assumption. If, at some moment it jumps over K + b and remains to the
right of K, it eventually moves below K+ b in a finite number of steps, which contradicts to our assumption
again. If it returns to [f2,K − a], its new position there will be at least ∆∗ to the right than before the
jump. Summarizing all the above, we conclude that the solution cannot move in [f2,K − a] for more than

N1 :=
K−a−f2

m

∆∗
steps, cannot stay in [K − b, fm] for more than N2 := fm−K−b

∆∗
steps, and cannot remain in

[f2m,K − a] ∪ [K + b, fm] for more than N1 +N2 +
fm+a−f2

m−b
∆∗

steps.
Similarly, when xi ∈ [K + b, fm] we get xi − xi+1 > ∆∗. If in addition, G(αi+1, xi) < K − a, there is

x̄i ∈ (K,xi) s.t. G(αi+1, xi) = G(β∗, x̄i). By Assumption 3, we get K − a > G(αi+1, xi) = G(β∗, x̄i) ≥
K−L+(x̄i−K), so x̄i ∈

(
K + a

L+ , xi
)
⊂

(
K + a

L+ , fm
)
, and xi−G(αi+1, G(αi, xi)) > x̄i−G2(β∗, x̄i) > ∆∗.

The case x0 ∈ (0, f2m) ∪ (fm,∞) follows from Lemma 6.
(ii) Basically we repeat the proof of Part (i) for a = b = δ. The necessary number of steps in this case

is max{N̄1, N̄2}, where N̄1 is the first moment when the solution gets into [K − δ,K), and N̄2 is the first
moment when the solution gets into (K,K + δ), if both numbers N̄1, N̄2 are finite. If one of them is infinite,
say N̄2 = ∞, we put S1 = N̄1. In other words, S1 := max{N̄1, N̄2} if N̄2, N̄1 <∞, S1 = N̄1 if N̄2 = ∞, and
S1 = N̄2 if N̄1 = ∞.
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8.6. Proof of Theorem 2

For any (α, ℓ) satisfying (14) we have 0 < α0 < α− ℓ < αn < α+ ℓ < 1, for all n ∈ N, and β
∗
−α

ℓ < 1. We
consider only α < β∗, since otherwise the solution to (4) is globally asymptotically stable for ℓ = 0. Then,

by Assumption 1, P(Ω̂) > 0, where Ω̂ =
{
ω ∈ Ω : ξ(ω) ∈

(
β
∗
−α

ℓ , 1
]}

, and by Lemma 2 there is a random

moment N s.t.

ξN+S0
, ξN+1+S0

, . . . , ξN+S1+S0
∈
(
β∗ − α

ℓ
, 1

]
, (38)

where S0 and S1 are from Lemma 6 and Theorem 1 (ii), respectively, S0 = S0(α − ℓ, α + ℓ, x0), S1 =
S1(x0, α− ℓ, δ0). Fix some k ∈ N, set

Ωk = {ω ∈ Ω : N = k} =

{
ω ∈ Ω : ξk+i+S0

∈
(
β∗ − α

ℓ
, 1

]
, i = 0, . . . , S1

}
, (39)

and note that Ωk is defined by ξk+S0 , ξk+1+S0 , . . . , ξk+S1+S0 .
By Lemma 6, xS0+k ∈ [f2m, fm] on all Ω. Let y be a solution to

yn+1 = G(ᾱn, yn), y0 = xS0+k, ᾱn = α+ ℓξS0+k+n,

considered path-wise on Ωk. Since αn = α + ℓξn > β∗ for n = S0 + k + 1, S0 + k + 2, . . . , S0 + k + S1,
Theorem 1 (ii) implies xS0+k+S1

= yS1
∈ (K − θ,K + θ) on Ωk. Since α > α0, as soon as x gets into

(K − θ,K + θ), it tends to K. So, for each ω ∈ Ωk we get lim
n→∞

xn = K. Since Ω = ∪∞
k=1Ωk, this completes

the proof.

8.7. Proof of Lemma 9

As we have assumed everywhere, L̃− ≥ L̃+ and by Lemma 5, L̃+(α) < 1, L̃−(α)L̃+(α) < 1. In order to
keep solution inside of (K − θ,K + θ), where inequalities (15) can be applied, we need to decrease the left
part of the interval. So, if x ∈ (K−θ/L̃−(α),K) and G(α,K) > K, we have G(α,K)−K ≤ L̃−(α)(K−x) <
L̃−(α) θ/L̃−(α) = θ, i.e. G(α,K) ≤ K + θ.

8.8. Proof of Theorem 3

Suppose that the statement of theorem does not hold, i.e. there exists a pair (α, ℓ) satisfying (17), (18),
and (19) such that

for some x0 > 0, κ ∈ (0, 1), Ωκ ⊂ Ω with P(Ωκ) = κ, the solution xn ̸→ K on Ωκ. (40)

Without loss of generality we can assume that κ ∈ (0, 2/3). In the proof below we consider a solution to (4)
with (α, ℓ) and x0 satisfying (40). Note that, once xn = K, all xn+j = K, j ∈ N, so we only have to consider
the case xn ̸= K, n ∈ N.

(i) We start with the proof that a solution to (4) changes sides of K at each step. We have

G(β, x)−K = (1− β)(f(x)−K) + β(x−K) ≥ [(1− β)a1 − β](K − x), if x ∈ [K − θ,K],

K −G(β, x) = (1− β)(K − f(x)) + β(x−K) ≥ [(1− β)a2 − β](x−K), if x ∈ [K,K − θ].

For β = α+ ℓξ we get α− ℓ ≤ β ≤ α+ ℓ, so

(1− β)a1 − β = a1 − β(a1 + 1) ≥ a1 − (α+ ℓ)(a1 + 1), (1− β)a2 − β ≥ a2 − (α+ ℓ)(a2 + 1),

which, along with (18), implies (G(α + ℓξn, x) − K)(K − x) > 0, x ∈ (K − θ,K) ∪ (K,K + θ), n ∈ N.
Therefore, as soon as a solution remains in (K − θ,K + θ), it changes position relative to K at each step.
Since

G(α+ ℓξn, x)−K ≤ L−(α+ ℓξn)(K − x), x ∈ (K − θ,K),

K −G(α+ ℓξn, x) ≤ L+(α+ ℓξn)(x−K), x ∈ (K,K + θ),
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we conclude that L−(α+ ℓξi) > 0 and L+(α+ ℓξi) > 0, so we can omit the absolute value sign in (17).
(ii) Now, let us prove local stability. Consider the sequence (ui)i∈N of i.i.d. variables

ui := ln
[
L−(α+ ℓξi)L+(α+ ℓξi+1)

]
, i ∈ N. (41)

By monotonicity of L, see Lemma 5 (i), we have L−(α + ℓξt+i) ≤ L−(α − ℓ), L+(α + ℓξt+i) ≤ L+(α − ℓ),
for any i ∈ N. By (17) we have Eui = −λ0. Based on Corollary 1, for each ν > 0 we can find a nonrandom
number N̄ = N̄(ν) such that, P {Ων,0} > 1− ν, where Ων,0 :=

{
ω ∈ Ω :

∑n
i=1 ui ≤ −λ0 n

2 for all n ≥ N̄
}
.

For t ∈ N, set

Ων,t :=

{
ω ∈ Ω :

t+n−1∑
i=t

ui ≤ −λ0
n

2
for all n ≥ N̄

}
. (42)

In general, Ων,0 ̸= Ων,t for t ̸= 0, but since ui are identically distributed, we have P(Ων,0) = P(Ων,t) > 1− ν

for each t ∈ N. Also, e
∑t+n−1

i=t ui ≤ e−λ0n/2, for all n ≥ N̄ , on Ων,t. For κ from (40), we set

ν :=
κ

4
, δ0 := θB−N̄ , where B := max{L−(α− ℓ), L+(α− ℓ)}. (43)

Let us demonstrate that, as soon as xt ∈ (K−δ0,K+δ0), we get lim
n→∞

xn = K on Ων,t. Assume for simplicity

that N̄ and s are even, N̄ = 2M̄ , s = 2d. We have Ω = Ω+(t) ∪ Ω−(t), where Ω+(t) = {ω ∈ Ω : xt(ω) ∈
(K,K + δ0)}, Ω−(t) = {ω ∈ Ω : xt(ω) ∈ (K − δ0,K)}. On Ω−(t) ∩Ων,t we have xt+1 > K, xt+2 < K, etc, if
the solution remains in (K − δ0,K + δ0), so, inductively,

xt+1 −K ≤ L−(α+ ℓξt+1)[K − xt] ≤ L−(α− ℓ)[K − xt] < Bδ0 < θ,

K − xt+2 ≤ L+(α+ ℓξt+2)|xt+1 −K| < L+(α+ ℓξt+2)L−(α+ ℓξt+1)|xt −K|
= eut |xt −K| < B2δ0 < θ,

. . . . . . . . . . . . . . . . . .

|xt+N̄ −K| ≤ e
∑t+M̄−1

i=t ui |xt −K| ≤ BN̄δ0 = θ.

Using (41) and continuing estimations, we arrive at

|xt+N̄+d −K| = |xt+2(M̄+s) −K| ≤ exp


t+M̄+s−1∑

i=t

ui

 |xt −K| < e−λ0(M̄+s)/2δ0 < θ.

Similar inequalities can be obtained on Ω+(t) ∩Ων,t. So, |xt+n −K| ≤ e−λ0(n)/2δ0 → 0, as n→ ∞, on Ων,t.
(iii) Now proceed to the proof of global attractivity. Let S0 = S0(α−ℓ, α+ℓ, x0), S1 = S1(x0, α−ℓ, δ0) be

from Lemma 6 and Theorem 1 (ii), respectively. Note that δ0 was chosen as in (43), so δ0 and S1(x0, α−ℓ, δ0)
depend on κ > 0, which is the lower estimate for the probability of the set Ωκ, where xn ̸→ K.

Recall that 0 < α−ℓ < αn < α+ℓ < 1, for all n ∈ N, and β
∗
−α

ℓ < 1. Reasoning as in the proof of Theorem
2 and using the same notations (38) and (39) for the random momentN and sets Ωk, respectively, we conclude
that xS0+j+S1 ∈ (K−δ0,K+δ0), on Ωj . Denoting t = t(j) := S0+j+S1, and considering ν and Ων,t defined
as in (43) and (42), respectively, with P(Ων,t) > 1 − ν, we arrive at lim

n→∞
xn = K, on Ων,t ∩ Ωk. Since Ων,t

is defined by {ξi, i > t(j) = S0 + j + S1}, while Ωk consists of {ξi, i ≤ t(j) = S0 + j + S1}, by independence
of ξi and by definition (43), we have P(Ων,t(k) ∩ Ωk) = P(Ων,t(k))P(Ωk) ≥ (1 − ν)P(Ωk) = (1 − κ/4)P(Ωk).

Since ∪∞
j=1Ωj = Ω, we can choose jκ s.t. ∪jκ

j=1P (Ωj) >
1−κ/2
1−κ/4 . Letting Ω̃ := ∪jκ

j=1

[
Ων,t(j) ∩ Ωj

]
, we arrive at

P(Ω̃) = P
(
∪kκ

k=1

[
Ων,t(k) ∩ Ωk

])
=

kκ∑
k=1

P
(
Ων,t(k) ∩ Ωk

)
≥ (1− κ/4)

kκ∑
k=1

P (Ωk) > 1− κ

2

and lim
n→∞

xn = K, on Ω̃. However, by our assumption in (40), we should have Ω̃ ⊂ Ω\Ωκ, so 1− κ
2 ≤ P(Ω̃) ≤

P(Ω \ Ωκ) = 1− κ. The contradiction proves that lim
n→∞

xn = K a.s.
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8.9. Proof of Theorem 4

Since f is continuously differentiable at K and L0 > 1, for each ε ∈ (0, 1) there exists θ = θ(ε) > 0 such
that

(L0 − ε) (K − x) < f(x)−K <
(
L0 + ε

)
(K − x), x ∈ (K − θ,K),(

L0 − ε
)
(x−K) < K − f(x) <

(
L0 + ε

)
(x−K), x ∈ (K,K + θ).

(44)

Relations (44) imply that (f(x)−K)(K − x) > (L− ε)(K − x)2 > 0, x ∈ (K − θ,K)∪ (K,K + θ), and that
conditions (16) hold with a1 = L0 − ε = a2.

Assume that (22) holds, set

θ1 :=
L0

L0 + 1
− α− ℓ > 0

and find ε1 ∈ (0, 1) s.t., for each ε ∈ (0, ε1),

L0 + ε

L0 + ε+ 1
− α− ℓ >

θ1
2
.

Denote, for simplicity of calculations,

M := (1− α− ℓξ)L0 − α− ℓξ, M(ε) := (1− α− ℓξ)(L0 + ε)− α− ℓξ,

then, for ε ∈ [0, ε1),

M(ε) > (L0 + ε)− (α+ ℓ)(L0 + ε+ 1)

> (L0 + ε)−
[

L0 + ε

L0 + ε+ 1
− θ1

2

]
(L0 + ε+ 1) =

θ1
2
(L0 + ε+ 1) > 0.

(45)

Acting as in the proof of Theorem 3, (i), we obtain (G(α+ℓξ, x)−K)(K−x) > 0, x ∈ (K−θ,K)∪(K,K+θ).
Using (44), for x ∈ (K − θ,K) we get G(α+ ℓξ, x)−K > 0 and

G(α+ ℓξ, x)−K = (1− α− ℓξ)(f(x)−K) + (α+ ℓξ)(x−K) ≤ M(ε)(K − x),

while for x ∈ (K,K + θ) we obtain G(α+ ℓξ, x)−K < 0 and

K −G(α+ ℓξ, x) = (1− α− ℓξ)(K − f(x))− (α+ ℓξ)(x−K) ≤ M(ε)(x−K),

which leads to |G(α+ ℓξ, x)−K| <M(ε)|K − x|. Now,

lnM(ε) = ln

[
M×

(
1 +

(1− α− ℓξ)ε

M

)]
= lnM+ ln

(
1 +

(1− α− ℓξ)ε

M

)
.

Choosing ε < θ1λ1

4 (L0 + 1), where λ1 is from (22), applying the inequality ln(1 + x) < x, |x| < 1 and (45),
we arrive at

(1− α− ℓξ)ε

M
≤ ε

θ1
2 (L0 + 1)

<
λ1
2
< 1, ln

(
1 +

(1− α− ℓξ)ε

M

)
<

(1− α− ℓξ)ε

M
<
λ1
2
,

and then, using (22), we get E lnM(ε) < E lnM+ ln

(
1 +

(1− α− ℓξ)ε

M

)
≤ −λ1

2
.

When we do not assume that α+ ℓ < L0

L0+1 and only (23) holds, we cannot guarantee that M(ε) > 0. In
this case, by (44), for x ∈ (K − θ,K) and G(α+ ℓξ, x)−K > 0, we get

|G(α+ ℓξ, x)−K| = (1− α− ℓξ)(f(x)−K) + (α+ ℓξ)(x−K) ≤ (1− α− ℓξ)(L0 + ε)(K − x),
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while, for x ∈ (K − θ,K) and G(α+ ℓξ, x)−K < 0, by (44) we get f(x) > K, and then

|G(α+ ℓξ, x)−K| = −(1− α− ℓξ)(f(x)−K)− (α+ ℓξ)(x−K) ≤ (α+ ℓξ)(K − x).

Similar estimates are applied to two other cases: x ∈ (K,K+θ), G(α+ℓξ, x)−K > 0 andG(α+ℓξ, x)−K < 0.
All the above gives us |G(α + ℓξ, x) − K| < max {(1− α− ℓξ)(L0 + ε), (α+ ℓξ)} |K − x|. Assuming that
ε < λ1

2 (L0) and using ln(1 + x) < x for x ∈ (0, 1), we obtain

ln [(1− α− ℓξ)(L0 + ε)] = ln [(1− α− ℓξ)L0] + ln

[
1 +

ε

L0

]
< ln [(1− α− ℓξ)L0] + λ1/2.

Applying the inequality max{a+ ϵ, b} ≤ max{a, b}+ ϵ, ϵ > 0, and (23), we conclude

E lnmax {(1− α− ℓξ)(L0 + ε), (α+ ℓξ)} ≤ Emax {ln [(1− α− ℓξ)L0] + λ1/2, ln(α+ ℓξ)}
≤Emax {ln [(1− α− ℓξ)L0] , ln(α+ ℓξ)}+ λ1/2 < −λ1/2.

In both cases the rest of the proof is the same as in Theorem 3.

8.10. Proof of Theorem 5

Denote by ψ the probability density function (or the probability mass function in a discrete case) of
the random variable ξ and let µ2 be its second moment. Since the distribution is symmetric, we have

ψ(u) = ψ(−u), u ∈ [−1, 1], µ2 =
∫ 1

−1
u2ψ(u)du in the continuous case and µ2 =

∑∞
i=1 u

2
iψ(ui) in the discrete

case. Choose

0 < ℓ0 < min

{
2

µ2
,

1

L0 + 1
,

L0 − 1

(1 + µ2/2)(L0 + 1)

}
, (46)

α ∈
(
α0 −

ℓ20µ2

2
, α0

)
, ℓ ∈

(
ℓ0, min

{
α,

1

L0 + 1

})
. (47)

Note that the second interval in (47) is not empty. Indeed,

α0 −
ℓ20µ2

2
> ℓ0, since ℓ0

[
1 +

ℓ0µ2

2

]
< ℓ0

[
1 +

µ2

2

]
<

L0 − 1

(1 + µ2/2)(L0 + 1)

[
1 +

µ2

2

]
= α0,

α > α0 − ℓ20µ2

2 > ℓ0 and ℓ0 <
1

L0+1 . Also, α+ ℓ < α0 + ℓ < L0

L0+1 , α+ ℓ > α0 − ℓ20µ2

2 + ℓ0 > α0, where the

second inequality is true since ℓ0 <
2
µ2
. So we need to prove only the second relation in (22).

By Lemma 5 (vi), we have L0(α0) = 1, so lnL0(α0) = 0. For any α, ℓ satisfying (47), we get α+ℓ < L0

L0+1 ,

L0(α+ ℓξ) > 0, L0(α+ ℓξ) = L0(α)− ℓ(L0 + 1)ξ, L0(α0 + ℓξ) = 1− ℓ(L0 + 1)ξ, L2
0(α) > L2

0(α0) = 1,

0 < L2
0(α)− 1 = [L0 − α(1 + L0) + 1][L0 − α(1 + L0)− 1] = [1− α](1 + L0)

[
L0 − 1

(1 + L0)
− α

]
(1 + L0)

= (1 + L0)
2(1− α)(α0 − α) < (1 + L0)

2(α0 − α).

(48)

Applying the inequality ln(1− x) < −x, x ∈ (0, 1), we get, for u ∈ [−1, 1],

ln[1− ℓ2(L0 + 1)2u2] < −ℓ2(L0 + 1)2u2,

ln[L2
0(α)− ℓ2(L0 + 1)2u2] < ln[1 + (L0 + 1)2(α0 − α)− ℓ2(L0 + 1)2u2]

< (L0 + 1)2(α0 − α)− ℓ2(L0 + 1)2u2.

(49)
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Let now ξ have a continuous distribution, then µ2 =
∫ 1

−1
u2ψ(u)du. Applying (49), we get

E ln[L0(α+ ℓξ)] = E ln[L0 − (α+ ℓξ)(L0 + 1)] =

∫ 1

−1

ln[L0(α)− ℓ(L0 + 1)u]ψ(u)du

=

∫ 1

0

ln[L0(α)− ℓ(L0 + 1)u]ψ(u)du−
∫ 0

1

ln[L0(α) + ℓ(L0 + 1)y]ψ(−y)dy

=

∫ 1

0

ln[L2
0(α)− ℓ2(L0 + 1)2u2]ψ(u)du <

∫ 1

0

ln[1 + (L0 + 1)2(α0 − α)− ℓ2(L0 + 1)2u2]ψ(u)du

< (L0 + 1)2(α0 − α)

∫ 1

0

ψ(u)du− ℓ20(L0 + 1)2
∫ 1

0

u2ψ(u)du =
(L0 + 1)2(α0 − α)

2
− ℓ20(L0 + 1)2µ2

2

<
(L0 + 1)2

ℓ20µ2

2

2
− ℓ20(L0 + 1)2µ2

2
= −ℓ

2
0(L0 + 1)2µ2

4
< 0,

(50)

which proves the second inequality in (22).
Let now ξ be a discrete random variable with an at most countable number of states

{u1,−u1, . . . , um,−um, . . . }, ui ∈ [−1, 1].

Recall that its probability mass function ψ(u), u ∈ R, is defined as follows: ψ(u) = 0 when u ̸= ui,

ψ(±ui) = P{ξ = ±ui}, where

∞∑
m=1

ψ(um) =
1

2
. Choose α, ℓ as in (46) and (47) and denote H :=

max
u∈[−1,1]

|ln[L0(α)− ℓ(L0 + 1)u]|. Since

∞∑
i=1

ψ(ui) is convergent, we can find N1 ∈ N s.t.

∞∑
i=N1+1

ψ(ui) <

ℓ20(L0 + 1)2µ2/(16H),

N1∑
i=1

u2iψ(ui) > 7µ2/16.

The series

∞∑
i=1

ln[L0(α)± ℓ(L0 + 1)ui]ψ(ui) is absolutely convergent, so we can estimate

∞∑
i=N1+1

ln[L0(α)± ℓ(L0 + 1)ui]ψ(ui) ≤ H

∞∑
i=N1+1

ψ(ui) < ℓ20(L0 + 1)2µ2/16.

Further,

E ln[L0(α+ ℓξ)] =

N1∑
i=1

ln[L0(α)− ℓ(L0 + 1)ui]ψ(ui) +

N1∑
i=1

ln[L0(α) + ℓ(L0 + 1)ui]ψ(ui)

+

∞∑
i=N1+1

ln[L0(α)− ℓ(L0 + 1)ui]ψ(ui) +

∞∑
N1+1

ln[L0(α) + ℓ(L0 + 1)ui]ψ(ui)

<

N1∑
i=1

ln[L2
0(α)− ℓ2(L0 + 1)2ui]

2ψ(ui) + ℓ20(L0 + 1)2µ2/8.

Now, applying (46), (47), (48) and acting as in (50), we arrive at

E ln[L0(α+ ℓξ)] <

N1∑
i=1

ln[1 + (L0 + 1)2(α0 − α)− ℓ2(L0 + 1)2u2i ]ψ(ui) + ℓ20(L0 + 1)2µ2/8

< (L0 + 1)2(α0 − α)

N1∑
i=1

ψ(ui)− ℓ20(L0 + 1)2
N1∑
i=1

u2iψ(ui) + ℓ20(L0 + 1)2µ2/8

≤ (L0 + 1)2

2

[
ℓ20µ2/2− ℓ207µ2/8 + ℓ20µ2/4

]
= −ℓ20(L0 + 1)2µ2/8 < 0,
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which is the second inequality in (22). The reference to Theorem 4 concludes the proof.

8.11. Proof of Proposition 1

Let and L± be defined by (9) and Ψ(·, ·) by (10). Since β
0
= Ψ(L−, L+), see (11), by Lemma 5 (vi), we

have L−(β
0
)L+(β

0
) = 1, and also L±(α) < L±(β

0
). Define

ϕ(x) = L−(β
0
)(K − x) +K, xm ≤ x ≤ K, ϕ(x) = −L+(β

0
)(x−K) +K, K ≤ x ≤ L−(β

0
)(K − xm) +K,

which is decreasing, ϕ(x) > K, xm ≤ x < K, ϕ(x) < K, K < x ≤ L−(β
0
)(K − xm) +K and ϕ(ϕ(x)) = x.

Since ϕ(L−(β
0
)(K−xm)+K) = xm > 0, the function ϕ is also positive. By (7) and since L±(α) < L±(β

0
),

we get, for α > β
0
, G(α, x) ≤ L−(α)(K−x)+K < ϕ(x), x ∈ (0,K), G(α, x) ≥ −L+(α)(x−K)+K > ϕ(x),

x ∈ (K, fm), and the result follows from Lemma 11.

8.12. Proof of Proposition 2

To construct an envelope ϕ for G(α, x), α > α0, we estimate

G(α0, x)−G(α0, ai) ≤ L−
i (1− α0)(ai − x)− α0(ai − x) = L−

i (α0)(ai − x), ai+1 ≤ x ≤ ai,

G(α0, bi(α0))−G(α0, x) ≤ L+
i (1− α)(x− bi(α0))− α(x− bi(α0)) = L+

i (α0)(x− bi(α0)), bi(α0) ≤ x.

Set αi := Ψ(L−
i , L

+
i ), then (31) implies that αi ≤ α0. Since L±

i (α) ≥ L±
i (α0) when α ≤ α0, and

L−
i (αi)L+

i (αi) = 1, see Lemma 5 (vi), we get that L−
i (α0)L+

i (α0) ≤ 1. Setting C−
i := L−

i (α0), C
+
i :=[

L−
i (α0)

]−1
, we get C−

i C
+
i = 1, C+

i ≥ L+
i (α0) and

G(α0, x)−G(α0, ai) ≤ C−
i (ai − x), ai+1 ≤ x ≤ ai, G(α0, bi(α0))−G(α0, x) ≤ C+

i (x− bi(α0)), bi(α0) ≤ x.

Define ϕ, as in (27), and by straightforward calculations, show that G(α0, x) ≤ ϕ(x), x ∈ (0,K), G(α0, x) ≥
ϕ(x), x > K. Since for α > α0, G(α, x) < G(α0, x), x ∈ (0,K), G(α0, x) < G(α, x), x > K, we conclude
that ϕ is an envelope for G(α, x), therefore lim

n→∞
xn = K, by Lemma 11.

8.13. Remark to Proposition 2

Remark 7. If there is i0 < m s.t. α0 < Ψ
(
L−
i0
, L+

i0

)
, we can find a bigger parameter ᾱ which guarantees

global stability of the solution to (2). To show that we denote

f(x)− f(y) ≤ L−
i (y − x), ai+1 ≤ x < y ≤ ai, i = 0, 1, . . . ,m− 1,

L+(z), z > K, be a Lipschitz constant for f s.t f(y)− f(x) < L+(z)(x− y), ∀x > y ≥ z,

b0 = K, b1 = b1(α0) := maxx∈[a1,K]{G(α0, x)}, bi = bi(αi−1) = maxx∈[ai,K]{G(αi, x)}, where αi are defined
inductively:

α1 := max{α0,Ψ(L−
1 , L

+(b1))}, . . . , αk := max{α0,Ψ(L−
i , L

+(bi)), i = 1, . . . , k}.

Set ᾱ := max
i=0,1,...,m−1

{αi}, L̃+
i (α) := (1 − α)L+(bi) − α and note that lim

n→∞
xn = K, for any α > ᾱ and

x0 ∈ (a1, b1). We want to get the same for each x0 > 0. Fix some α > ᾱ and assume the contrary: for some
k < m we have stability on (ak, bk) but x̄ := inf

{
x ∈ (ak+1, ak) : G

2(α, x) > x
}
≥ ak+1. This implies that

G2(α, x̄) = x̄. By the inductive assumption for (ak, bk) we get G(α, x̄) > bk . Also, G(α, x̄) < bk+1 since
α > ᾱ > αk+1 and therefore G(α, x̄) < G(αk+1, x̄) ≤ bk+1, where the last inequality holds by the definition
of bk+1. Choose x̂ ∈ (x̄, ak) s.t. G(α, x̂) ∈ (bk, bk+1). Then x̂ > x̄, G2(α, x̂) > x̂, and G(α, x̄) − G(α, x̂) ≤
L−
k (α)(x̂− x̄). Assuming G(α, x̂) ≤ G(α, x̄) we get

x̂−G2(α, x̄) < G2(α, x̂)−G2(α, x̄) = G
(
α,G(α, x̂)

)
−G

(
α,G(α, x̄)

)
≤ L̃+

k (α)[G(α, x̄)−G(α, x̂)] ≤ L̃+
k (α)L

−
k (α)(x̂− x̄) < x̂− x̄ =⇒ G2(α, x̄) > x̄,

contradicting to the definition of x̄. If however, G(α, x̂) > G(α, x̄), we can find x̃ ∈ (x̂,K) ∈ (x̄,K) s.t.
G(α, x̄) = G(α, x̃). But then x̄ = G2(α, x̄) = G2(α, x̃) > x̃, which contradicts to the choice of x̃.
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8.14. Proof of Proposition 3

Define
U(x, α0) := G2(α0, x)− x, x ∈ [xm,K].

Note that U(K,α0) = 0 and U ′
x(x, α0) = G′(α0, G(α0, x)

)
G′(α0, x) − 1 = [(1 − α0)f

′(G(α0, x)) + α0][(1 −
α0)f

′(x) + α0]− 1. Fix some x ∈ (xmax,K) and note that the equation V (u) = 0, with

V (u) = V (x, u) := [f ′(G(α0, x)) + u(1− f ′(G(α0, x)))][f
′(x) + u(1− f ′(x))]− 1

has two real roots, 1 and Ψ (f ′(G(α0, x)), f
′(x)) =

f ′(G(α0, x))f
′(x)− 1

(1− f ′(G(α0, x)), (1− f ′(x))
≤ 1, by Lemma 5 (v).

Also, V (u) < 0 when u ∈
(
Ψ(f ′(G(α0, x), f

′(x)) , 1
)
. By (32), we have α0 ∈ (Ψ (f ′(G(α0, x), f

′(x))) , 1),
which implies that U ′

x(x, α0) = V (α0) < 0, so U(x, α0) decreases in x. Therefore, for each x ∈ (xmax,K),
G2(α0, x)− x = U(x, α0) > U(K,α0) = 0. Set

Gmax(α0) = max
x∈[0,K]

G(α0, x), xGmax is the largest point of maximum of G(α0, ·) on (0, K).

For each y ∈ (K,Gmax(α0)) there is x ∈ (0,K) s.t. y = G(α0, x). Due to continuity we can choose
x ∈ (xGmax,K) ⊆ (xmax,K). Since G2(α0, x) − x = U(x, α0) > 0, we conclude that G2(α0, x) > x and
therefore x < G(α0, y). If G2(α0, y) > y, there is a point x̂ ∈ (G(α0, y),K) s.t. y = G(α0, x) = G(α0, x̂),
so x < G2(α0, x) = G2(α0, x̂) = G(α0, y) < x̂, or G2(α0, x̂) < x̂, which is a contradiction to the case proved
above.

When x ∈ (0, xmax) there exists x̄ ∈ (xmax,K) s.t. G(α0, x) = G(α0, x̄) and we are in the first case. The
case x > Gmax(α0) is treated as in Lemma 6.

Application of Lemma 1 proves that any control α > α0 guarantees global stability.
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