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Abstract

Using our previously published algorithm, we analyze the eigenvectors

of the generalized Laplacian for two metric graphs occurring in practical

applications. As expected, localization of an eigenvector is rare and the

network should be tuned to observe exactly localized eigenvectors. We

derive the resonance conditions to obtain localized eigenvectors for vari-

ous geometric configurations and their combinations to form more com-

plicated resonant structures. These localized eigenvectors suggest a new

localization indicator based on the L2 norm. They also can be excited,

even with leaky boundary conditions, as shown by the numerical solution

of the time-dependent wave equation on the metric graph. Finally, the

study suggests practical ways to make resonating systems based on metric

graphs.
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1 Introduction

Partial differential equations (PDEs) on networks arise in many physical ap-
plications such as gas and water networks [1, 2], electromechanical waves in a
transmission grid [3], air traffic control [4], microwave networks [5] and ran-
dom nanofiber lasers [6, 7] to name a few. In many cases, the problem can
be linearized. Then separation of variables yields a Helmholtz (or Schrödinger)
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problem on the network. The associated eigenvalues and eigenvectors play a fun-
damental role in the theoretical analysis of the networks [8] and the practical
applications.

The underlying mathematical model consists of a metric graph: a finite set
of vertices connected by arcs (oriented edges) on which a metric is assigned.
Different coupling conditions can be implemented at the vertices. The simplest
assumes continuity of the field and zero total gradient at the vertices (Kirchhoff’s
law). The standard one-dimensional Laplacian together with these boundary
conditions results in a generalized Laplacian and associated Helmholtz eigen-
value problem. It can be shown that with these coupling conditions (continuity
and Kirchhoff’s law) the operator is self-adjoint [8], yielding real eigenvalues and
orthogonal eigenvectors. The eigenvectors form a complete basis of the appro-
priate set of square integrable functions on the graph. This spectral framework
plays a key role in linear PDEs. We review and apply it in the present article.

Combinatorial or discrete graphs bear some similarities to metric graphs. For
these graphs, edges only describe connections between vertices. For undirected
graphs, both the adjacency matrix and the graph Laplacian are symmetric—
they have real eigenvalues, and the eigenvectors can be chosen orthogonal. Some
eigenvectors have non zero components on just a few vertices, they are localized
and this localization affects transport properties [9]. In a recent article [10] we
showed that the Laplacian eigenvectors of chains connected to complete graphs
are localized in the complete graph regions where connectivity is high. These
results were also found in the systematic study by Hata and Nakao [11] where
they analyzed graphs with random degree distributions. The localization of
eigenvectors found here is purely topological because the Laplacian has equal
weights. Random weights introduce additional possibilities for localizing the
eigenvectors, see the pioneering 1958 study by Anderson [12] of a Schrödinger
matrix equation with random diagonal and off-diagonal elements and the very
large literature that followed it.

In contrast, the localization of eigenvectors on arcs of random metric quan-
tum graphs has only been studied in a handful of articles and many of these
assume non standard interface conditions at the vertices. For the standard con-
ditions, Schanz and Kottos [23] established conditions for localized eigenvectors
in polygons. They use a scattering theory formalism because they were inter-
ested in problems of quantum chaos. In another interesting study, Gnutzman,
Schanz and Smilansky [22], using similar tools, established that localized eigen-
vectors cannot exist in trees and recovered the conditions for localization in
polygons. Because of the formalism used and despite their importance, these
results are not so well known in the engineering community studying networks.

To study these practical network problems, we introduced recently a sys-
tematic procedure to compute eigenvalues and eigenvectors of arbitrary order
for general metric graphs [18]. In the present article, we use this method to an-
alyze two metric graphs occurring in engineering applications and examine the
occurrence of localized eigenvectors. Using simple arguments, we examined the
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conditions to observe exactly localized eigenvectors, starting from the simplest.
We found the precise resonance conditions on the lengths and the eigenvalues
for several geometric configurations such as a cycle with two edges and a poly-
gon; we recover some results of [23], [22] and find new ones. In particular, we
show how these localized eigenvectors can be connected to form a larger local-
ized eigenvector; this can be important for resonator applications. These results
on localized eigenvectors prompted us to define a localization criterion giving
the number of edges involved in a localized eigenvector. Finally, the numerical
solution of the wave equation on the metric graph reveals how these localized
eigenvectors can be excited from a broadband initial condition.
The article is organized as follows. The statement of the problem, A brief review
of the spectral properties of metric quantum graphs and of our computational
algorithm are given in Section 2. There we also compute numerically and char-
acterize the eigenvectors of two metric graphs. Section 3 lists exact resonant
conditions to obtain localized eigenvectors in various geometric configurations.
The localization criteria are discussed in Section 4. We also show how the
solution of the wave equation with a leaky boundary converges to a localized
eigenvector. Section 5 concludes the article.

2 Spectral theory for metric graphs

We first recall the spectral theory formalism for completeness. We will then
illustrate it on two examples from engineering applications.

Consider a finite metric graph with n vertices connected by m arcs (oriented
edges) of length lj, j = 1 : m. Each edge is parameterized by its length x from
the origin vertex x = 0 to the terminal vertex x = lj . We recall the definition
of the degree of a vertex: the number of edges connected to it.

On this graph, we define the vector component wave equation

Utt − ∆̃U = 0, (1)

where U ≡ (u1, u2, . . . , um)T . Each component satisfies the one-dimensional
wave equation inside the respective arc,

ujtt
− ujxx

= 0, j = 1, 2, . . . ,m (2)

In addition, the solution should be continuous at the vertices and also satisfy
the Kirchhoff flux conditions at each vertex of degree d

d
∑

j=1

ujx
= 0, (3)

where ujx
represent the outgoing fluxes for arc j emanating from the vertex.
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Consider equation (1). Since the problem is linear, we can separate time
and space and assume a harmonic solution U(x, t) = eikt V (x). We then get a
Helmholtz or Schrödinger eigenproblem for V on the graph

− ∆̃V = k2V, (4)

and where ∆̃ is the generalized Laplacian, i.e. the standard Laplacian on the
arcs together with the coupling conditions at the vertices. Note that we exclude
all degree two vertices since due to continuity and the Kirchhoff condition, two
edges sharing such a vertex can be merged into a single edge—see [19].

The generalized eigenvalue problem (4) admits an inner product obtained
from the standard inner product on L2 space—see [8]. We have

〈f, g〉 ≡
∑

arc j

〈fj , gj〉, 〈fj , gj〉 =

∫ lj

0

fj(x)gj(x)dx. (5)

A solution in terms of Fourier harmonics on each branch j of length lj is

vj(x) = Aj sinkx+Bj cos kx. (6)

Writing down the coupling conditions at each vertex, one obtains a homogeneous
linear system whose k-dependent matrix is singular at the eigenvalues.

Using solution (6) on each arc with unknown coefficients Aj and Bj , the
coupling conditions at each vertex yield the homogeneous system

M(k)X = 0, (7)

of 2m equations for the vector of 2m unknown arc amplitudes

X = (A1, B1, A2, B2, . . . , Am, Bm)T .

The matrix M(k) is singular at the eigenvalues −k2. We call these k-values
resonant frequencies. A practical and robust computational algorithm for the
computation of these eigenvalues and eigenvectors was proposed and studied in
[18].

For each resonant frequency kq, the eigenvectors V q span the null space of
the matrix M(kq). They can then be written as

V q =









Aq
1 sin kqx+Bq

1 cos kqx
Aq

2 sin kqx+Bq
2 cos kqx

. . .
Aq

m sin kqx+Bq
m cos kqx









(8)

They can be normalized using the scalar product defined above. We have

‖V q‖2 = 〈V q, V q〉 =

m
∑

j=1

〈V q
j , V

q
j 〉, (9)
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where
V q
j = Aq

j sinkqx+Bq
j cos kqx, (10)

and 〈V q
j , V

q
j 〉 is the standard scalar product on L2([0, lj ]) . This defines a broken

L2 norm or graph norm. The scalar product 〈V q
j , V

q
j 〉 can be computed explicitly

〈V q
j , V

q
j 〉 =

(

Aq
j

2
+Bq

j

2
) lj
2

+
sin 2kqlj

4kq

(

−Aq
j

2
+Bq

j

2
)

+Aq
jB

q
j

1− cos 2kqlj
2kq

. (11)

It has been shown that, for the standard coupling conditions used here (continu-
ity and Kirchhoff’s condition), the eigenvectors V i form a complete orthogonal
basis of the Cartesian product L2([0, l1])× L2([0, l2]) · · · × L2([0, lm])—see [8].

Once the eigenvalue problem is solved, one can proceed with the spectral
solution of the time-dependent problem, exactly as for the one-dimensional wave
equation on an interval. For that, expand the solution of the wave equation on
the graph (1) using the eigenvectors,

U(x, t) =

∞
∑

q=1

aq(t)V
q, (12)

and obtain a simplified description of the dynamics in terms of the amplitudes
aq.

2.1 Localized eigenvectors : two numerical examples

Like the eigenvectors of the discrete Laplacian, eigenvectors of the generalized
Laplacian on a network can be localized in the following sense.

Definition 2.1 (Localized eigenvector) An eigenvector V i of the generalized
Laplacian operator with the standard coupling conditions is localized if its com-
ponents V i

j (see (10)) satisfy V i
j 6= 0 for a finite number of edges j and V i

j = 0
for the rest.

Such a localized eigenvector plays an important role in the dynamics of the wave
equation.

We consider two graphs with no symmetries and arbitrary edges to illustrate
how frequently localized eigenvectors appear. To identify these eigenvectors, we
compute the L2 norm ratio

eq(j) ≡
〈V q

j , V
q
j 〉

〈V q, V q〉
(13)

for each edge j = 1, 2, . . . ,m.
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2.2 Graph G14

We introduce the 14 edge graph—see Fig. 1. It was adapted from IEEE case
14 [21] by eliminating the degree two vertices. Such a metric graph can be used
to model how electromechanical waves propagate in an electrical grid [3]. A
localized eigenvector in this context would correspond to an accumulation of
energy on just a few equipments and this could cause their failure.
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Figure 1: The 14 vertex metric graph G14

The lengths li, i = 1, . . . ,m = 14 are given in Table 1.

l1 l2 l3 l4 l5 l6 l7
11.91371443 7.08276253 6 2.236067977 4.123105626 1.414213562 2

l8 l9 l10 l11 l12 l13 l14
1 4.7169892 4.472135955 2 2 1.414213562 4.472135955

Table 1: The lengths li for the graph G14 .
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Figure 2: Histograms of the L2 norm ratio eq(j) (13) for q = 2, . . . 21 from left
to right and top to bottom for the G14 graph.

Fig. 2 presents the histograms of the L2 norm ratio eq(j) for eigenvectors
V q, q = 2, . . . 21 for the G14 graph. Note that q = 2, 5, 6, 11, 20 and 21
correspond to eigenvectors where eq(j) ≥ 0.5 for one or two edges j and eq(j) <
0.05 for the other edges. In Fig. 3 we present the approximately localized
eigenvectors corresponding to q = 2, 5, 6, 11, 20 and 21. For a given eigenvector
V q, we present for each edge j the quantity eq(j).
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Figure 3: Approximately localized eigenvectors V q for q = 2, 5, 6, 11, 20 and 21.
We present for each arc j the quantity eq(j) with the color code eq(j) < 0.06
(grey), 0.06 < eq(j) < 0.12 (pink), 0.12 < eq(j) < 0.2 (cyan) and 0.2 < eq(j)
(blue). The values of kq are given in the table below.

The values of kq are presented in Table 2 below.

0.2347645148 0.4657835674 0.480197067
0.8078723081 1.3322287766 1.379308786

Table 2: The values of kq shown in Fig. 3.

2.3 Buffon graph

The second example we present comes from a study by Gaio et al [6] suggest-
ing that lasers can be produced by fusing randomly placed nanometric optical
waveguides. The resulting graph appears as a series of scattered needles. Such
a Buffon’s needle graph with 165 arcs and 104 vertices is shown in Fig. 4.

In Gaio’s study, the fibers are active so that they would amplify the field.
The lasing effect would come from a balance between this amplification and
damping. In addition, there would be transparent conditions at the boundaries
so that any out-going radiation would be lost. Then, a laser effect would occur
on the localized eigenvectors of the Laplacian and only on those because the
extended eigenvectors would be damped due to the boundary conditions.
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Figure 4: A Buffon’s needle graph with m = 104 vertices and m = 165 arcs.

Fig. 5 presents the histograms of the L2 norm ratio eq(j) for eigenvectors
V q, q = 2, . . . 21 for the Buffon graph of Fig. 4.
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Figure 5: Histograms of the L2 norm ratio eq(j) (13) for q = 2, . . . 21 from left
to right and top to bottom for the Buffon graph.

The vectors V q for q = 5, 8, 13, 18, 20 and 21 are approximately localized.
They are plotted below.
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Figure 6: Plots of the localized eigenvectors V q for q = 5, 8, 13, 18, 20 and 21.
The color code is eq(j) < 0.06 (grey), 0.06 < eq(j) < 0.12 (pink), 0.12 < eq(j) <
0.2 (cyan) and 0.2 < eq(j) (blue).

The corresponding values of kq are shown in Table 3

0.016866927 0.022719737 0.029337666
0.034764362 0.036236231 0.036802227

Table 3: The values of kq shown in Fig. 6.

The results of this section illustrate that for arbitrary metric graphs, approx-
imately localized eigenvectors occur, in particular we observed them for large k.
However, this localization is not exact. This is a known result, see the statement
”there are no perfect scars for generic graphs” by Schanz and Kotos [23]. For
the laser application [6], a lasing phenomenon is therefore unlikely to appear in
a random arrangement of nanometric waveguides.

For exactly localized eigenvectors to exist, we need a precise arrangement of
the lengths of the arcs involved. We give these resonance conditions in the next
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section.

3 Exactly localized eigenvectors

We examine configurations that lead to exactly localized eigenvectors following
the definition (2.1). In the rest of this section we drop the adjective exactly. We
find that localized eigenvectors exist on two connected leaves, as a 1-2 state in
a pumpkin, as a triangle 1-2-3 and a quadrilateral 1-2-3-4—see Table 5. The
analysis also enables us to rule out single arc, leaf, two connected arcs and
degree three vertex localized eigenvectors—see Table 6.

We show the computations in detail for the 1-2-3 triangle. Calculations for
the other examples are given in the appendix.

3.1 A localized eigenvector, the Triangle 1-2-3

Consider the configuration of Fig. 7 where a triangle of edges l1, l2, l3 is embed-
ded in a graph.

l1 l2

3l

 

 

  1  

2

3

Figure 7: A triangle 1-2-3 embedded in a graph.

We have the following theorem.

Theorem 3.1 A localized eigenvector exists on a a triangle of edges l1, l2, l3
embedded in a graph if there exists three integers n1, n2, n3 such that

l1
n1

=
l2
n2

=
l3
n3

and n1 + n2 + n3 is even.
The eigenvalue is −(n1π

l1
)2 and the eigenvector is

V = sin kx(1, (−1)n1 ,−1)T
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Proof. On each edge j, we have Vj = Aj sin kx+Bj sinkx. To have a localized
eigenvector, we need that at each vertex V = 0 and to balance the fluxes. These
conditions are

V1(0) = V3(0) = 0,

V1x(0) + V3x(0) = 0,

V1(l1) = V2(0) = 0,

V1x(l1)− V2x(0) = 0,

V3(l3) = V2(l2) = 0,

V3x(l3) + V2x(l2) = 0,

yielding

kl1 = n1π, kl2 = n2π, kl3 = n3π,

l1
l2

=
n1

n2
,

l1
l3

=
n1

n3
,

B1 = B2 = B3 = 0,

A3 = −A1,

A2 = A1c1,

A2c2 +A3c3 = 0,

where n1, n2, n3 are integers and c1 = cos kl1, . . . . Using the last relation, we
get the condition

(−1)n1+n2 = (−1)n3 , (14)

so that n1 + n2 + n3 is even. To summarize, we have a triangle eigenvector if
there exists four integers n0, n1, n2, n3 such that

l1
n1

=
l2
n2

=
l3
n3

, (15)

n1 + n2 + n3 = 2n0. (16)

The eigenvector is
V = sin kx(1, (−1)n1 ,−1)T

�

Fig. 8 shows such a state for k = 1 in the G14 graph, with l6 = 2π, l7 = 3π
and l13 = 7π.
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Figure 8: A triangle 1-2-3 ”embedded” in a graph. The active arcs are 6,7 and
13.

Here, we recover in a simple way the conditions obtained by Gnutzmann et
al [22] using scattering theory arguments. Similarly, we can obtain a localized
eigenvector on a quadrilateral or any polygon. Fig. 9 shows such an exactly
localized eigenvector on the quadrilateral 5-7-8-9 for the G14 graph where we
chose

l5 = 2π, l7 = 3π, l8 = 5π, l9 = 6π.
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Figure 9: A quadrilateral 1-2-3-4 embedded in a graph. The active arcs are
5,7,8 and 9.

3.2 1-2 localized eigenvector on a pumpkin subgraph

We present here a localized eigenvector that is new to the best of our knowledge.
It is a 1-2 or more resonance in a pumpkin subgraph. Pumpkin graphs were
studied in detail by Berkolaiko [20] who introduced this terminology.
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Definition 3.2 An m-pumpkin graph consists of two vertices and m parallel
edges of possibly different lengths running between them.

 

 

  1 2

l1

l2

  

Figure 10: A 2-pumpkin 1-2 embedded in a graph.

Consider the configuration of Fig. 10 where a pumpkin is embedded in a graph.
For certain edge lengths l1, l2, there exists a localized eigenvector on these two
edges.

Theorem 3.3 A localized eigenvector exists on a pumpkin subgraph of a metric
graph with at least two edges l1, l2 if there are two integers n1, n2 of same parity
such that

l1
n1

=
l2
n2

.

Proof. As for the triangle, we want V to be zero at the vertices and to balance
the flux, then

V1(0) = V2(0) = 0,

V1(l1) = V2(l2) = 0,

V1x(0) + V2x(0) = 0,

V1x(l1) + V2x(l2) = 0.

This yields the system of equations

B1 = B2 = 0,

A1 sin kl1 = A2 sin kl2 = 0,

A1 +A2 = 0,

A1 cos kl1 +A2 cos kl2 = 0.

We then obtain
sin kl1 = 0, sin kl2 = 0,

so that
kl1 = n1π, kl2 = n2π,

15



where n1, n2 are integers. Then cos kl1 = (−1)n1 , cos kl2 = (−1)n2 . A non-
trivial solution A1, A2 exists only if cos kl1 = cos kl2 so that n1 and n2 have the
same parity. The condition on the lengths is then

l1
n1

=
l2
n2

, (17)

where n1, n2 are integers of same parity. �

To illustrate this localized eigenvector, consider the graph shown in Fig. 11.

1

2
1

23

3

4
5

67 4

8

9

Figure 11: A graph showing a localized 1-2 pumpkin eigenvector.

The lengths are given in Table 4, where the arcs 4 and 7 satisfy the resonance
condition (17). The localized eigenvector on arcs 4 and 7 is shown with the color
code eq(j) < 0.06 (grey), 0.06 < eq(j) < 0.12 (pink), 0.12 < eq(j) < 0.2 (cyan)
and 0.2 < eq(j) (blue).

l1 l2 l3 l4 l5
2.236067977 1.414213562 1.732050807 π 11 π

l6 l7 l8 l9
5.167771571 9.424777960 3.605551275 5.693156148

Table 4: The lengths li for the graph shown in Fig. 11.

Similarly, one can have a localized eigenvector on a 3-pumpkin. The deriva-
tion is similar to the 2-pumpkin. We obtain the conditions

A1 +A2 +A3 = 0,

l1
n1

=
l2
n2

=
l3
n3

where n1, n2 and n3 are integers of the same parity. Note that the eigenspace
has dimension 2.
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To conclude this section, Table 5 gives four configurations giving localized
eigenvectors.

2 connected 1-2 eigenvector triangle 1-2-3 quadrilateral 1-2-3-4
leaves in a pumpkin
l1
n1

= l2
n2

l1
n1

= l2
n2

l1
n1

= l2
n2

= l3
n3

l1
n1

= l2
n2

= l3
n3

= l4
n4

n1, n2 odd integers n1, n2 integers n1, n2, n3 integers n1, n2, n3, n4 integers
same parity n1 + n2 + n3 even n1 + n2 + n3 + n4 even

Table 5: Four configurations giving localized eigenvectors and conditions for the
lengths of the arcs.

Connecting eigenvectors

Two elementary graphs corresponding to localized eigenvectors for the same
eigenvalue can be connected to yield a composite graph for the same eigenvalue.
We have the following.

Theorem 3.4 Consider two elementary graphs G1, G2 corresponding to local-
ized eigenvectors of the generalized Laplacian for the same eigenvalue. Then,
the composite graph obtained by joining a vertex from G1 to a vertex from G2

has the same eigenvalue.

Proof.

The proof is elementary. The eigenvector components V 1
j , V

2
k are zero at

each vertex of G1 and G2 respectively so that the zero condition is satisfied for
both subgraphs.

Since the fluxes are balanced separately for G1 and G2, they will be balanced
for the composite graph. This shows that the union of the eigenvectors V 1, V 2

is a localized eigenvector for the composite graph. �

A consequence of this result is that the composite graph can be a subgraph
of a large graph and have the same eigenvalue as long as there are no ”external”
edges i.e. not belonging to G1 and G2.

3.3 No single arc eigenvector

The methodology given above also allows us to rule out geometric situations
where no localized eigenvector exists. As an example, consider a single arc.

17



l

0
 

 

 

 

Figure 12: An arc embedded in a graph.

We have the following theorem

Theorem 3.5 A localized eigenvector of the generalized Laplacian cannot exist
on an arc embedded in a metric graph.

Proof. To show this, consider Fig. 12. The localization conditions for the
solution

V = A sin kx+B cos kx

are
V (0) = V (l) = 0, V (0)x = Vx(l) = 0

This yields A = B = 0 so that a localized eigenvector cannot exist. �

This is a known result [23].

Table 6 gives four configurations where localized eigenvectors do not exist.
Details of the calculations are given in the appendix.

single leaf two connected degree 3 vertex
arc eigenvector arcs eigenvector

Table 6: Four configurations where a localized eigenvector cannot exist.

4 Discussion: localization criterion and excita-

tion

The histograms of the energy components 〈V q
j , V

q
j 〉 of the localized eigenvectors

show differences despite the fact that the A coefficients are the same. This
imbalance is due to the different lengths of the arcs j because 〈V q

j , V
q
j 〉 scales

like lj—see (11).
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To correct the imbalance, we use equation (13) and rescale 〈V q
j , V

q
j 〉 by lj .

For that we introduce the localization criterion for an eigenvector V q as

Lq = maxj Eq
j , (18)

where

Eq
j ≡

〈V q
j , V

q
j 〉

lj
∑

k

〈V q

k
,V

q

k
〉

lk

(19)

where we use the graph norm (9).

The calculations of the previous section for the two leaf, the triangle and the
quadrilateral localized eigenvectors can be used to exactly compute Lq. The
results are shown in Table 7. To illustrate the usefulness of Eq

j , observe that
the histograms presented in the left panels of Figs. 8 and 9 will have all the
same amplitude if Eq

j is used instead of eq(j) (13); the amplitudes will be 1/3
and 1/4 respectively, see Table 7. This shows that 1/Lq gives the number of
active arcs. The analysis of the previous section shows that an eigenvector is
localized on at least two arcs with equal amplitudes A1 = A2. Then a general
upper bound is

Lq ≤ 0.5

The quantity Eq
j is the energy density of edge j. When applied to arbitrary

metric graphs such as the G14, it indicates the regions of the graph that are
most active.

In contrast, the standard localization criterion

IPRq =

∑m

j=1

∫ lj

0 |V q
j |

4dx

(
∑m

j=1

∫ lj

0 |V q
j |

2dx)2
, (20)

used for example by Gaio [6] does not give such precise information on the active
arcs, as it is not based on localized eigenvectors. Table 7 shows the IPR for the
2-leaf, the triangle and the quadrilateral together with our estimate Lq given by
(18). The former gives the number of active lengths and the latter an estimate
of the sum of the lengths of the edges on which energy is concentrated.

two leaf triangle quadrilateral

Lq 1/2 1/3 1/4

IPR 3
2(l1+l2)

3
2(l1+l2+l3)

3
2(l1+l2+l3+l4)

Table 7: Localization criterion Lq and Inverse Participation Ratio (20) for three
localized eigenvectors.
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4.1 Exciting a localized eigenvector by a broadband pulse

An important practical issue is how to excite these localized eigenvectors. For
the random fiber laser, the authors of [6, 7] send an electromagnetic pulse on a
region of the network. They also couple the arcs on the boundary to an outside
circuit to let energy escape. Then they expect that the only energy remaining
will be that corresponding to the localized eigenvectors.

This argument is correct in principle. To confirm it, consider the eigen-
vectors shown in Fig. 3. All localized modes are away from the vertex 6 so
the components at that vertex are exponentially small. Assume a Sommerfeld
radiation condition at that vertex,

ǫUt = Ux. (21)

Then the boundary condition there becomes

ǫVjx
+ ikVj = 0,

which is easily satisfied if Vjx
= Vj = 0. This simple argument shows that

localized eigenvectors inside the graph will be preserved when the boundaries
of the network are coupled to a dissipation source.

We illustrate this numerically on the G14 metric graph, using the finite
difference code studied in the article [18]. We formed a localized eigenvector on
the triangle defined by the arcs 1,3 and 5 for the 18th eigenvalue corresponding
to k = 1.133761002. For that we chose the lengths of the arcs 1,3 and 5,

l1 =
4π

k
≈ 11.451671, l3 = l5 =

2π

k
≈ 5.909775.

Vertex 6 has a transparent boundary condition (21) (ǫ = 1). The other external
vertices have Neuman boundary conditions. We solve the generalized wave
equation using the numerical procedure detailed in [18] and plot in Fig. 13
two snapshots of the time evolution of the components Uj(x, t) on each arc j.
At time t = 0, U is a gaussian on edge 5 and zero everywhere else, with 1 as
initial velocity. The left panel shows a short time t = 7 104 and the middle
panel a much longer time t = 4 106. For the former, the solution is still in a
transient state while the latter indicates that we reached an asymptotic state
corresponding to the localized eigenvector on the triangle 1-3-5. There the
maximum of the solution is 2 10−2 while it is 3 10−3 on the other arcs. The
histogram of the energies shown in the right panel of Fig. 13 shows that the
energy is concentrated on the arcs 1-3-5. The energy of E13 is due to the large
length of that arc l13 = 22.
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Figure 13: Numerical solution of the wave equation on the G14 metric graph
for a broadband initial condition and a transparent boundary condition (21) at
vertex 6. The left and middle panels show snapshots of the solution components
Uj(x, t) on each arc j for respectively t = 7 104 and t = 4 106. The right panel
shows a histogram of the energies Ej on each edge j.

5 Conclusion

In this article we applied our algorithm to study the eigenvectors of two metric
graphs arising in the modeling of the electrical grid and in a model of a random
laser. We find that localized eigenvectors occur rarely and that the network
needs to be tuned specifically for this.

We describe precise resonance conditions on the lengths of the arcs to obtain
exactly localized eigenvectors. Some of these results were known, new results
are the 1-2 arc cycle eigenvector in a pumpkin and the connection of localized
eigenvectors to form a larger localized eigenvector.

We define a new localization criterion based on the L2 norm which gives
the number of active edges in an eigenvector, this quantity cannot be obtained
from the standard IPR criterion. An important question is how to excite these
localized eigenvectors? To answer this we showed, using the time dependent
wave equation with a leaky boundary, that a localized eigenvector gets naturally
excited in the long term from a broadband initial condition.

For the electrical grid application, even approximately localized eigenvectors
can damage equipment so it should be reinforced in the regions of maximal
amplitude of these localized eigenvectors. For a laser, a random arrangement
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of wave guides graph will not in general lead to a lasing phenomenon. A laser
should be built by associating structures corresponding to localized eigenvectors,
not random links.

In the future, we plan to extend this study to nonlinear effects and examine
the stability of the resonance to perturbations (quality factor). We will also
examine non-Kirchhoff coupling conditions.
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A Exactly localized eigenvectors

A.1 Two connected leafs

Two connected leaves form the structure shown in Fig. 14.

l

l

0
 

 

 

 

2

1

Figure 14: Two connected leaves in a graph.

Theorem A.1 A localized eigenvector of the generalized Laplacian exists on
two connected leaves of lengths l1, l2 if there exists two integers p, q such that

(2p+ 1)l1 − (2q + 1)l2 = 0.

Proof. An eigenvector localized on the two leaves satisfies the following condi-
tions on the two eigenvector components,
Vi = Ai sin kx+Bi cos kx, i = 1, 2

V1(0) = V2(0) = 0,

V1x(0) + V2x(0) = 0,

V1x(l1) = 0,

V2x(l2) = 0,

From this system of equations we get

B1 = B2 = 0,

A1 +A2 = 0,

cos kl1 = 0,

cos kl2 = 0,

so that
kl1 = (2p+ 1)

π

2
, kl2 = (2q + 1)

π

2

These conditions are satisfied if l1, l2 verify

(2p+ 1)l1 − (2q + 1)l2 = 0

where p, q are integers. �
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Exactly localized eigenvectors also exist when there are three or more leaves.
We sketch the situation for three leaves and give the result for L leaves.
Assume there are three leaves. The conditions are then

B1 = B2 = B3 = 0, A1 +A2 +A3 = 0,

cos kl1 = cos kl2 = cos kl3 = 0.

From this system we obtain the constraints on the lengths

(2p1 + 1)l1 − (2q1 + 1)l2 = 0,

(2p2 + 1)l1 − (2q2 + 1)l3 = 0,

(2p3 + 1)l2 − (2q3 + 1)l3 = 0,

where p1, p2, p3, q1, q2, q3 are integers. Note that the eigenspace has dimension
2.

For L connected leaves, we would get an eigenspace of dimension L− 1 and
C2

L constraints defining k.

B Configurations with no exactly localized eigen-

vectors

B.1 No leaf localized eigenvector

A leaf is an arc such that its end vertex has degree 1, see Fig. 15.

l

0
 

 

 

 

1

Figure 15: A leaf in a graph.

Theorem B.1 There are no localized eigenvectors on leaves of a metric graph.

Proof. Assume a leaf of length l, parameterized by x ∈ [0, l]. The boundary
conditions at x = 0, l are V (0) = 0, Vx(0) = Vx(l) = 0. Writing V as

V = A sin kx+B cos kx,

where all indices have been dropped for simplicity, we get from the first two
conditions

A = B = 0,
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so there are no eigenvectors localized on a leaf. �

B.2 No localized eigenvector on two connected arcs

We prove that no localized eigenvector exists on two arcs connected at one
vertex, see Fig. 16.

l

l
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1

2

Figure 16: Two connected arcs ”embedded” in a graph.

Theorem B.2 A localized state cannot exist on two arcs connected at one ver-
tex.

Proof. The localization conditions for the eigenvector components are

V1(0) = V2(0) = 0,

V1(l1) = V2(l2) = 0,

V1x(0) + V2x(0) = 0,

V1x(l1) + V2x(l2) = 0,

which yield the following system

B1 = B2 = 0

A1s1 = 0

A2s2 = 0

A1c1 +A2c2 = 0

A1c1 = 0

A2c2 = 0,

which only has the solution A1 = A2 = 0, so a localized eigenvector cannot
exist. �

26



B.3 No degree three vertex eigenvector

l

l

0l

  

 

 

1

3 2

Figure 17: A degree three vertex ”embedded” in a graph.

Consider the configuration of Fig. 17 where a degree three vertex is embedded
in a graph, we have the following theorem.

Theorem B.3 No eigenvector can be localized on three arcs connected at a
single vertex.

Proof. Let us write the components of an eigenvector localized on the subgraph
l1, l2, l3. The conditions are

V1(l1) = V2(l2) = V3(l3) = 0,

V1x(l1) = V2x(l2) = V3x(l3) = 0,

V1x(0) + V2x(0) + V3x(0) = 0,

yielding

A1 +A2 + A3 = 0,

A1c1 −B1s1 = 0,

A2c2 −B2s2 = 0,

A3c3 −B3s3 = 0,

A1s1 +B1c1 = 0,

A2s2 +B2c2 = 0,

A3s3 +B3c3 = 0,
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leading to the homogeneous linear system.





















1 . 1 . 1 .
c1 −s1 . . . .
s1 c1 . . . .
. . c2 −s2 . .
. . s2 c2 . .
. . . . c3 −s3
. . . . s3 c3





































A1

B1

A2

B2

A3

B3

















=

















0
0
0
0
0
0

















(22)

The determinant of the submatrix obtained by taking out the first line is equal
to 1, so that the whole matrix has rank greater of equal to 6. Then there is no
other solution than A1 = B1 = A2 = B2 = A3 = B3 = 0. �
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