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Abstract

In this paper, we consider the numerical approximation for a diffuse interface model of the two-
phase incompressible inductionless magnetohydrodynamics problem. This model consists of
Cahn-Hilliard equations, Navier-Stokes equations and Poisson equation. We propose a linear
and decoupled finite element method to solve this highly nonlinear and multi-physics system. For
the time variable, the discretization is a combination of first order Euler semi-implicit scheme,
several first order stabilization terms and implicit-explicit treatments for coupling terms. For the
space variables, we adopt the finite element discretization, especially, we approximate the current
density and electric potential by inf-sup stable face-volume mixed finite element pairs. With
these techniques, the scheme only involves a sequence of decoupled linear equations to solve at
each time step. We show that the scheme is provably mass-conservative, charge-conservative and
unconditionally energy stable. Numerical experiments are performed to illustrate the features,
accuracy and efficiency of the proposed scheme.

Keywords: Inductionless MHD equations, Cahn-Hilliard equation, Mixed finite element
method, Decouple scheme, Energy stable, Charge-conservative

1. Introduction

In recent years, the phase field method, also called the diffuse interface method, has been
widely used to simulate the motion of multiphase incompressible immiscible fluids for both
numerical and theoretical research [1, 2, 3], such as in fields like material sciences, fracture
mechanics and fluid mechanics. Unlike the traditional sharp interface model, the phase field
method describes the interface by a balance of molecular forces in a very thin layer rather than
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a free curve that evolves over time. To indicate different phases, an auxiliary function φ called
phase field or order parameter is introduced [4, 5]. The phase function takes a distinct constant
value in each bulk phase, and varies smoothly in the interfacial region. In the diffuse interface
theory, the surface motion of the order parameter is driven by a gradient flow. There are two
popular gradient flow-type governing equations: Allen-Cahn equations [6] and Cahn-Hilliard
equations [7]. Comparing with the classical sharp interface model, one principal advantage of
phase field method is its ability to capture the interface implicitly and automatically, and allow for
topological changes such as self-intersection, pinch-off and splitting. Thus, phase field method
has become an attractive technique, for extensive study on the phase field approach, we refer to
the recent reviews [8, 9] and the references therein.

Magnetohydrodynamic (MHD) equations are used to describe the behavior of electrically
conductive fluids under the influence of magnetic fields and electric currents, which couple the
Navier-Stokes equations and Maxwell equations. The theoretical analysis and numerical simula-
tion of incompressible MHD equations is an area of research currently undergoing intense study
[10, 11, 12]. However, in most industrial and laboratory cases, the magnetic Reynolds number
is small, then the induced magnetic field can be neglected compared with the applied magnetic
field. In these cases, Maxwell equations are replaced by Poisson equation for the electric scalar
potential, which yields the inductionless magnetohydrodynamic (IMHD) equations [13, 14, 15].
It is well-known that numerical simulation of multiphase flow is a challenging problem in com-
putational fluid dynamics. This problem becomes more difficult for MHD due to the interaction
between multiple physical fields. The multiphase MHD flow often is involved in a wide range
of scientific and industrial problems, such as astrophysics, aluminum electrolysis, liquid metal
magnetic pumps, MHD power generators, fusion reactor blankets [16, 17]. Thus developing
fast and effective algorithms for incompressible multiphase MHD equations has great theoretical
significance and applicable value.

In this paper, we focus on the two-phase incompressible IMHD problem in a general Lips-
chitz domain, which is frequently performed to simulate the movement in aluminum electrolysis
cell [11, 18] and explore the theoretical study and numerical experiments of liquid lithium-lead
cladding [19]. Traditionally, most of the existing models for multiphase incompressible IMHD
problem are devoted to sharp interface models, for instance, the front-tracking method [20, 21],
the volume-of-fluid method [22, 23, 24], the level-set method [25, 26]. There are few works
have focused on the two-phase incompressible IMHD equations by diffuse-interface method in
the literature. In 2014, Ding et al. [27] presented a two-phase incompressible inductionless
magnetohydrodynamics model and simulated the deformation of melt interface in an aluminum
electrolytic cell. In 2020, Chen and his collaborators [28] proposed a linear, decoupled, un-
conditionally energy stable and second order time-marching schemes to simulate the two-phase
incompressible Cahn-Hilliard-IMHD (CHIMHD) conducting flow. Zhang [29] derived a diffuse
interface model for IMHD fluids systematically and analyzed sharp interface limits for different
choice of the mobilities. Mao et al. [30] analyzed the fully discrete finite element approximation
of a three-dimensional CHIMHD model and proved the well-posedness of weak solution to the
phase field model by using the classical compactness method.

Studying efficient numerical methods for solving incompressible CHIMHD flows is the main
focus of this article. The CHIMHD model is a complex system that involves three coupled phys-
ical processes: the phase field model (Cahn-Hilliard equation), fluid dynamics (Navier-Stokes
equations), and electric field (Possion equation). Due to the highly nonlinear with multi-physics
fields coupled in this system, it is relatively complicated and time-consuming to solve it by non-
linear and coupled scheme [28, 30]. Our primary goal is to propose a decoupled and efficient
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fully discrete mixed finite element method to solve the system. The time discretization is an
Euler semi-implicit scheme with some extra first order stabilization terms in Cahn-Hilliard equa-
tions and Poisson equation, and implicit-explicit treatments for coupling terms. The subtle time
splitting technique allows us to fully decouple system into three processes at each time step. For
spacial discretization, we adopt classical inf-sup stable finite element to discretize the phase field
and chemical potential, standard velocity-pressure stable finite element to discretize the hydro-
dynamic unknowns, and stable face-volume finite element pairs to discretize the current density
and electric potential. With these techniques, we obtain an efficient fully discrete scheme, which
is decoupled, linear while still mass-conservative, charge-conservative and unconditionally en-
ergy stable. Numerical experiments are performed to demonstrate the features, accuracy and
efficiency of the proposed scheme.

We emphasize that the proposed scheme is charge-conservative and unconditionally energy
stable. The charge conservation law, namely, divJ = 0 is a physical law in electromagnetics,
which plays an important role in keeping the calculation accuracy for the simulation of MHD
fluid. It was believed that only when the numerical schemes numerically maintains the physical
conservation laws, such as momentum conservation and charge conservation, can we get accurate
results for MHD flows at high Hartmann number [31, 15]. Due to the rapid changes near the
interface, the non-compliance of energy dissipation laws of the scheme may lead to spurious
numerical solutions [32, 33]. Thus, the design of unconditionally energy stable schemes are
of great importance for solving phase field models. To the best of our knowledge, the scheme
presented in this paper is the first decoupled, linear and unconditionally energy stable scheme for
a phase field model of two-phase inductionless MHD flows.

The rest of this paper is organized as follows. In section 2, we present the CHIMHD model,
derive a weak formulation and the dissipative energy law. In section 3, we propose a fully
discrete charge-conservation finite element method and prove its unconditional energy stability.
In section 4, we present some numerical simulations to validate our schemes. Some concluding
remarks are given in section 5.

2. The diffuse interface model

In this section, we first introduce the CHIMHD model, then present a weak formulation, and
finally show the dissipative energy law in the PDE level.

2.1. Model system

We consider a phase-field model for mixture of two immiscible, incompressible and conduct-
ing fluids with the same density in a bounded domain Ω with Lipschitz-continuous boundary
Σ B ∂Ω in Rd, d = 2, 3. Following [30, 29], the dynamic behavior of the flow is governed by
the coupling model of the Cahn-Hilliard equations and the IMHD equations. In this paper, we
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consider the incompressible CHIMHD system as follows:

ρ (ut + u · ∇u) − 2∇ · (η (ϕ) D (u)) + ∇p + ϕ∇µ = J × B in Ω, (1)
divu = 0 in Ω, (2)

σ (ϕ)−1 J + ∇φ − u × B = 0 in Ω, (3)
divJ = 0 in Ω, (4)

ϕt + div(ϕu) − M∆µ = 0 in Ω, (5)

−γε∆ϕ +
γ

ε
f (ϕ) − µ = 0 in Ω. (6)

where ρ is the density of fluids, u, p denote the velocity and pressure of fluids, J, φ represent
the current density and electric scalar potential, ϕ, µ denote the phase function and chemical
potential, and B is the applied magnetic field which is assumed to be given. D(u) = 1

2 (∇u +∇uT)
is the symmetric gradient tensor. In the Cahn-Hilliard equations (5)-(6), f (ϕ) = F′(ϕ), with F(ϕ)
is the double-well potential, γ is the surface tension coefficient, and ε is the interface thickness,
M represents the diffusional mobility related to the relaxation time scale. In the IMHD equations
(1)-(4), the viscosity of the fluids η(ϕ), and the electric conductivity σ(ϕ) are depending on the
phase function ϕ. They are Lipschitz-continuous functions of ϕ satisfying

0 < min {η1, η2} ≤ η(ϕ) ≤ max {η1, η2} ,
0 < min {σ1, σ2} ≤ σ(ϕ) ≤ max {σ1, σ2} ,

where ηi and σi (i=1,2) are the viscosity and electric conductivity of the fluid on each phase. The
system of equations are supplemented with the following initial values and boundary conditions

u(0) = u0, ϕ(0) = ϕ0 in Ω,
u = 0, J · n = 0, ∂nϕ = ∂nµ = 0 on Σ,

where n is the outer unit normal of Σ. In this paper, we consider two-phase flows with matching
density ρ1 = ρ2. Without lose of generality, we set ρ ≡ 1 in the above system (2.1).

Remark 2.1. The first term on the right-hand side of (1), J × B is the Lorentz force. The
last term on the left-hand side of (1) the continuum surface tension force in the potential form,
which denotes the phase introduced force. This term appears differently in literature [34, 9]:
∇ · (∇φ ⊗ ∇φ), −µ∇φ or φ∇µ. It can be shown that these three expressions are equivalent by
redefining the pressure p.

Remark 2.2. Though the model considered here is a two-phase model with matched density,
one can still employ this model with Boussinesq approximation to model the effect of density
difference by a gravitational force in case of small density ratio. The large density ratio case is
reserved for future work.

In this paper, we consider the truncated double well potential F(ϕ),

F(ϕ) =
1
4


4(ϕ + 1)2 if ϕ < −1,(
ϕ2 − 1

)2
if − 1 ≤ ϕ ≤ 1,

4(ϕ − 1)2 if ϕ > 1.

The original definition of the potential is logarithmic [7], which guarantees the phase field ϕ
stays within (-1,1). The Ginzburg-Landau potential FGL(ϕ) = 1

4 (1−ϕ2)2 is an popular alternative
4



to approximate the one suggested by Cahn and Hilliard. Following [34, 35], we further restrict
the growth of the potential to quadratic away from the range [-1,1]. It is proved by [36] that the
truncated F(ϕ) also ensures the boundness of ϕ in the Cahn-Hilliard equation. Therefore, it is a
common practice to consider the Cahn-Hilliard equation with the truncated double-well potential
F(ϕ) [37, 34]. It is clear that the second derivative of F(ϕ) is continuous and bounded,

L := max
ϕ∈R

∣∣∣F′′(ϕ)
∣∣∣ = 2.

This property is of great help in handling the nonlinear double-well potential by using stabiliza-
tion method. For the treatment of the general double-well potential, we give some comments in
Remark 3.4.

2.2. Weak formulation and energy estimate
Firstly, we introduce some useful notations and Sobolev spaces. Let L2(Ω) be the space of

square-integrable functions that equipped with the inner product and norm:

( f , g) :=
∫

Ω

f g dx, ‖ f ‖0 := ( f , f )1/2, ∀ f , g ∈ L2(Ω).

Its subspace with mean zero over Ω is written as L2
0(Ω). Let H1(Ω),H(div,Ω) be the subspaces

of L2(Ω) with square integrable gradients and square integrable divergences respectively. The
equipped norm in H(div,Ω) is defined by

‖J‖div,Ω =
(
‖J‖20,Ω + ‖divJ‖20,Ω

)1/2
.

Their subspaces with vanishing traces and vanishing normal traces on Σ are denoted by H1
0(Ω),H0(div,Ω).

We refer to [38] for their definitions and inner products.
For convenience, we introduce some notations for function spaces

V B H1
0(Ω), X B H1(Ω), Q = L2

0(Ω),

D B H0(div,Ω), S = L2
0(Ω).

To derive the weak formulation of (2.1), we define a trilinear form:

O(w,u, v) = 1
2 (w∇u, v) − 1

2 (w∇v,u) ,

for any u, v,w ∈ V.
Armed with the above notation, a weak formulation of the system (2.1) amounts to find

(u, p, J, φ, ϕ, µ) ∈ V × Q × D × S × X × X such that

〈ut, v〉 + 2(η(ϕ)D(u),D(v)) + O(u,u, v) − (p, divv) + (ϕ∇µ, v) − (J × B, v) = 0,
(divu, q) = 0,(

σ(ϕ)−1 J, K
)
− (u × B, K) − (φ, divK) = 0,

(divJ, χ) = 0,
〈ϕt, ψ〉 − (ϕu,∇ψ) + M(∇µ,∇ψ) = 0,

λε(∇ϕ,∇χ) +
λ

ε
( f (ϕ), χ) − (µ, χ) = 0,

(7)

for all (v, q, K, θ, ψ, χ) ∈ V × Q × D × S × X × X.
Now, we are in a position to establish the energy estimate for the CHIMHD system.
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Theorem 2.3. Let (u, p, J, φ, ϕ, µ) be the solution of (7). The following energy dissipation law
holds

E(t) +

∫ t

0
P(s)ds = E(0)

where

E(t) :=
∫

Ω

(
1
2
|u|2 +

λε

2
|∇ϕ|2 +

λ

ε
F(ϕ)

)
dx,

P(t) := M‖∇µ‖20 + 2‖
√
η(ϕ)D(u)‖20 +

∥∥∥∥∥√
σ(ϕ)−1 J

∥∥∥∥∥2

0
.

Proof. Taking (v, q, K, θ, ψ, χ) = (u, p, J, φ, µ, ϕt) in (7), we have

(ut,u) + 2‖
√
η(ϕ)D(u)‖20 − (J × B,u) + (ϕ∇µ,u) = 0,(

σ(ϕ)−1 J, J
)
− (u × B, J) = 0,

(ϕt, µ) − (ϕu,∇µ) + M‖∇µ‖20 = 0,
λε(∇ϕ,∇ϕt) + λ

ε
( f (ϕ), ϕt) − (µ, ϕt) = 0.

Combining the these equalities, we obtain

(ut,u) + λε(∇ϕ,∇ϕt) +
λ

ε
( f (ϕ), ϕt) + 2‖

√
η(ϕ)D(u)‖20 +

∥∥∥∥∥√
σ(ϕ)−1 J

∥∥∥∥∥2

0
+ M‖∇µ‖20 = 0.

Integrating both sides over (0, t) yields the theorem.

The energy law describes the evolution of the total energy caused by energy conversion.
Since the induced magnetic field can be neglected and the electric field is considered to be quasi-
static, the total energy E only consists of the fluid kinetic energy 1

2 ‖u‖
2
0 and the Cahn-Hilliard

free energy. The dissipation of E stems from the friction losses ‖
√
η(ϕ)D(u)‖20, the Ohmic losses∥∥∥∥√

σ(ϕ)−1 J
∥∥∥∥2

0
and the diffusion transport term M‖∇µ‖20.

3. Decoupled energy stable finite element method

In this section, we propose a decoupled, energy stable, mixed finite element scheme for
continuous problem (7).

Let Th be a shape-regular simplex subdivision of Ω. As usual, we introduce the local mesh
size hK = diam (K) and global mesh size h := max

K∈Th

hK . Here we choose conforming finite

element space pairs (Vh,Qh) ⊂ (V,Q) to discretize velocity u and pressure p, (Dh, S h) ⊂ (D, S )
to approximate current density J and electric potential ϕ, and (Xh, Xh) to discretize the phase field
function φ and chemical potential µ. In addition, we assume these spaces satisfy the following
inf-sup conditions.

Proposition 3.1 (inf-sup condition). The finite element pairs (Vh,Qh), (Dh, S h) and (Xh, Xh)
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satisfy the following uniform inf-sup conditions:

inf
qh∈Qh

sup
vh∈Vh

(qh, divvh)
‖∇vh‖0 ‖qh‖0

≥ βs, (8)

inf
θh∈S h

sup
Kh∈Dh

(ψh, divKh)
‖Kh‖div

‖θh‖0
≥ βm, (9)

inf
χh∈Xh

sup
ψh∈Xh

(∇χh,∇ψh)
‖χh‖1 ‖ψh‖1

≥ βc, (10)

where βs, βm and βs only depend on Ω.

With these discrete spaces, the semi-discretization formulation of the system (7) is to find
(uh, ph, Jh, φh, ϕh, µh) ∈ Vh × Qh × Dh × S h × Xh × Xh such that

((uh)t, vh) + 2(η(ϕh)D(uh),D(vh)) + O(uh,uh, vh) − (ph, divvh)
+(ϕh∇µh, vh) − (Jh × Bh, vh) = 0,

(divuh, qh) = 0,(
σ(ϕh)−1 Jh, Kh

)
− (uh × Bh, Kh) − (φh, divKh) = 0,

(divJh, χh) = 0,
((ϕh)t, ψh) − (ϕhuh,∇ψh) + M(∇µh,∇ψh) = 0,

λε(∇ϕh,∇χh) +
λ

ε
( f (ϕh), χh) − (µh, χh) = 0,

(11)

for all (vh, qh, Kh, θh, ψh, χh) ∈ Vh × Qh × Dh × S h × Xh × Xh.
With similar arguments in Theorem 2.3, one can easily get the energy stability of the semi-

discrete scheme, thus the details are omitted here.

Theorem 3.2. Let (u, p, J, φ, ϕ, µ) be the solution of (7). The energy dissipation law holds

E(t) +

∫ t

0
P(s)ds = E(0)

where

E(t) :=
∫

Ω

(
1
2
|uh|

2 +
λε

2
|∇ϕh|

2 +
λ

ε
F(ϕh)

)
dx,

P(t) := M‖∇µh‖
2
0 + 2‖

√
η(ϕh)D(uh)‖20 +

∥∥∥∥∥√
σ(ϕh)−1 Jh

∥∥∥∥∥2

0
.

Let {tn = nτ : n = 0, 1, · · · ,N} , τ = T/N, be an equidistant partition of the time interval
[0,T ]. For any time dependent function ω (x, t), the full discrete approximation to ω (tn) will be
denoted by ωn

h. A fully discrete mixed finite element scheme for problem (7) reads as follows:
Given the initial guess u0 and φ0, we compute(

un+1
h , pn+1

h , Jn+1
h , ϕn+1

h , φn+1
h , µn+1

h

)
, n = 0, 1, · · · ,N − 1,
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by the following three steps.
Step 1: Find

(
ϕn+1

h , µn+1
h

)
∈ Xh × Xh such that

(
δtϕ

n+1
h , ψh

)
+ M

(
∇µn+1

h ,∇ψh

)
+ τ

(
ϕn

h∇µ
n+1
h , ϕn

h∇ψh

)
=

(
ϕn

hun
h,∇ψh

)
,

λε
(
∇ϕn+1

h ,∇χh

)
+

(
λ
ε
(ϕn+1

h − ϕn
h), χh

)
+

(
λ
ε

f (ϕn), χh

)
−

(
µn+1

h , χh

)
= 0,

(12)

for all (ψh, χh) ∈ Xh × Xh.
Step 2: Find

(
Jn+1

h , φn+1
h

)
∈ Dh × S h such that

(
σ

(
ϕn+1

h

)−1
Jn+1

h , Kh

)
+ τ

(
Jn+1

h × B, Kn+1
h × B

)
−

(
φn+1

h , divKh

)
− τ

(
ϕn+1

h ∇µ
n+1
h × B, Kn+1

h

)
=

(
un

h × B, Kn+1
h

)
,(

divJn+1
h , θh

)
= 0,

(13)

for all (Kh, θh) ∈ Dh × S h.
Step 3: Find

(
un+1, pn+1

)
∈ Vh × Qh such that

(δtun+1
h , vh) + O(un

h,u
n+1
h , vh) − 2

(
η
(
ϕn+1

h

)
D

(
un+1

h

)
,D

(
vn+1

h

))
−

(
pn+1

h , divvh

)
+

(
ϕn+1

h ∇µ
n+1
h , vh

)
+

(
Jn+1

h × B, vh

)
= 0,(

divun+1, qh

)
= 0,

(14)

for all (vh, qh) ∈ Vh × Qh.
Before we get into the discussion on the properties of this scheme, several remarks about the

scheme are given in order.

Remark 3.3. To decouple the nonlinear coupled multiphysics system, we introduce two first
-order stabilization terms. The first stabilization term τ(ϕn

h∇µ
n
h, ϕ

n
h∇ψh) in step 1 is to decou-

ple Cahn–Hilliard equations and Navier–Stokes equations [35]. The second stabilization term
τ
(
Jn+1

h × B, Kh × B
)

in step 2 is to decouple Poisson equation and Navier–Stokes equations [39].
These extra two stabilization terms are vital to keep the couping term explicitly while preserving
the energy stability, see the proof of Theorem 3.2.

Remark 3.4. In step 1, we employ the stabilized method [35] to treat the double-well potential
F(ϕ) explicitly without suffering from any time step constraint. Note that this stabilizing term
λ
ε
(ϕn+1

h −ϕ
n
h) introduces an extra consistent error of order τ, which is the same order as the overall

truncation error of the scheme. Note that there are many other efficient methods on constructing
energy stable schemes for the Cahn-Hilliard equation, such as, convex-splitting method [40],
invariant energy quadratization method [41], and scalar auxiliary variable method [42]. Here
we adopt the stabilized explicit method only for simplicity, and it is easy to extend the scheme to
the methods mentioned above.

Remark 3.5. In this paper, we only focus on the decoupling of multiphysics problem rather the
decoupling of all variable in each physical problem. The velocity and pressure in step 3 can be
further decoupled by using the first order pressure correction scheme [34], and we leave it to the
interested readers.

It is clear that the scheme given by (12)-(14) is a decoupled, linear scheme. Next we want to
show that the scheme is mass-conservative and charge-conservative.
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Proposition 3.6. Let
(
um

h , pm
h , Jm

h , φ
m
h , ϕ

m
h , µ

m
h

)
solve (12)-(14) for any 1 ≤ m ≤ N, then the

scheme is mass-conservative and charge-conservative, namely,∫
Ω

ϕm
h dx =

∫
Ω

ϕ0
h dx, divJm

h = 0.

Proof. Letting ψh = 1 in the first equation of (12), we have mass conservation
∫

Ω
ϕm

h dx =∫
Ω
ϕ0

h dx. Then, we note that for all θh ∈ S h, there holds(
θh, divJm

h

)
= 0,

and divJm
h ∈ S h. Taking θh = divJm

h , we obtain divJm
h = 0.

Now, we are in a position to prove the unconditional energy stability of the decoupled scheme
as follows, which is analogous to that of the original problem in Theorem 2.3.

Theorem 3.7. The decoupled scheme is unconditionally energy stable in the sense that the fol-
lowing energy estimate

δtEn+1 + Pn ≤ 0 ∀n ≥ 0, (15)

holds, where

En+1 :=
1
2
‖un+1

h ‖
2
0 +

λε

2
‖∇ϕn+1

h ‖
2
0 +

λ

ε

(
F

(
ϕn+1

h

)
, 1

)
,

Pn := M‖∇µn+1
h ‖

2
0 + 2‖

√
η(ϕn+1

h )D(un+1
h )‖20 +

∥∥∥∥∥√
σ(ϕn+1

h )−1 Jn+1
h

∥∥∥∥∥2

0
.

Proof. Letting (ψh, χh) =
(
µn+1

h , δtϕ
n+1
h

)
in (12), we have(

δtϕ
n+1
h , µn+1

h

)
+ τ‖ϕn

h∇µ
n+1
h ‖

2 + M‖∇µn+1
h ‖

2 = (ϕn
hun

h,∇µ
n+1
h ), (16)

λε(∇ϕn+1
h ,∇δtϕ

n+1
h ) +

λ

ε
( f (ϕn

h), δtϕ
n+1
h ) +

1
ετ
‖ϕn+1

h − ϕn
h‖

2 = (µn+1
h , δtϕ

n+1
h ). (17)

Next, setting (Kh, θh) =
(
Jn+1

h , φn+1
h

)
, we get∥∥∥∥∥√

σ(ϕn+1
h )−1 Jn+1

h

∥∥∥∥∥2

0
+ τ

∥∥∥Jn+1
h × B

∥∥∥2
0,Ω = −(un

h, Jn+1
h × B) + τ(ϕn

h∇µ
n+1
h , Jn+1

h × B). (18)

Then, taking (vh, qh) =
(
un+1

h , pn+1
h

)
, and using the identity

(
δtun+1

h ,un+1
h

)
=

1
2τ

(∥∥∥un+1
h

∥∥∥2
0,Ω −

∥∥∥un
h

∥∥∥2
0,Ω +

∥∥∥un+1
h − un

h

∥∥∥2
0,Ω

)
,

it yields

1
2τ

(∥∥∥un+1
h

∥∥∥2
0,Ω −

∥∥∥un
h

∥∥∥2
0,Ω +

∥∥∥un+1
h − un

h

∥∥∥2
0,Ω

)
+ 2‖

√
η(ϕn+1

h )D(un+1
h )‖20

=
(
Jn+1

h × Bh,un+1
h

)
−

(
ϕn

h∇µ
n+1
h ,un+1

h

)
. (19)
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By making the summations of (16)-(19), we obtain

1
2τ

(∥∥∥un+1
h

∥∥∥2
0,Ω −

∥∥∥un
h

∥∥∥2
0,Ω +

∥∥∥un+1
h − un

h

∥∥∥2
0,Ω

)
+ 2‖

√
η(ϕn+1

h )D(un+1
h )‖20

+

∥∥∥∥∥√
σ(ϕn+1

h )−1 Jn+1
h

∥∥∥∥∥2

0
+ τ

∥∥∥Jn+1
h × B

∥∥∥2
0,Ω + τ‖ϕn

h∇µ
n+1
h ‖

2 + M‖∇µn+1
h ‖

2

=
(
Jn+1

h × Bh − ϕ
n
h∇µ

n+1
h ,un+1

h − un
h

)
+ τ(ϕn

h∇µ
n+1
h , Jn+1

h × Bh)

−
λ

ε
( f (ϕn

h), δtϕ
n+1
h ) −

1
ετ
‖ϕn+1

h − ϕn
h‖

2. (20)

Using Young inequality, we derive the right hand side of the first term of (20) has the follow-
ing estimate, (

Jn+1
h × Bh − ϕ

n
h∇µ

n+1
h ,un+1

h − un
h

)
≤

∥∥∥Jn+1
h × Bh − ϕ

n
h∇µ

n+1
h

∥∥∥
0,Ω

∥∥∥un+1
h − un

h

∥∥∥
0,Ω

≤
τ

2

∥∥∥Jn+1
h × Bh − ϕ

n
h∇µ

n+1
h

∥∥∥2
0,Ω +

1
2τ

∥∥∥un+1
h − un

h

∥∥∥2
0,Ω

=
τ

2

∥∥∥Jn+1
h × Bh

∥∥∥2
0,Ω − τ(ϕn

h∇µ
n+1
h , Jn+1

h × Bh)

+
τ

2

∥∥∥ϕn
h∇µ

n+1
h

∥∥∥2
0,Ω +

1
2τ

∥∥∥un+1
h − un

h

∥∥∥2
0,Ω . (21)

For the last two term in (20), using the Taylor expansion,

F
(
ϕn+1

h

)
− F

(
ϕn

h

)
=

(
f
(
ϕn

h

)
, ϕn+1

h − ϕn
h

)
+

f ′
(
ξn

h

)
2
‖ϕn+1

h − ϕn
h‖

2,

then we have

−
λ

ε
( f (ϕn

h), δtϕ
n+1
h ) −

λ

ετ
‖ϕn+1

h − ϕn
h‖

2

= −
λ

ετ

(
F

(
ϕn+1

h

)
− F

(
ϕn

h

))
+
λ

ετ

 f ′
(
ξn

h

)
2
− 1

 ‖ϕn+1
h − ϕn

h‖
2. (22)

Plugging (21) and (22) into (20), and dropping the positive term τ
2

∥∥∥Jn+1
h × B

∥∥∥2
0,Ω and τ

2 ‖ϕ
n
h∇µ

n+1
h ‖

2,
we get the required estimate (15). The proof is thus complete.

4. Numerical Experiments

In this section, we present a series of 2D numerical experiments to illustrate the features of the
proposed algorithms. The finite element method is implemented on the finite element software
FreeFEM developed by [43]. For any integer k ≥ 0, let Pk(K) be the space of polynomials
of degree k on element K, and denote Pk(K) = Pk(K)2. We employ the Mini-element [44] to
approximate the velocity and pressure

Vh = Pb
1,h ∩ V, Qh =

{
qh ∈ Q : qh|K ∈ P1(K), ∀K ∈ Th

}
,
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where Pb
1,h =

{
vh ∈ C0(Ω) : vh|K ∈ P1(K) ⊕ span{b̂}, ∀K ⊂ Th

}
, b̂ is a bubble function. We choose

the lowest-order Raviart-Thomas [45] element space

Dh = {Kh ∈ D : Kh|K ∈ P0(K) + xP0(K), ∀K ∈ Th} ,

to approximate the current density, the discontinuous and piecewise constant finite element space
to approximate the electric potential

S h =
{
ψh ∈ S : ψh|K ∈ P0(K), ∀K ∈ Th

}
.

The phase field ϕ and chemical potential µ are discretized by first order Lagrange finite element
space (Xh, Xh), where

Xh =
{
χh ∈ L2

0 : χh|K ∈ P1(K), ∀K ∈ Th

}
.

Example 4.1 (Convergence and accuracy). The first example is used to verify the convergence
rates in both time and space. The computational domain is set as Ω = (0, 1) 2, and the external
magnetic field is B = (0, 0, 1)T. The physical parameters are given by Re = κ = 1 with terminal
time T = 1. The right-hand side functions, initial conditions and Dirichlet boundary conditions
are chosen such that the given solutions satisfy the system.

Let the approximation errors at the final time t = T be denoted by

eω = ω(T ) − ωN
h ω ∈ {u, p, J, φ, ϕ, µ} .

First, we test the temporal convergence orders. The analytic solutions are chosen as

u =
(
y exp (−t) , x cos (t)

)
, p = sin (t) ,

J = (sin (t) , cos (t)) , φ = 1,
ϕ = (x + y) exp (−t) , µ = x cos t.

Note that the exact solutions are linear or constant in space, the main error comes from the
discretization of the time variable. We fix a mesh size with h = 1/10 and test the convergence
rate with respect to the time step. Then the errors and orders are displayed in Tables 1-3. From
these tables, we observe that the errors of all variable decrease as the mesh is refined, with
convergence order of O(τ), which accords with our theoretical analysis completely.

Next, we aim to check the spatial approximation orders. To this end, we choose the exact
solution

u =
(
sin (y) exp (−t) , x2 cos (t)

)
, p = y sin (t) ,

J =
(
y2 sin (t) , sin (x) cos (t)

)
, φ = x exp (−t) ,

ϕ = sin(x) exp(−t), µ = cos(y) cos(t).

With initial time step and mesh width h0 = 2τ0 = 1/2, we simultaneously refine time and space
size such that the relation h = 2τ holds. The corresponding convergent results are demonstrated
in Tables 4-5 and a first order convergence of the proposed numerical scheme can be observed
asymptotically, which agrees with our expected results.

Finally, we verify the exactly divergence-free property of the discrete current density. From
the last column of Tables 2 and 4, the approximate solutions yields ‖∇ · Jh‖0 in the order of
10−11 ∼ 10−13, which is almost divergence-free. These tiny errors mainly result from the numer-
ical integral errors and rounding errors.

11



Table 1: Time convergence rates of the scheme for (u, p)

τ ‖eu‖0 ‖∇eu‖0 ‖ep‖0

0.2 1.7227e-4(—) 1.3384e-3(—) 3.4903e-2(—)

0.1 7.5918e-05(1.18) 5.9037e-4(1.18) 1.6788e-2(1.06)

0.05 3.5535e-05(1.10) 2.7649e-4(1.09) 8.1861e-3(1.04)

0.025 1.7206e-05(1.05) 1.3391e-4(1.05) 4.0362e-3(1.02)

0.0125 8.4693e-06(1.02) 6.5926e-05(1.02) 2.0033e-3(1.01)

0.00625 4.2022e-06(1.01) 3.2712e-05(1.01) 9.9790e-4(1.01)

Table 2: Time convergence rates of the scheme for (J, φ)

τ ‖eJ‖div ‖eφ‖0 ‖∇ · JN
h ‖0

0.2 6.9951e-3(—) 3.6822e-2(—) 3.68218e-12

0.1 3.6099e-4(0.95) 1.9026e-2(0.95) 1.90247e-12

0.05 1.8227e-3(0.99) 9.6627e-3(0.98) 9.66331e-13

0.025 9.1439e-4(1.00) 4.8671e-3(0.99) 4.86857e-13

0.0125 4.5781e-4(1.00) 2.4422e-3(0.99) 2.44362e-13

0.00625 2.2904e-4(1.00) 1.2233e-3(1.00) 1.22111e-13

Table 3: Time convergence rates of the scheme for (ϕ, µ)

τ ‖eϕ‖0 ‖∇eϕ‖0 ‖eµ‖0 ‖∇eµ‖0

0.2 1.1298e-1(—) 1.8314e-2(—) 1.1941e-1 (—) 6.1937e-3(—)

0.1 5.1171e-2(1.14) 5.9434e-3(1.62) 7.0687e-2(0.77) 3.2132e-3(0.95)

0.05 2.4156e-2(1.08) 2.2442e-3(1.40) 3.6871e-2(0.94) 1.5619e-3(1.04)

0.025 1.1710e-2(1.04) 9.6111e-4(1.22) 1.8674e-2(0.98) 7.6263e-4(1.03)

0.0125 5.7621e-3(1.02) 4.4380e-4(1.11) 9.3800e-3(0.99) 3.7607e-4(1.02)

0.00625 2.8576e-3(1.01) 2.1321e-4(1.06) 4.6987e-3(1.00) 1.8666e-5(1.01)
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Table 4: Full discretization convergence rates of the scheme for (u, p, J)

(τ, h) ‖∇eu‖0 ‖ep‖0 ‖eJ‖div ‖∇ · JN
h ‖0

(τ0, h0) 1.1685e-1(—) 5.4282e-2(—) 1.5322e-1(—) 1.02906e-11
(τ0, h0) /2 5.7591e-2(1.02) 1.8775e-2(1.53) 7.7659e-2(0.98) 1.03095e-11
(τ0, h0) /4 2.8635e-2(1.01) 7.4194e-3(1.34) 3.9010e-2(0.99) 1.04248e-11
(τ0, h0) /8 1.4287e-2(1.00) 3.3507e-3(1.15) 1.9536e-2(1.00) 1.05131e-11

(τ0, h0) /16 7.1370e-3(1.00) 1.6213e-3(1.05) 9.7733e-3(1.00) 1.05643e-11
(τ0, h0) /32 3.5671e-3(1.00) 8.0384e-4(1.01) 4.8877e-3(1.00) 1.05915e-11

Table 5: Full discretization convergence rates of the scheme for (φ, ϕ, µ)

(τ, h) ‖eφ‖0 ‖∇eϕ‖0 ‖∇eµ‖0
(τ0, h0) 4.5526e-2(—) 2.8424e-2(—) 6.3754e-2(—)

(τ0, h0) /2 2.2281e-2(1.00) 1.4898e-2(0.93) 3.2766e-2(0.96)
(τ0, h0) /4 1.1450e-2(0.99) 7.5740e-3(0.98) 1.6567e-2(0.98)
(τ0, h0) /8 5.7815e-3(0.99) 3.8063e-3(0.99) 8.3157e-3(0.99)

(τ0, h0) /16 2.900e-3(1.00) 1.9060e-3(1.00) 4.1632e-3(1.00)
(τ0, h0) /32 1.4520e-3(1.00) 9.5336e-4(1.00) 2.0825e-3(1.00)

Example 4.2 (Shape relaxation). In this example, we simulate the evolution of a square shaped
bubble and two kissing circular bubbles in the domain Ω = (0, 1)2. We set the external magnetic
field as B = (0, 0, 1)T and the physical parameters

η = σ = 1, ε = 0.01, γ = M = 0.1.

The initial velocity is taken as zero vector. For a square shaped bubble, the initial profile of phase
function ϕ is chosen to be

ϕ0 = tanh
(
|x + y − 1| + |x − y| − 0.4

√
2ε

)
.

For two kissing circular bubbles, ϕ0 is taken as

ϕ0 = 1 − tanh


∥∥∥x − xo1

∥∥∥ − r1
√

2ε

 − tanh


∥∥∥x − xo2

∥∥∥ − r2
√

2ε


where

∥∥∥x − xoi

∥∥∥ is the Eulerian distance between the points x and xoi . The two points xo1 =

(0.3, 0.5) and xo2 = (0.7, 0.5) , are the center of two bubbles, r1 = r2 = 0.2 are their radius.

With the prescribed data, we conduct the numerical experiments with the mesh size h = 1/64
and time step τ = 0.01, and calculate the total energy E and the mass

∫
Ω
φn

hdx at each time step.
For a square shaped bubble, we choose the terminal time T = 1. Fig. 1 shows the evolution

curve of the energy E and the mass
∫

Ω
φn

hdx. We notice that energy decay monotonically and the
mass

∫
Ω
φn

hdx remains a constant. This confirms that our decoupled scheme is energy stable and
mass conservative. Snapshots of the phase evolution at different time are presented in Fig. 2.
We observe that the isolated square shape relaxes to a circular shape, due to the effect of surface
tension.
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(a) The energy (b) The mass

Figure 1: Time evolution of the energy and mass for a square shaped bubble.

(a) t = 0 (b) t = 0.01 (c) t = 0.21

(d) t = 0.36 (e) t = 0.51 (f) t = 1.00

Figure 2: Snapshots of the relaxation of a square shape. The black circle indicates the zero-level set of ϕn
h.
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(a) The energy (b) The mass

Figure 3: Time evolution of the energy and mass for two kissing circular bubbles.

For two kissing circular bubbles, we choose the terminal time T = 15. The time evolution of
the energy E and the mass

∫
Ω
φn

hdx are displayed in Fig. 3. We still observe that energy curves
decay monotonically and the mass

∫
Ω
φn

hdx remains constant in time. Again, this confirms that
the decoupled scheme is energy stable and mass-conservative. Fig. 4 displays some snapshots of
the phase evolution. From this figure, one can see that as time evolves, the two bubbles quickly
connect together and eventually coalesces into one big bubble under the influence of surface
tension.

Example 4.3 (Kelvin–Helmholtz instability). In this example, we simulate the Kelvin–Helmholtz
instability [46], which is one of the most fundamental instabilities in incompressible fluids.
Considering the model problem on a rectangular domain Ω = (0, 0.5) × (0, 1), we choose
B = (0, 0, 1)T, η = 0.0002, σ = 1, ε = M = 0.01, and γ = 0.001. The initial conditions for
the phase function ϕ and velocity u are given by

φ0 = tanh
(

6 (y − yc)
√

2ε

)
, u0 = (tanh (50 (y − yc)) , 0)

T
,

where yc = 0.5 + 0.005 sin (4πx). The boundary condition for velocity is

u = (±1, 0)T at y = ±1, u = (0, 0)T at x = ±1.

A uniform mesh with the step size h = 1/128 and a uniform time partition with the time
step size τ = 0.01 are used in this simulation. Fig. 5 shows several snapshots of the phase
field to illustrate the evolution of the shearing interface. We observe that the flow sweeps the
initial interfacial vorticity into the center in early stage. As vorticity accumulates at the center,
the interface begins to steepen and the height of the instability gets larger. At late stage, roll-up
follows and the interface evolves into a spiral. The dynamics of the interface is similar to those
obtained in [47, 48].
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(a) t = 0 (b) t = 0.01 (c) t = 0.51

(d) t = 2.51 (e) t = 5.01 (f) t = 7.51

(g) t = 10.01 (h) 12.51 (i) t = 15.00

Figure 4: Snapshots of the relaxation of two kissing circular bubbles. The black circle indicates the zero-level set of ϕn
h.
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(a) t = 0 (b) t = 0.21 (c) t = 0.41

(d) t = 0.61 (e) t = 0.81 (f) t = 1.01

(g) t = 1.21 (h) t = 1.61 (i) t = 2.00

Figure 5: Snapshots of the relaxation of the shearing interface. The black circle indicates the zero-level set of ϕn
h.
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t = 1.01 t = 1.51 t = 2.01 t = 2.5

Figure 6: Profile of the phase fields for γ = 0.01, 0.005, 0.001.(From top to bottom.)

Example 4.4 (Gravity-driven flow). This example is to study the effect of the gravity on the two-
phase fluid. Similar to [28], we supplement the gravity force as a force term f g on the right-hand
side of the momentum equation (1),

f g = g
H (ϕ) + 1

2
,

where H (ϕ) = 1
1+exp(− ϕ

ε )
is a regularized approximation of the Heaviside step function, and

g = (0, 10) is the gravity. The physical parameters are given as η = ε = 0.01, σ = 100, M =

0.001, T = 2.5. The initial data of u is 0 and of ϕ is set as

ϕ0 = − tanh
(
‖x − xo‖ − r
√

2ε

)
,

where xo = (0.5, 0.8), and r = 0.1.

We simulate the CHIMHD system using the proposed scheme with h = 0.01 and τ = 0.005.
In Fig. 6, we plot some snapshots of the phase-field profile ϕ with γ = 0.01, 0.005, 0.001. We
observe that the effect of the gravity the circle bubble changes shape as it falls, and it transforms
to be flat when it approaches to the boundary. The smaller γ is, the greater deformation. Since
the Ginzburg–Landau energy models adhesion forces, it can be expected that a reduction of the
parameter γ reduces adhesion forces and leads to instabilities. Thus, the results verify this point.
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5. Summary

In this paper, we propose a linear and decoupled finite element method for the CHIMHD
model. This full discrete scheme is based on first order Euler semi-implicit scheme with some
first order stabilization terms and implicit-explicit treatments for time discretization, and stable
mixed finite element approximation for space discretization. In particular, we solve the current
density and electric potential simultaneously by using stable face-volume mixed finite element
pairs to ensure the discrete current density are divergence-free exactly. The scheme is proved
to be mass-conservative, charge-conservative and unconditionally energy stable. We performed
some numerical tests to verify the features, accuracy and efficiency of the proposed scheme. In
the further work, we will study the highly efficient scheme for the two-phase IMHD flows with
large density ratio.
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[11] J.-F. Gerbeau, C. Le Bris, T. Lelièvre, Mathematical methods for the magnetohydrodynamics of liquid metals,
Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2006.

[12] R. Moreau, Magnetohydrodynamics, Vol. 3 of Fluid Mechanics and its Applications, Kluwer Academic Publishers
Group, Dordrecht, 1990.

[13] S. Badia, A. F. Martı́n, R. Planas, Block recursive LU preconditioners for the thermally coupled incompressible
inductionless MHD problem, J. Comput. Phys. 274 (2014) 562–591.

[14] L. Li, M. Ni, W. Zheng, A charge-conservative finite element method for inductionless MHD equations. Part I:
Convergence, SIAM J. Sci. Comput. 41 (4) (2019) B796–B815.

[15] M.-J. Ni, R. Munipalli, N. B. Morley, P. Huang, M. A. Abdou, A current density conservative scheme for incom-
pressible MHD flows at a low magnetic Reynolds number. I. On a rectangular collocated grid system, J. Comput.
Phys. 227 (1) (2007) 174–204.

[16] M. Abdou, T. A. TEAM, A. Ying, N. Morley, K. Gulec, S. Smolentsev, M. Kotschenreuther, S. Malang, S. Zinkle,
T. Rognlien, P. Fogarty, B. Nelson, R. Nygren, K. McCarthy, M. Youssef, N. Ghoniem, D. Sze, C. Wong, M. Sawan,
H. Khater, R. Woolley, R. Mattas, R. Moir, S. Sharafat, J. Brooks, A. Hassanein, D. Petti, M. Tillack, M. Ulrickson,
T. Uchimoto, On the exploration of innovative concepts for fusion chamber technology, Fusion Engineering and
Design 54 (2) (2001) 181–247.

19



[17] P. A. Davidson, An introduction to magnetohydrodynamics, Cambridge Texts in Applied Mathematics, Cambridge
University Press, Cambridge, 2001.

[18] D. Munger, A. Vincent, A level set approach to simulate magnetohydrodynamic-instabilities in aluminum reduction
cells, J. Comput. Phys. 217 (2) (2006) 295–311.

[19] M. Abdou, D. Sze, C. Wong, M. Sawan, A. Ying, N. B. Morley, S. Malang, U.S. plans and strategy for ITER
blanket testing, Fusion Science and Technology 47 (3) (2005) 475–487.

[20] R. Samulyak, J. Du, J. Glimm, Z. Xu, A numerical algorithm for MHD of free surface flows at low magnetic
Reynolds numbers, J. Comput. Phys. 226 (2) (2007) 1532–1549.

[21] J. Zhang, M. Ni, Direct numerical simulations of incompressible multiphase magnetohydrodynamics with phase
change, J. Comput. Phys. 375 (2018) 717–746.

[22] H. Huang, A. Ying, M. Abdou, 3d mhd free surface fluid flow simulation based on magnetic-field induction equa-
tions, Fusion Engineering and Design 63-64 (2002) 361–368.

[23] Y. Pan, J. Zhang, Z.-H. Wang, M.-J. Ni, Development of mhd solver based on an adaptive mesh refinement tech-
nique, Fusion Engineering and Design 87 (5-6) (2012) 630–633.

[24] K. Takatani, Mathematical modeling of incompressible mhd flows with free surface, ISIJ Int. 47 (4) (2007) 545–
551.

[25] H. Ki, Level set method for two-phase incompressible flows under magnetic fields, Comput. Phys. Comm. 181 (6)
(2010) 999–1007.

[26] W.-X. Xie, L. Cai, J.-H. Feng, Tracking entropy wave in ideal mhd equations by weighted ghost fluid method,
Applied Mathematical Modelling 31 (11) (2007) 2503–2514.

[27] H. L. Liwei Ding, Yafei Cao, Z. Liu, Mhd numerical simulation of aluminum electrolytic cell (in chinese), Metal
Materials and Metallurgy Engineering 42 (4) (2014) 8–13.

[28] R. Chen, H. Zhang, Second-order energy stable schemes for the new model of the Cahn-Hilliard-MHD equations,
Adv. Comput. Math. 46 (6) (2020) 79.

[29] X. Zhang, Sharp-interface limits of the diffuse interface model for two-phase inductionless magnetohydrodynamic
fluids, arXiv preprint arXiv:2106.10433 (2021).

[30] S. Mao, X. Wang, Fully discrete finite element approximation of a three-dimensional diffuse interface model for
two-phase incompressible inductionless magnetohydrodynamic fluids, Submitted (2021).

[31] M.-J. Ni, J.-F. Li, A consistent and conservative scheme for incompressible MHD flows at a low magnetic Reynolds
number. Part III: On a staggered mesh, J. Comput. Phys. 231 (2) (2012) 281–298.

[32] J. Hua, P. Lin, C. Liu, Q. Wang, Energy law preserving c0 finite element schemes for phase field models in two-
phase flow computations, Journal of Computational Physics 230 (19) (2011) 7115–7131.

[33] H. Johnston, J.-G. Liu, Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the
pressure term, J. Comput. Phys. 199 (1) (2004) 221–259.

[34] J. Shen, X. Yang, Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows,
SIAM J. Numer. Anal. 53 (1) (2015) 279–296.

[35] J. Shen, X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin. Dyn.
Syst. 28 (4) (2010) 1669–1691.

[36] L. A. Caffarelli, N. E. Muler, An L∞ bound for solutions of the Cahn-Hilliard equation, Arch. Rational Mech. Anal.
133 (2) (1995) 129–144.

[37] J. Shen, X. Yang, A phase-field model and its numerical approximation for two-phase incompressible flows with
different densities and viscosities, SIAM J. Sci. Comput. 32 (3) (2010) 1159–1179.

[38] P. Monk, Finite element methods for Maxwell’s equations, Numerical Mathematics and Scientific Computation,
Oxford University Press, New York, 2003.

[39] Q. D. Xiaodi Zhang, A decoupled, unconditionally energy stable and charge-conservative finite element method
for inductionless magnetohydrodynamic equations, Submitted (2020).

[40] D. J. Eyre, An unconditionally stable one-step scheme for gradient systems, unpublished (1997) 15.
[41] X. Yang, J. Zhao, Q. Wang, J. Shen, Numerical approximations for a three-component Cahn-Hilliard phase-field

model based on the invariant energy quadratization method, Math. Models Methods Appl. Sci. 27 (11) (2017)
1993–2030.

[42] J. Shen, J. Xu, J. Yang, A new class of efficient and robust energy stable schemes for gradient flows, SIAM Rev.
61 (3) (2019) 474–506.

[43] F. Hecht, New development in freefem++, J. Numer. Math. 20 (3-4) (2012) 251–265.
[44] D. N. Arnold, F. Brezzi, M. Fortin, A stable finite element for the Stokes equations, Calcolo 21 (4) (1984) 337–344

(1985).
[45] P. A. Raviart, J. M. Thomas, A mixed finite element method for 2-nd order elliptic problems, in: I. Galligani, E. Ma-

genes (Eds.), Mathematical Aspects of Finite Element Methods, Springer Berlin Heidelberg, Berlin, Heidelberg,
1977, pp. 292–315.

[46] P. G. Drazin, W. H. Reid, Hydrodynamic stability, 2nd Edition, Cambridge Mathematical Library, Cambridge

20



University Press, Cambridge, 2004.
[47] H. D. Ceniceros, R. L. Nós, A. M. Roma, Three-dimensional, fully adaptive simulations of phase-field fluid models,

J. Comput. Phys. 229 (17) (2010) 6135–6155.
[48] H. G. Lee, J. Kim, Two-dimensional Kelvin-Helmholtz instabilities of multi-component fluids, Eur. J. Mech. B

Fluids 49 (part A) (2015) 77–88.

21


	1 Introduction
	2 The diffuse interface model
	2.1 Model system
	2.2 Weak formulation and energy estimate

	3 Decoupled energy stable finite element method
	4 Numerical Experiments
	5 Summary

