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Abstract

We investigate linear dynamical systems of second order. Uncertainty quan-
tification is applied, where physical parameters are substituted by random
variables. A stochastic Galerkin method yields a linear dynamical system of
second order with high dimensionality. A structure-preserving model order
reduction (MOR) produces a small linear dynamical system of second order
again. We arrange an associated port-Hamiltonian (pH) formulation of first
order for the second-order systems. Each pH system implies a Hamiltonian
function describing an internal energy. We examine the properties of the
Hamiltonian function for the stochastic Galerkin systems. We show numeri-
cal results using a test example, where both the stochastic Galerkin method
and structure-preserving MOR are applied.

Keywords: ordinary differential equation, port-Hamiltonian system, Hamil-
tonian function, stochastic Galerkin method, model order reduction, uncer-
tainty quantification.

1 Introduction

Port-Hamiltonian (pH) formulations of dynamical systems represent an advanta-
geous and useful structure, see [12, 20]. There is a close connection of pH systems
to passivity and stability, see [5, 13]. Models derived from pH formulations of-
ten inherit the beneficial properties. Furthermore, each pH system exhibits a
Hamiltonian function, which characterises an internal energy.
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We consider linear systems of ordinary differential equations (ODEs) of second
order. Such systems are generated by a modelling of mechanical mass-spring-
damper systems and some types of electric circuits, for example, see [6, 10]. In
the linear systems, the coefficient matrices are symmetric and positive definite or
semi-definite. We replace physical parameters of a system by independent random
variables to perform an uncertainty quantification (UQ). A stochastic Galerkin
approach, see [22, 23], generates a larger linear system of ODEs of second order.
The larger matrices inherit the definiteness of the original matrices, i.e., the
stochastic Galerkin projection is structure-preserving.

Both the linear second-order ODEs and their stochastic Galerkin systems feature
an associated pH formulation of first order. We investigate the meaning of the
Hamiltonian function in the pH system for the stochastic Galerkin approach.
The relations to the input-output behaviour of both the original linear dynamical
system and the linear stochastic Galerkin system are addressed.

Furthermore, the linear stochastic Galerkin system represents an adequate can-
didate for a model order reduction (MOR) due to the high dimensionality. We
apply projection-based MOR methods, see [1]. Stability-preserving MOR of first-
order linear dynamical systems was examined in [7, 11, 16, 17], for example. In
MOR of second-order linear dynamical systems, structure-preservation is desired,
where the properties of the reduced matrices are identical, see [2, 3, 8, 18, 19].
We achieve stability-preservation by structure-preservation in the second-order
systems. Consequently, each reduced-order model owns an associated pH formu-
lation of first order again.

The article is organised as follows. We specify pH systems of first order and
the investigated systems of ODEs of second order in Section 2. The stochastic
modelling as well as the stochastic Galerkin method are applied in Section 3.
We examine the pH formulation of the stochastic Galerkin projection and its
Hamiltonian function. Section 4 includes a structure-preserving MOR of the
stochastic Galerkin system. Finally, we present results of numerical computations
for a test example in Section 5.

2 Problem Definition

We review port-Hamiltonian systems and the class of linear dynamical systems
under investigation.
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2.1 Port-Hamiltonian Systems

Sn
≻ and Sn

� denote the set of real symmetric square matrices of dimension n,
which are positive definite and positive semi-definite, respectively. In ∈ Rn×n

represents the identity matrix.

We define linear port Hamiltonian systems in the case of implicit ODEs, cf. [4].

Definition 1 The form of a first-order linear port-Hamiltonian (pH) system is

Eẋ = (J − R)Qx+ (B − P )u

y = (B + P )⊤Qx+ (S +N)u
(1)

with matrices J,R,Q,E ∈ Rn×n, B,P ∈ Rn×m, S,N ∈ Rm×m such that J and N

are skew-symmetric, E⊤Q ∈ Sn
≻, and

W =

(

Q⊤RQ Q⊤P

P⊤Q S

)

∈ Sn+m
� . (2)

The associated Hamiltonian function reads as

H(x) = 1
2
x⊤(E⊤Q)x (3)

for x ∈ Rn.

Remark 1

i) In the case of ODEs, the mass matrix E is non-singular. In the case of
differential-algebraic equations (DAEs), the mass matrix E is singular and
the condition E⊤Q ∈ Sn

≻ has to be weakened into E⊤Q ∈ Sn
�, see [9].

ii) The property (2) implies that Q⊤RQ ∈ Sn
� and S ∈ Sn

� is symmetric as
well.

Note that it is necessary for a pH system to have the same number of inputs
in u as the number of outputs in y. The Hamiltonian function of a pH system
represents an internal energy. Considering a transient solution of the pH system,
it holds that

H(x(t2))−H(x(t1)) =

∫ t2

t1

y(t)⊤u(t)− x(t)⊤Q⊤RQx(t) dt

≤

∫ t2

t1

y(t)⊤u(t) dt

(4)

for t2 ≥ t1 ≥ 0. The latter relation is called the dissipation inequality. The inner
product y⊤u has units of power, representing the rate at which energy is delivered
to the system.
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2.2 Linear Dynamical Systems of Second Order

Let parameters µ ∈ M be given in a domain M ⊆ R

q. We consider linear
dynamical systems of second order in the form

M(µ)p̈ +D(µ)ṗ+K(µ)p = B′(µ)u

F (µ)p+G(µ)ṗ = y
(5)

with matrices M,D,K : M → R

n×n, B′ : M → R

n×nin, and F,G : M →
R

nout×n. Therein, we assume M(µ), K(µ) ∈ Sn
≻ and D(µ) ∈ Sn

� for all µ ∈ M.
These assumptions are typically satisfied for mass-spring-damper systems, for
example. If it holds that D(µ) ∈ Sn

≻, then the linear dynamical system (5)
is asymptotically stable, see [10]. In the case of D(µ) ∈ Sn

�, the system may
be stable or unstable. In (5), the quantity of interest (QoI) is the output y :
[0,∞)×M → R

nout.

Following [4], a system (5) can be written in the pH form (1) using the state
variables x = (ṗ⊤, p⊤)⊤ and the matrices

E(µ) =

(

M(µ) 0
0 In

)

, J =

(

0 −In
In 0

)

, R(µ) =

(

D(µ) 0
0 0

)

Q(µ) =

(

In 0
0 K(µ)

)

, B(µ) =

(

B′(µ)
0

)

,

and P = 0, S = 0, N = 0. To attain pH form, the involved output matrices
become F = 0 and G(µ) = B′(µ)⊤. The Hamiltonian function (3) is

H(x(t, µ), µ) = 1
2

(

ṗ(t, µ)⊤M(µ)ṗ(t, µ) + p(t, µ)⊤K(µ)p(t, µ)
)

(6)

for each µ ∈ M.

3 Stochastic Model

We use a stochastic model for the quantification of uncertainties in dynamical
systems.

3.1 Random Variables and Function Spaces

The physical parameters µ ∈ M ⊆ Rq, which are included in a system (5), are
replaced by independent random variables on a probability space (Ω,A, P ). Tra-
ditional probability distributions can be employed for each random variable like
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uniform distribution, beta distribution, Gaussian distribution, etc. We assume
that a joint probability density function ρ : M → R is available. The expected
value of a measurable function f : M → R reads as

E[f ] =

∫

Ω

f(µ(ω)) dP (ω) =

∫

M

f(µ)ρ(µ) dµ. (7)

Likewise, we obtain an inner product for two measurable functions f, g

〈f, g〉 =

∫

M

f(µ)g(µ)ρ(µ) dµ. (8)

This inner product is defined on the space of square integrable functions

L2(M, ρ) =
{

f : M → R : f measurable and E[f 2] < ∞
}

.

We denote the dedicated norm by ‖f‖L2(M,ρ) =
√

〈f, f〉.

3.2 Polynomial Chaos Expansions

Let (Φi)i∈N be an orthonormal basis with respect to the inner product (8), which
consists of multivariate polynomials Φi : M → R. We assume that Φ1 ≡ 1 is
the unique polynomial of degree zero. A function f ∈ L2(M, ρ) exhibits the
polynomial chaos (PC) expansion

f(µ) =

∞
∑

i=1

fiΦi(µ) (9)

with coefficients fi ∈ R. The series (9) converges in the L2(M, ρ)-norm. In the
case of time-dependent functions f(t, µ) for t ∈ I with I ⊆ R, the PC expansion
is used pointwise for each t ∈ I. We also apply the PC expansion to vector-valued
functions by considering each component separately.

We employ truncated polynomial chaos expansions of the state variables as well
as the inputs in the system (5)

p(s)(t, µ) =
s

∑

i=1

pi(t)Φi(µ), u(s)(t, µ) =
s

∑

i=1

ui(t)Φi(µ). (10)

The dimensionalities of the coefficients are pi ∈ R
n and ui ∈ R

nin . The number
of basis polynomials up to a total degree d is s = (q+d)!

q!d!
, see [23, p. 65].

Remark 2 If the input u does not depend on the random parameters µ, then
still the truncated expansion (10) has to be used to achieve the same number of
inputs and outputs in the final stochastic Galerkin system. Later ui ≡ 0 for i > 1
can be chosen to apply a parameter-independent input.
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3.3 Stochastic Galerkin Method

We introduce the following notation.

Definition 2 The set of all measurable functions A : M → R

n×m, A = (akℓ),
such that the expected values, cf. (7),

âijkℓ = E [akℓΦiΦj ] =

∫

M

akℓ(µ)Φi(µ)Φj(µ)ρ(µ) dµ

are finite for all i, j ∈ N and 1 ≤ k ≤ n, 1 ≤ ℓ ≤ m, is denoted by Fn,m. The
associated stochastic Galerkin projection of A ∈ Fn,m with s modes reads as

Â = Gs(A), (11)

where Â = (Âij)i,j=1,...,s comprises the submatrices Âij = (âijkℓ) ∈ R
n×m.

We assume M,D,K ∈ Fn,n, B′ ∈ Fn,nin, and F,G ∈ Fnout,n in the system (5).
The stochastic Galerkin method yields the larger system of second order

M̂ ¨̂p+ D̂ ˙̂p+ K̂p̂ = B̂′û

F̂ p̂+ Ĝ ˙̂p = ŷ
(12)

with p̂ = (p̂⊤1 , . . . , p̂
⊤
s )

⊤ ∈ Rns and û = (u⊤
1 , . . . , u

⊤
s )

⊤ ∈ Rnins. The involved
matrices are M̂ = Gs(M), etc. using (11). The coefficients in û are the same
as in (10). However, a solution p̂ of (12) yields just an approximation of the
coefficients in (10), since the Galerkin method introduces an additional error.
The approximation of the random-dependent state variables reads as

p̃(s)(t, µ) =
s

∑

i=1

p̂i(t)Φi(µ) (13)

for t ≥ 0 and µ ∈ M.

Lemma 1 Let A ∈ Fn,n. If A(µ) ∈ Sn
≻ for almost all µ ∈ M, then the stochastic

Galerkin projection (11) satisfies Â ∈ Sns
≻ . Likewise, the property A(µ) ∈ Sn

�

for almost all µ ∈ M implies Â ∈ Sns
� . If A(µ) is skew-symmetric for almost

all µ ∈ M, then Â is also skew-symmetric.

The proof of the positive definite case is included in [16]. The positive semi-
definite case as well as the skew-symmetric case can be shown by a similar argu-
ment.

Now we arrange a pH stochastic Galerkin system as in the deterministic case.
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Theorem 1 Given the stochastic Galerkin system (12), an associated pH sys-
tem (1) can be obtained for x̂ = ( ˙̂p, p̂)⊤ using the matrices

Ê =

(

M̂ 0
0 Ins

)

, Ĵ =

(

0 −Ins
Ins 0

)

, R̂ =

(

D̂ 0
0 0

)

Q̂ =

(

Ins 0

0 K̂

)

, B̂ =

(

B̂′

0

)

,

and P̂ = 0, Ŝ = 0, N̂ = 0.

Proof:

It holds that M̂, K̂ ∈ Sn
≻ and D̂ ∈ Sn

� due to Lemma 1. Obviously, the matrices Ĵ

and N̂ are skew-symmetric. Furthermore, it follows that

Ê⊤Q̂ =

(

M̂ 0
0 Ins

)⊤(

Ins 0

0 K̂

)

=

(

M̂ 0

0 K̂

)

∈ S2ns
≻ .

The matrix (2) becomes

Ŵ =

(

Q̂⊤R̂Q̂ Q̂⊤P̂

P̂⊤Q̂ Ŝ

)

=





D̂ 0 0
0 0 0
0 0 0



 ∈ S2ns+nout

� .

Hence the requirements of a pH system are satisfied. �

The pH system from Theorem 1 exhibits the output

ŷ = B̂⊤Q̂x̂ =

(

B̂′⊤ 0
0 0

)(

˙̂p
p̂

)

= B̂′⊤ ˙̂p.

Thus the outputs include only first-order derivatives of p̂.

3.4 Hamiltonian Function of Stochastic Galerkin System

The deterministic Hamiltonian function of the pH stochastic Galerkin system
becomes, cf. (3),

Ĥ(x̂(t)) = 1
2
x̂(t)⊤Ê⊤Q̂x̂(t) = 1

2

(

˙̂p(t)⊤M̂ ˙̂p(t) + p̂(t)⊤K̂p̂(t)
)

. (14)

The following theoretical result demonstrates that this Hamiltonian can be in-
terpreted as an expected value.
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Theorem 2 The Hamiltonian function (14) of the stochastic Galerkin system
coincides with the expected value

Ĥ(x̂(t)) = E
[

1
2

(

˙̃p(s)(t, ·)M(·) ˙̃p(s)(t, ·) + p̃(s)(t, ·)K(·)p̃(s)(t, ·)
)]

(15)

for each t ≥ 0 including the approximation (13).

Proof:

We compute

p̂(t)⊤K̂p̂(t) =

s
∑

i,j=1

p̂i(t)
⊤K̂ij p̂j(t)

=

s
∑

i,j=1

p̂i(t)
⊤

(
∫

M

K(µ)Φi(µ)Φj(µ)ρ(µ) dµ

)

p̂j(t)

=

∫

M

( s
∑

i=1

p̂i(t)Φi(µ)

)⊤

K(µ)

( s
∑

j=1

p̂j(t)Φj(µ)

)

ρ(µ) dµ

=

∫

M

p̃(s)(t, µ)⊤K(µ)p̃(s)(t, µ) ρ(µ) dµ = E
[

p̃(s)(t, ·)K(·)p̃(s)(t, ·)
]

,

where the probabilistic integration is performed separately in each component.
Likewise, these calculations apply to the term with M̂ . Basic computations
generate the formula (15). �

Remark 3 The statement of Theorem 2 can be generalised to linear pH systems.
It holds that

Ĥ(x̂(t)) = E
[

H(x̃(s)(t, ·), ·)
]

for each t ≥ 0 under some assumptions. Therein, x̂ represents the solution of a
stochastic Galerkin system and x̃(s) denotes the associated approximation of the
random state variables in the original system.

We assume that the stochastic Galerkin method is convergent for both the state
variables and their first-order derivatives. In this case, the state variables p(t, µ)
of the original dynamical system (5) and the approximation (13) satisfy

lim
s→∞

∥

∥

∥
pj(t, ·)− p̃

(s)
j (t, ·)

∥

∥

∥

L2(M,ρ)
= 0

lim
s→∞

∥

∥

∥
ṗj(t, ·)− ˙̃p

(s)
j (t, ·)

∥

∥

∥

L2(M,ρ)
= 0

8



pointwise for each t ≥ 0 and j = 1, . . . , n. The speed of convergence depends
on the smoothness of the functions with respect to the random parameters µ,
see [23]. Typically, the solutions of (5) inherit the differentiability of the matrices
M(µ), D(µ), K(µ). In view of (6), Theorem 2 implies the convergence

lim
s→∞

Ĥ(x̂(t)) = E [H(x(t, ·), ·)] (16)

for t ≥ 0 along the transient state variables of the systems. We note that the ma-
trices Ê, Q̂ as well as the state variables x̂, which are included in the Hamiltonian
function Ĥ , depend on the number s of stochastic modes.

The general formulas (3) and (4) yield

Ĥ(x̂(t2))− Ĥ(x̂(t1)) =

∫ t2

t1

ŷ(t)⊤û(t)− ˙̂p(t)⊤D̂ ˙̂p(t) dt ≤

∫ t2

t1

ŷ(t)⊤û(t) dt

for t2 ≥ t1 ≥ 0. Now we consider a deterministic input by û(t) = (u1(t), 0, . . . , 0)
⊤

with u1 ∈ Rnin, i.e., the input does not depend on the random variables, see
Remark 2. It follows that

Ĥ(x̂(t2))− Ĥ(x̂(t1)) ≤

∫ t2

t1

ŷ1(t)
⊤u1(t) dt,

where ŷ1 represents an approximation of the expected value of the output in the
original dynamical system (5) with F = 0 and G = B′⊤.

For simplicity, we consider an SISO system (5) with input u and output y in the
following. The approximation reads as

∫ t2

t1

ŷ1(t)u1(t) dt ≈

∫ t2

t1

E[y(t, ·)] u(t) dt =

∫ t2

t1

∫

M

y(t, µ)u(t)ρ(µ) dµdt

=

∫

M

∫ t2

t1

y(t, µ)u(t)ρ(µ) dtdµ = E

[ ∫ t2

t1

y(t, ·)u(t) dt

]

,

where the two integrations can be interchanged due to Fubini’s theorem. Therein,
we obtain the expected value of the upper bound for the Hamiltonian function (6)
belonging to the system (5).

4 Model Order Reduction

We investigate structure-preserving MOR of second-order ODEs, see [8, 18, 19].
The stochastic Galerkin system (12) represents our full-order model (FOM), since
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the dimensionality is high in the case of many random variables. A reduced-order
model (ROM) reads as

M̄ ¨̄p+ D̄ ˙̄p+ K̄p̄ = B̄′û

F̄ p̄+ Ḡ ˙̄p = ȳ
(17)

with state variables p̄ = (p̄⊤1 , . . . , p̄
⊤
r )

⊤ and the same input û = (u⊤
1 , . . . , u

⊤
s )

⊤ as
in (12). Now the dimensionalities are p̄i ∈ R for each i and ui ∈ R

nin.

In projection-based MOR, two projection matrices V,W ∈ Rns×r are computed,
where V typically is an orthogonal matrix (V ⊤V = Ir). Often the biorthogonality
condition W⊤V = Ir is added. In the case of W = V , the reduction is called a
Galerkin-type MOR method. In the case of W 6= V , the reduction is referred to
as a Petrov-Galerkin MOR method.

Definition 3 Let A ∈ Rn×n be a constant square matrix and V,W ∈ Rn×r be
two projection matrices. The projection operator for the matrix A is given by

Ā = Pr(A) = W⊤AV (18)

with the result Ā ∈ Rr×r.

Concerning the ROM (17), it holds that Ā = Pr(A) for A ∈ {M̂, D̂, K̂}, B̄′ =
W⊤B̂′, and Ā = AV for A ∈ {F̂ , Ĝ}. The combination of the operators in
Definition 2 and Definition 3 yields

Ā = Pr(Â) = Pr(Gs(A))

for matrices like A ∈ {M,D,K} in the second-order system (5). The numbers r
and s are independent of each other (just r < ns is required). Now the structure
of the original matrices should be preserved.

A symmetric matrix becomes an unsymmetric matrix in a Petrov-Galerkin pro-
jection (18). Alternatively, both symmetry and (semi-)definiteness of matrices
is preserved in an MOR with Galerkin projection. A semi-definite matrix may
become definite in this projection. It follows that M̄, K̄ ∈ Sr

≻, and D̄ ∈ Sr
�.

Thus a Galerkin-type MOR of the second-order system preserves the structure.
Moreover, the ROM (17) is asymptotically stable in the case of D̄ ∈ Sr

≻, which

is guaranteed for D̂ ∈ Sns
≻ .

Typical MOR schemes for second-order systems are Krylov subspace methods,
see [19], and balanced truncation, see [18]. An elementary Krylov subspace
method is the Arnoldi technique, which yields a Galerkin-type MOR. Hence this
method preserves the structure of our second-order stochastic Galerkin system.
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Figure 1: Mass-spring-damper system.

5 Test Example

We investigate the properties, which are reported in the previous sections, using
a test example of a second-order linear dynamical system.

5.1 Modelling

We study a mass-spring-damper system from [14], depicted in Figure 1. There
are 14 physical parameters in this configuration: four masses, four damping con-
stants and six spring constants. A mathematical modelling yields a system of four
second-order ODEs in the form (5). The mass matrix, the damping matrix, and
the stiffness matrix are symmetric and positive definite provided that all physical
parameters are positive. Thus the linear dynamical system is asymptotically sta-
ble. The single input u is an excitation at the bottom spring. This input implies
that the single output y is the velocity of the bottom mass in the associated pH
system. Hence an SISO system is given. Figure 2 shows the Bode plot of this
linear dynamical system for a deterministic selection of the parameters.

In a stochastic modelling, we replace the q = 14 physical parameters by inde-
pendent random variables with uniform distributions varying 10% around their
mean values. The PC expansions incorporate multivariate basis polynomials,
which are products of the univariate Legendre polynomials. We apply truncated
PC expansions including all polynomials up to total degree d = 3. It follows that
the number of basis polynomials is s = 680. We arrange the stochastic Galerkin
system (12), which exhibits dimension ns = 2720. The number of inputs in û as
well as the number of outputs in ŷ is equal to s.

11
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Figure 2: Bode plot of mass-spring-damper system for a constant choice of the
physical parameters.

5.2 Transient Simulation

In this section, we examine solutions of initial value problems (IVPs) in a time
interval [0, 100], where the initial conditions are always chosen to be zero. Second-
order ODE systems are converted into equivalent first-order ODE systems, such
that numerical methods for first-order systems are employed.

We solve an IVP of the stochastic Galerkin system (12). A deterministic input
û = (u1, 0, . . . , 0)

⊤ is supplied with the signal

u1(t) = sin
(

1
10
t2
)

,

which can be interpreted as a harmonic oscillation with increasing frequency. A
Runge-Kutta method of order 4(5) yields a numerical solution, where a step size
control is applied based on a local error control with relative tolerance εrel =
10−4 and absolute tolerance εabs = 10−6. The numerical solution generates an
approximation of the multiple outputs ŷ. Figure 3 demonstrates the expected
value as well as the standard deviation associated to the QoI of the random
ODEs, which are obtained by the transient solution of the stochastic Galerkin
system. We observe a maximum resonance effect around t ≈ 35 in the expected
value, where also a maximum standard deviation appears.

Now we investigate the Hamiltonian functions associated to the transient solu-
tions. Figure 4 (left) depicts the Hamiltonian belonging to the stochastic Galerkin
system (12). We perform two additional simulations for comparison. On the one
hand, we solve an IVP of the system (5) once using the mean value of the random
variables as parameters. The resulting Hamiltonian function is shown in Figure 4
(right). On the other hand, we compute an approximation of the expected value
of the Hamiltonians associated to the random system (5). This expected value is

12
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Figure 3: Approximations of expected value (left) and standard deviation (right)
for random QoI in mass-spring-damper system.
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Figure 4: Hamiltonian of stochastic Galerkin system as well as expected value
of Hamiltonians obtained by quadrature (left) and Hamiltonian of deterministic
system (right).

approximated by a quadrature using the Stroud-5 scheme, see [21], which includes
393 nodes in our case of 14 random variables. Hence 393 IVPs of a deterministic
system (5) are solved. The approximation of the expected value is displayed in
Figure 4 (left). We recognise a good agreement between the Hamiltonian of the
stochastic Galerkin system and the averaged Hamiltonians from the quadrature
method, which indicates the convergence (16).

5.3 Model Order Reduction

We apply the second-order Arnoldi algorithm as in [8, p. 960]. This MOR method
is independent from the definition of outputs in the system. However, a multiple-
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Figure 5: Bode plots of FOM and an ROM of dimension 30.

input system requires a block Arnoldi technique, which becomes inefficient in the
case of many inputs. Since we just use a single (deterministic) input, this problem
does not occur. We compute a projection matrix V of rank 50 by the second-order
Arnoldi method. Using (only) the first r columns of V yields ROMs of dimension
r ≤ 50. Now we restrict the output to the expected value of the QoI in the
original system to study an SISO system. The Bode plots of the FOM as well as
the ROM of dimension r = 30 are shown in Figure 5. The matrices M̄, D̄, K̄ in
all ROMs (17) are symmetric and positive definite, since a structure-preserving
MOR method is applied.

We examine the approximation error in this MOR. The relative error of the
associated transfer functions HFOM and HROM reads as

‖HFOM −HROM‖H2

‖HFOM‖H2

employing the H2-norm, see [1, p. 144]. Figure 6 illustrates these relative H2-
errors for the ROMs of dimensions 5 ≤ r ≤ 50. We recognise that the errors
exponentially converge to zero for increasing dimensions. However, this conver-
gence is not monotone.

Furthermore, we repeat the transient simulation from Section 5.2 using the ROM
of dimension r = 10 instead of the full stochastic Galerkin system. Figure 7 de-
picts the resulting Hamiltonian functions of FOM and ROM. If higher dimensions
like r ≥ 15 are used, then the differences between FOM and ROM become tiny
and cannot be observed in a plot anymore.
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Figure 6: Relative error of MOR for reduced dimensions r = 5, 6, . . . , 50 using
the second-order Arnoldi method.
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Figure 7: Hamiltonian functions from transient simulation of the stochastic
Galerkin system (FOM) and its ROM of dimension 10 (left: total time inter-
val, right: zoom).
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6 Conclusions

The stochastic Galerkin method applied to a linear ODE system of second order
yields an ODE system of the same type. A structure-preserving MOR of the
stochastic Galerkin system generates smaller ODE systems of the same type
again. We formulated a first-order pH system for each second-order system.
The associated Hamiltonian functions were investigated. We showed that the
Hamiltonian for the stochastic Galerkin system represents an approximation of
the expected value of the Hamiltonian for the original system including random
variables. Numerical computations confirm this theoretical result using a test
example. Furthermore, we demonstrated an efficient structure-preserving MOR
in the test example.
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