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Abstract

In this paper, we present a novel pseudospectral (PS) method for solving a new class of initial-value problems (IVPs)

of time-dependent one-dimensional fractional partial differential equations (FPDEs) with variable coefficients and pe-

riodic solutions. A main ingredient of our work is the use of the recently developed periodic RL/Caputo fractional

derivative (FD) operators with sliding positive fixed memory length of Bourafa et al. [1] or their reduced forms ob-

tained by Elgindy [2] as the natural FD operators to accurately model FPDEs with periodic solutions. The proposed

method converts the IVP into a well-conditioned linear system of equations using the PS method based on Fourier

collocations and Gegenbauer quadratures. The reduced linear system has a simple special structure and can be solved

accurately and rapidly by using standard linear system solvers. A rigorous study of the computational storage require-

ments as well as the error and convergence of the proposed method is presented. The idea and results presented in

this paper are expected to be useful in the future to address more general problems involving FPDEs with periodic

solutions.

Keywords: Fourier collocation; Fractional derivative; Fractional partial differential equation; Gegenbauer

quadrature; Periodic solution.

1. Introduction

Fractional partial differential equations (FPDEs) have become the natural mathematical models to model various

problems and applications compared with integer-order partial differential equations (PDEs) due to their high accu-

racy in addition to the flexibility and non-locality of fractional derivatives (FDs) compared with classical integer-order

derivatives. In fact, FDs and FPDEs have played a very significant roles in chemistry, chemical engineering, geome-

chanics, computer vision, Coronavirus disease spread, hydrological processes, oceanography, decision and control,

nuclear energy, medicine and surgery; cf. [3–12].

In contrast to integer-order derivatives, classical Riemann-Liouville (RL) and Caputo FDs of a non-constant T -

periodic function are not T -periodic functions, limiting their use to model real periodic phenomena and prompting the

need for research advancements in this substantial field of science. In this study, we provide the first successful attempt

in the literature to model FPDEs with periodic solutions using periodic FD operators that can preserve the periodicity

of a periodic function and allow for the existence of periodic solutions to FPDEs. In particular, we model FPDEs

with periodic solutions using the recently developed periodic FD operator of Elgindy [2], which is a useful reduced

form of an earlier periodic FD inaugurated by Bourafa et al. [1]. The employed FD operator is a useful modification

of the classical RL and Caputo FD operators by fixing their memory length and varying their lower terminals. The

reduced FD operator developed in [2] allows accurate computation of the singular integral of the FD formula defined

in [1] by removing the singularity prior to numerical integration using a smart change of variables and renders the

reduced integral well behaved. In fact, the introduced transformation largely simplifies the problem of calculating the
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periodic FDs of periodic functions to the problem of evaluating the integral of the first derivatives of their trigonometric

Lagrange interpolating polynomials, which can be treated accurately and efficiently using Gegenbauer quadratures.

This approach, together with Fourier collocations and interpolations celebrated for their stability, rapid convergence,

and cost efficiency, constitutes the core of our proposed Fourier-Gegenbauer (FG) based pseudospectral (PS) method

(FGPS method): A novel PS method based on Fourier collocation and Gegenbauer quadratures for solving FPDEs

with periodic solutions. In particular, the proposed method converts the initial-value problems (IVPs) of FPDEs with

periodic solutions into well-conditioned linear systems of equations using FG-based PS technology. The reduced

linear systems have sparse block global coefficient matrices that can be generated efficiently using “smart” index

matrix mappings, which allow us to solve the reduced linear systems very accurately and rapidly using standard linear

system solvers. Although the use of Fourier and Jacobi polynomials for solving FPDEs is not novel and appeared in a

number of works such as [13–16], to the best of our knowledge, the current study not only provides the first successful

attempt to model FPDEs with periodic solutions using periodic FD operators but also provides the first efficient,

stable, and highly accurate numerical method for solving them. We confine our work to FDs with a fractional-order

0 < α < 1; however, the current work can be easily extended to cover higher-order FPDEs with periodic solutions.

The proposed FGPS method is an extension to classical PS methods, which are considered to be one of the biggest

technologies for solving PDEs that were largely developed about a half century ago [17–21]. For a clear exposition of

PS methods exhibiting a wide range of outlooks on the subject, the reader may consult, to mention a few, the books

[19, 22]. A comprehensive review on recent progress on Fourier PS methods can be found in [2, 23–26]. For a survey

on Gegenbauer polynomials and quadratures and their relevant theory, the reader may consult [21, 27–30], and the

references therein.

The remainder of this paper is organized as follows. In Section 2, we provide some primary definitions of FDs

and notations to be used in the paper’s presentation. In Section 3, the IVP of the FPDE under study is introduced in

general form. In Section 4, we present the FGPS method for solving the IVP. A study on the computational storage

requirements of the FGPS method is presented in Section 5. In Section 6, we present error and convergence analyses

of the FGPS method. The performance of the FGPS method is demonstrated in Section 7. Finally, Section 8 provides

concluding remarks.

2. Preliminaries and Notations

The following notations are used throughout this study to abridge and simplify the mathematical formulas. Many

of these notations appeared earlier in [2, 24]; however, for convenience and to keep the paper self-explanatory, we

summarize them below together with the new notations.

Logical Symbols. The symbols ∀, ∀a , ∀e , and ∀s stand for the phrases “for all,” “for any,” “for each,” and “for some,”

in respective order.

List and Set Notations. C denotes the set of all complex-valued functions. Moreover, R, Z,Z+,Z+
0
,Z+o ,Z

+
e , and Z+

0,e

denote the sets of real numbers, integers, positive integers, non-negative integers, positive odd integers, positive even

integers, and non-negative even integers, respectively. When we overset any of the above sets by a right arrow we

mean the subset of that set containing sufficiently large numbers; for example,
→
Z
+ stands for the set of all sufficiently

large positive integers. The notations i: j:k or i( j)k indicate a list of numbers from i to k with increment j between

numbers, unless the increment equals one where we use the simplified notation i:k. For example, 0:0.5:2 simply

means the list of numbers 0, 0.5, 1, 1.5, and 2, while 0:2 means 0, 1, and 2. The list of symbols y1, y2, . . . , yn is denoted

by yi|i=1:n or simply y1:n, and their set is represented by {y1:n} ∀a n ∈ Z+; the same set excluding y j is denoted by

{y1:n},y j
∀a j ∈ Nn. The list of ordered pairs (xm,0, tn,0), (xm,0, tn,1), . . . , (xm,1, tn,0), . . . , (xm,m−1, tn,n−1) is denoted by

(xm,0:m−1, tn,0:n−1) and their set is denoted by {(xm,0:m−1, tn,0:n−1)}. We define Jn = {0 : n− 1} and Nn = {1 : n} ∀a n ∈ Z+.

ST
n =

{

tn,0:n−1

}

is the set of n equally-spaced points such that tn, j = T j/n∀ j ∈ Jn. For a set of ordered pairs, we define

S
T1,T2
m,n = {(xm,0:m−1, tn,0:n−1) : xm,l ∈ S

T1
m , tn, j ∈ S

T2
n ∀a (l, j) ∈ Jm × Jn, {m, n} ⊂ Z+, {T1, T2} ⊂ R+}. Gλn =

{

zλ
n,0:n

}

is

the set of Gegenbauer-Gauss (GG) zeros of the (n + 1)st-degree Gegenbauer polynomial with index λ > −1/2, and

Ĝλ
1,n
=

{

ẑλ
n,0:n

: ẑλ
n,0:n
= 1

2

(

zλ
n,0:n
+ 1

)}

is the shifted Gegenbauer-Gauss (SGG) points set in the interval [0, 1] ∀a n ∈ Z+;

cf. [29, 31, 32]. The specific interval [0, T ] is denoted by ΩT ∀T > 0; for example, [0, tn, j] is denoted by Ωtn, j ∀ j ∈ Jn.

Cartesian products like ΩT1
× ΩT2

,Jn1
× Jn2

, and Nn1
× Nn2

are denoted by ΩT1,T2
,Jn1,n2

, and Nn1,n2
, respectively,

∀a {T1, T2} ⊂ R+ and {n1, n2} ⊂ Z+.
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Function Notations. ⌈·⌉ , ⌊·⌋ and Γ denote the ceil, floor, and Gamma functions, respectively.

(

α

k

)

is the binomial

coefficient indexed by the pair α ∈ R and k ∈ Z+
0

. (α)(k) =
k−1
∏

l=0

(α − l) is the kth-factorial power (the falling factorial)

function of α ∈ R. For convenience, we shall denote g(tn) by gn ∀a g ∈ C, n ∈ Z, tn ∈ R, unless stated otherwise. We

extend this writing convention to multidimensional functions; for example, to evaluate a bivariate function u at some

discrete points set {(x0:m−1, t0:n−1)}, we write um,n to simply mean u(xm, tn)∀xm ∈ S
T1
m , tn ∈ S

T2
n . u0:m−1,0:n−1 stands for

the list of function values u0,0, u0,1, . . . , u0,n−1, u1,0, . . . , u1,n−1, . . . , um−1,n−1. Finally, by u is a xT1-tT2-periodic function

we mean u is a T1-periodic and a T2-periodic function with respect to x and t, respectively, ∀a u : R2 → R.

Integral Notations. We denote
∫ b

0
h(t) dt and

∫ b

a
h(t) dt by I(t)

b
h and I(t)

a,b
h, respectively, ∀a integrable h ∈ C, {a, b} ⊂

R. If the integrand function h is to be evaluated at any other expression of t, say u(t), we express
∫ b

0
h(u(t)) dt and

∫ b

a
h(u(t)) dt with a stroke through the square brackets as I(t)

b
h[u(t)] and I(t)

a,b
h[u(t)] in respective order.

Space and Norm Notations. TT is the space of T -periodic, univariate functions ∀a T ∈ R+. Def (Ω) is the space of

functions defined on Ω. Ck(Ω) is the space of k times continuously differentiable functions on Ω∀k ∈ Z+
0

with the

common understanding that C(Ω) means C0(Ω). We define the following two spaces:

1
TX

n2
n1
= {[y0, . . . , yn1

]⊤ : R→ R
n1 s.t. y j ∈ TT ∩ Cn2 (R)∀ j ∈ Nn1

},
2

T1,T2
X

n2
n1
= {[y0, . . . , yn1

]⊤ : R
2 → R

n1 s.t. y j(x, t) = z ∈ R, y j ∈ TT1
∩ Cn2 (R)∀a t ∈ ΩT2

and y j ∈ TT2
∩ Cn2 (R)∀a x ∈ ΩT1

∀ j ∈ Nn1
},

where 1
T
X

n2
n1

is the space of T -periodic, n2-times continuously differentiable, n1-dimensional single-variable vector

functions on R, and 2
T1,T2
X

n2
n1

is the space of xT1-tT2-periodic, n2-times continuously differentiable, n1-dimensional

bivariate vector functions on R2. Lp(Ω) is the Banach space of measurable functions u defined on Ω such that ‖u‖Lp =

(IΩ|u|p)1/p
< ∞∀p ≥ 1. In particular, we write ‖u‖∞ to denote ‖u‖L∞ . Finally, for vector arguments, ‖·‖2 and ‖·‖∞

denote the usual Euclidean and infinity norms of vectors.

Vector Notations. We shall use the shorthand notations tN and g0:N−1 to stand for the column vectors [tN,0, tN,1, . . .,

tN,N−1]⊤ and [g0, g1, . . . , gN−1]⊤ ∀N ∈ Z+ in respective order. In general, ∀a h ∈ C and vector y whose ith-element

is yi ∈ R, and is denoted by y(i), the notation h(y) stands for a vector of the same size and structure of y such that

h(yi) is the ith element of h(y). Moreover, by h(y) or h1:m[y] with a stroke through the square brackets, we mean

[h1(y), . . . , hm(y)]⊤ ∀a m-dimensional column vector function h, with the realization that the definition of each array

hi(y) follows the former notation rule ∀e i. Furthermore, if y is a vector function, say y = y(t), then we write h(y(tN))

to denote [h(y(tN,0)), h(y(tN,1)), . . ., h(y(tN,N−1))]⊤.

Matrix Notations. On, 1n, and In stand for the zero, all ones, and the identity matrices of size n. Cn,m indicates that

C is a rectangular matrix of size n × m; moreover, Cn denotes a row vector whose elements are the nth-row elements

of C, except when Cn = On, 1n, or In, where it denotes the size of the matrix. For a two-dimensional matrix C,

the notation Ci stands for the matrix obtained by deleting the ith-row of C. Also, Ci, j is the row vector obtained by

deleting the jth-column of Ci. The common notation C(i, j) refers to the (i, j) entry of C. For convenience, a vector

is represented in print by a bold italicized symbol while a two-dimensional matrix is represented by a bold symbol,

except for a row vector whose elements form a certain row of a matrix where we represent it in bold symbol as stated

earlier. For example, 1n and 0n denote the n-dimensional all ones- and zeros- column vectors, while 1n and On denote

the all ones- and zeros- matrices of size n, respectively. The notation [.; .] denotes the usual vertical concatenation.

Finally, κ(A) denotes the condition number of a matrix A.

Common Fractional Differentiation Formulas. Let α ∈ R
+, m = ⌈α⌉, and f ∈ Def (ΩT ). The α-th order Grünwald-

Letnikov derivative of f with respect to t and a terminal value a is given by

GL
a Dαt f (t) = lim

h→0
nh=t−a

h−α
n

∑

k=0

(−1)k

(

α

k

)

f (t − kh).

The α-th order left RL and Caputo FDs are denoted by RL
0

Dαt f (t) and C
0

Dαt f (t), respectively, and are defined for t ∈ ΩT

3



by

RL
0 Dαt f (t) =

{

1
Γ(m−α)

dm

dtmI(τ)
t

[

(t − τ)m−α−1 f
]

, α < Z+,

f (m)(t), α ∈ Z+,

C
0 Dαt f (t) =

{

1
Γ(m−α)

I(τ)
t

[

(t − τ)m−α−1 f (m)
]

, α < Z+,

f (m)(t), α ∈ Z+.

The RL and Caputo FDs with sliding fixed memory length L > 0, denoted by MRL
L

Dαt f (t) and MC
L

Dαt f (t), respectively,

are defined by

MRL
L Dαt f (t) =

{

1
Γ(m−α)

dm

dtmI(τ)

t−L,t

[

(t − τ)m−α−1 f
]

, α < Z+,

f (m)(t), α ∈ Z+,

MC
L Dαt f (t) =

{

1
Γ(m−α)

I(τ)

t−L,t

[

(t − τ)m−α−1 f (m)
]

, α < Z+,

f (m)(t), α ∈ Z
+,

cf. [1]. If f ∈ C(m)(R+
0
), then MRL

L
Dαt f (t) = MC

L
Dαt f (t), so we can denote both modified fractional operators by M

L
Dαt . A

reduced form of M
L

Dαt with constant integration limits, denoted by E
L

Dαt f (t), is given by

E
L Dαt f (t) =

Lm−α

(1 − α)Γ(m − α)
I(y)

1

[

y
m−1
1−α f (m)[t − L y

1
1−α ]

]

,

cf. [2].

Remark 2.1. For a comprehensive review and background on the periodic derivative M
L

Dαt f , the reader may consult

[1]. A proof that the modified derivative M
L

Dαt f indeed preserves the periodicity of f ∀a periodic function f ∈ Cm[a −
L, b] : α ∈ R+\Z+, L ∈ R+,m = ⌈α⌉ , {a, b} ⊂ R : a < b can be found in [1, Theorem 3.9]. The reader may also consult

Sections 3.4 and 3.5 of the same reference for a comparison between classical fractional-order derivatives and the

modified derivative, in addition to two examples, including one on a physical model, to support the consistency of the

modified derivative motif.

Remark 2.2. The Gegenbauer polynomials we adopt here in this paper are the ones standardized by Doha [33, Eq.

(6)] or its equivalent form [34, Eq. (A.1)], where Chebyshev polynomials of the first kind and Legendre polynomials

become special cases of this family of orthogonal polynomials for λ = 0 and 0.5, respectively. The generated form

of Gegenbauer polynomials are therefore different than those standardized by Szegö [35] in which the Gegenbauer

polynomial evaluates to zero at λ = 0, for any nonnegative integer degree.

3. Problem Statement

In this study, we consider the following class of time-dependent one-dimensional FPDEs with variable coefficients

and periodic solutions:

a(x, t) E
L Dαx u(x, t) + b(x, t) E

L D
β
t u(x, t) = f (x, t), (3.1a)

subject to the initial conditions

u(x, 0) = g(x), u(0, t) = h(t),

where {a, b, f } ⊂ C
(

R2
)

, g ∈ 1
T1
X

0
1
, and h ∈ 1

T2
X

0
1

are some given functions, u ∈ 2
T1,T2
X

1
1

is the solution, E
L

Dαx u(x, t) and

E
L

D
β
t u(x, t) are the αth- and βth-order RL/Caputo FDs of u with sliding fixed memory length L ∈ R+ with respect to x

and t, respectively, such that {α, β} ⊂ (0, 1].
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4. The FGPS Method

Collocating the FPDE (4) at the rectangular mesh grid set S
T1,T2

N1,N2
: {N1,N2} ⊂ Z+e provides the following N1N2

system of linear equations:

al, j
E
L DαxN1 ,l

u(x, tN2, j) + bl, j
E
L D
β
tN2 , j

u(xN1,l, t) = fl, j ∀(l, j) ∈ JN1,N2
. (4.1)

To solve Eqs. (4) for the grid point values ul, j, we can approximate the FDs by using [2, Eq. (4.9)] to obtain the

following numerical formulas:

E
L DαxN1 ,l

u(x, tN2, j) ≈
N1−1
∑

k=0

E
LDαNG ,l,k

uk, j ∀ j ∈ JN2
, (4.2a)

E
L D
β
tN2 , j

u(xN1,l, t) ≈
N2−1
∑

k=0

E
LD
β

NG , j,k
ul,k ∀l ∈ JN1

, (4.2b)

where

E
LD
γ

NG ,r,s
=

L1−γ

Γ(2 − γ)
E
LQ
γ

NG ,r,s
∀γ ∈ (0, 1), {r, s} ⊂ Jn : n ∈ Z

+
e , (4.3)

and E
L
Qγ

NG ,r,s
is the γth-order FG-based PS quadrature (FGPSQ) with index L as defined by [2, Formula (4.8)]. We

similarly refer to E
L
Dγ

NG ,r,s
by the γth-order FG-based PS differentiation (FGPSD) with index L. Eqs. (4.1) and (4.1)

can be further expressed in matrix notation as

E
L DαxN1

u(x, t j) ≈ E
LD

α
NG

u0:N1−1, j,

E
L D
β

tN2
u(xl, t) ≈ E

LD
β

NG
ul,0:N2−1,

where

E
L DαxN1

u(x, t) =
[

E
L DαxN1 ,0

u(x, t), . . . , EL DαxN1 ,N1−1
u(x, t)

]⊤
, E

L D
β

tN2
u(x, t) =

[

E
L D
β
tN2 ,0

u(x, t), . . . , EL D
β
tN2 ,N2−1

u(x, t)
]⊤
,

and

E
LD

α
NG
=

[

E
LD

α
NG ,0

; . . . ; E
LD

α
NG ,N1−1

]

, E
LD

β

NG
=

[

E
LD

β

NG ,0
; . . . ; E

LD
β

NG ,N2−1

]

:

E
LD

α
NG ,l
=

[

E
LDαNG ,l,0

, . . . , ELDαNG ,l,N1−1

]

∀l ∈ JN1
, E

LD
β

NG , j
=

[

E
LD
β

NG , j,0
, . . . , ELD

β

NG , j,N2−1

]

∀ j ∈ JN2
.

We refer to E
L
D
γ

NG
by the γth-order FG-based PS fractional differentiation matrix (FGPSFDM) with index L. Substi-

tuting Formulas (4.1) and (4.1) into Eqs. (4) and shuffling the terms that include the solution initial values onto the

right hand side of the equations yield the following approximate linear equations system:

al, j
E
LD

α
NG ,l,0

u1:N1−1, j + bl, j
E
LD

β

NG , j,0
ul,1:N2−1 = fl, j − al, j

E
LDαNG ,l,0

h j − bl, j
E
LD
β

NG , j,0
gl ∀(l, j) ∈ NN1−1,N2−1. (4.5)

To put the pointwise representation of the derived system of Eqs. (4) in the following matrix form

A U = F, (4.6)

we define the index matrix

N = X + (N1 − 1)Y + 1, (4.7)

where X is the (N2 − 1) × (N1 − 1) matrix whose each row is a copy of the row array [0:N1-2], and Y is the matrix of

the same size with each column being a copy of the array [0:N2-2]. The elements of the global collocation matrix A

5



and the column vector F are therefore given by

A (N( j, l),N( j, k)) = al, j
E
LD

α
NG ,l,k
, ∀k ∈ {1 : N1 − 1},l,

A (N( j, l),N(k, l)) = bl, j
E
LD

β

NG , j,k
, ∀k ∈ {1 : N2 − 1}, j,

A (N( j, l),N( j, l)) = al, j
E
LD

α
NG ,l,l
+ bl, j

E
LD

β

NG , j, j
,

F (N( j, l)) = fl, j − al, j
E
LDαNG ,l,0

h j − bl, j
E
LD
β

NG , j,0
gl,

∀(l, j) ∈ NN1−1,N2−1. Clearly, A is a square matrix of size (N1 − 1)(N2 − 1). It is interesting to note that A is a sparse

block matrix with the following special structure:

A =





































































Λ
α,β

1
Υ
β

1,2
Υ
β

1,3
Υ
β

1,4
· · · Υ

β

1,N2−1

Υ
β

2,1
Λ
α,β

2
Υ
β

2,3
Υ
β

2,4
· · · Υ

β

2,N2−1

Υ
β

3,1
Υ
β

3,2
Λ
α,β

3
Υ
β

3,4
· · · Υ

β

3,N2−1

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . Υ
β

N2−2,N2−1

Υ
β

N2−1,1
Υ
β

N2−1,2
Υ
β

N2−1,3
· · · Υ

β

N2−1,N2−2
Λ
α,β

N2−1





































































,

where

Λ
α,β

k
=



























































a1,k
E
L
Dα

NG ,1,1
+ b1,k

E
L
D
β

NG ,k,k
a1,k

E
L
Dα

NG ,1,2
a1,k

E
L
Dα

NG ,1,3
· · · a1,k

E
L
Dα

NG ,1,N1−1

a2,k
E
L
D
α
NG ,2,1

a2,k
E
L
D
α
NG ,2,2

+ b2,k
E
L
D
β

NG ,k,k
a2,k

E
L
D
α
NG ,2,3

· · · a2,k
E
L
D
α
NG ,2,N1−1

a3,k
E
L
D
α
NG ,3,1

a3,k
E
L
D
α
NG ,3,2

. . .
. . .

...

...
. . .

. . .
. . . aN1−2,k

E
L
D
α
NG ,N1−2,N1−1

aN1−1,k
E
L
Dα

NG ,N1−1,1 aN1−1,k
E
L
Dα

NG ,N1−1,2 . . . aN1−1,k
E
L
Dα

NG ,N1−1,N1−2 aN1−1,k
E
L
Dα

NG ,N1−1,N1−1 + bN1−1,k
E
L
D
β

NG ,k,k



























































,

and

Υ
β

k,s
=













































b1,k
E
L
D
β

NG ,k,s
0 · · · 0

0 b2,k
E
L
D
β

NG ,k,s

. . .
...

...
. . .

. . . 0

0 · · · 0 bN1−1,k
E
L
D
β

NG ,k,s













































∀{k, s} ⊂ NN2−1.

We can solve the linear system (4) for the approximate solution values ũ1:N1−1,1:N2−1 by a direct solver through (a

variant of) Gauss elimination for sufficiently smooth variable coefficients, source functions, and initial value functions

owing to the exponential convergence of the FGPS approximations, as we shall demonstrate later in Section 7. We

can further estimate the approximate solution function IN1,N2
ũ(x, t) at any point (x, t) ∈ R2 using the following Fourier

interpolation formula in Lagrange form:

IN1,N2
ũ(x, t) =

N1−1
∑

l=0

N2−1
∑

j=0

ũl, jF x,t

l, j
(x, t),

where F x,t

l, j
(x, t) = F x

l
(x)F t

j
(t) is the tensor product trigonometric Lagrange interpolating polynomial such that

F x
l (x) =

1

N1

∑′

|k|≤N1/2

eiωx
k
(x−xN1 ,l

) =

{

1, x = xN1,l,
1

N1
sin(N1ν

x
l
) cot(νx

l
), x , xN1,l,

: ωx
k =

2πk

T1

∀k ∈ K′N1
, νx

l =
π

T1

(

x − xN1 ,l

) ∀l ∈ JN1
,

F t
j (t) =

1

N2

∑′

|k|≤N2/2

eiωt
k
(t−tN2 , j

) =

{

1, t = tN2, j,
1

N2
sin(N2ν

t
j
) cot(νt

j
), t , tN2, j,

: ωt
k =

2πk

T2

∀k ∈ K′N2
, νtj =

π

T2

(

t − tN2 , j

)

∀ j ∈ JN2
.
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5. Computational Storage

In this section, we briefly discuss the computational storage necessary to set up the linear system (4). We determine

first the computational storage required by the γth-order FGPSFDM with index L, E
L
D
γ

NG
, which follows from the

following corollary.

Corollary 5.1. The γth-order FGPSFDM E
L
D
γ

NG
is a Toeplitz matrix.

Proof. Let E
L
Q
γ

NG
be the γth-order Fourier-Gegenbauer-based PS integration matrix with index L defined by

E
LQ
γ

NG
=

[

E
LQ
γ

NG ,0
; . . . ; E

LQ
γ

NG ,N−1

]

: E
LQ
γ

NG ,l
=

[

E
LQ
γ

NG ,l,0
, . . . , ELQ

γ

NG ,l,N−1

]

∀l ∈ JN .

The proof follows immediately by realizing that E
L
Q
γ

NG
is a Toeplitz matrix as proven by [2, Theorem 4.1], and

E
LD

γ

NG
=

L1−γ

Γ(2 − γ)
E
LQ
γ

NG
∀γ ∈ (0, 1),

by Eq. (4).

Since E
L
D
γ

NG
is a square matrix of size N, Corollary 5.1 manifests that E

L
D
γ

NG
requires only 2N − 1 storage. There-

fore, one can solve Toeplitz systems of the form E
L
D
γ

NG
x = b ∀s {x, b} ⊂ RN using only O(N2) flops and O(N) storage

with the aid of special fast algorithms such as the Levinson-Durbin algorithm [36]. The γth-order FGPSFDM with

index L, E
L
D
γ

NG
, is a constant matrix that can be constructed and stored offline for a certain range of its parameters and

invoked later when running the numerical program. If we now turn our attention to the global coefficient matrix A of

the linear system (4), we can clearly see from Section 4 that it is a block matrix with N2−1 dense diagonal square ma-

trices and (N1−2)(N2−1) diagonal matrices, each of size N1−1. Hence, the matrix A requires (N2−1)(2N2
1
−5N1+3)

storage. When we add this to the (N1 − 1)(N2 − 1) storage requirements of the column vector F, we find out that the

total storage requirements of the linear system (4) is 2 (N1 − 1)2 (N2 − 1). In the special case when N1 = N2 = N, the

computational storage requirement of the linear system simplifies into 2(N −1)3. We shall discover in the next section

that the proposed method can often achieve superior accuracy when both N1 and N2 are relatively very small, thus,

significantly reducing the computational storage requirement.

6. Error and Convergence Analysis

The following theorem underlines the truncation error bounds of the approximate linear system of equations (4).

Theorem 6.1. Let NG ∈ Z+, L ∈ R+, γ = min {α, β} , (x, t) ∈ ΩT1,T2
, and suppose thatF ′

l
x
(

x − L y
1

1−α
)

andF ′
j

t
(

t − L y
1

1−β

)

are approximated by the SGG interpolants obtained through interpolation at the SGG points set Ĝ
λ
1,NG
∀(l, j) ∈ JN1 ,N2

;

cf. [2, 24, 37]. If

L > 1 − γ,

then the truncation error of the approximate linear system of equations (4) at each collocation mesh grid is bounded

by
∣

∣

∣Etr
l, j

∣

∣

∣ ≤ 2µL1−γ

Γ(2 − γ)
(

Nmax ‖u‖∞ Efd + Edi
N1,N2

)

, (6.1)

where µ = max {‖a‖∞, ‖b‖∞} ,Nmax = max {N1:2} , Efd = max
{

Eλ,α
N1,NG
, E
λ,β

N2,NG

}

: ∀e N ∈ {N1,N2}, ν ∈ {α, β},
Eλ,ν

N,NG
= max

(k,s)⊂JN

∣

∣

∣

∣

Eλ,ν
N,NG ,k

(ζk,s)
∣

∣

∣

∣

:
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∣

∣

∣

∣
E
λ,ν

N,NG ,k
(ζk,s)

∣

∣

∣

∣
≤ B

L,ν,ζk,s
2,N,NG

2−2NG−1eNG NG
λ−NG− 3

2



































































1, NG ≥ 0 ∧ λ ≥ 0,

Γ
(

NG

2
+ 1

)

Γ
(

λ + 1
2

)

√
π Γ

(

NG

2
+ λ + 1

) , NG ∈ Z
+
o ∧ −

1

2
< λ < 0,

2Γ
(

NG+3

2

)

Γ
(

λ + 1
2

)

√
π
√

(NG + 1) (NG + 2λ + 1) Γ
(

NG+1

2
+ λ

) , NG ∈ Z
+
0,e ∧ −

1

2
< λ < 0,

Bλ
1
(NG + 1)−λ, NG → ∞∧ − 1

2
< λ < 0,

where B
L,ν,ζk,s
2,N,NG

= DλA
L,ν,ζk,s
N,NG

:

A
L,ν,ζk,s
N,NG

= NNG+1ζ
−(NG+1)

k,s

(

L

1 − ν

)NG+1

γνNG







































c1

[(

NG + 1

NG/2

)

δ NG
2
,
⌊

NG
2

⌋ +

(

NG + 1

⌊NG/2⌋

)

(

1 − δ NG
2
,
⌊

NG
2

⌋

)

]

, NG ∈ Z+,

c2
(2e)NG/2√

NG
, NG ∈

→
Z+e ,

c3
(eNG)⌊NG/2⌋

(⌊NG/2⌋)⌊NG/2⌋+1/2
, NG ∈

→
Z+o ,

∀s {c1:3} ⊂ R+, {ζ0:N−1,0:N−1} ⊂ (0, 1), λ-dependent constants {Dλ, Bλ
1
} ⊂ R+ : Bλ

1
> 1, γν

NG
=

∑

k∈JNG+2

∣

∣

∣

∣

∣

(

ν
1−ν

)(NG−k+1)
∣

∣

∣

∣

∣

,

and Edi
N1,N2

is the maximum of the absolute derivatives of Fourier interpolation errors of u along the coordinate axes

of the xt-plane and based on the mesh grid sets S
T1

N1
and S

T2

N2
.

Proof. First notice that L1−γ/Γ(2 − γ) is monotonically decreasing on Ω1 such that

γ = argmax
ν

L1−ν

Γ(2 − ν) ,

cf. [2, Theorem 5.3]. Let IN1
u(x, tN2, j) = F x

0:N1−1
[x] uxN1,0:N1−1,tN2 , j

be the N1/2-degree, T1-periodic Fourier interpolant

that matches u(x, tN2, j) at the mesh points set S
T1

N1
∀e j ∈ JN2

. Let also xEint
N1, j

denote the associated interpolation error

such that

u(x, tN2, j) = IN1
u(x, tN2, j) + xEint

N1, j
(x) ∀ j ∈ JN2

.

Taking the periodic FD operator E
L

Dαx of both sides of the equation and following the work of Elgindy [2] to numeri-

cally compute the FD at each spatial mesh grid point yield

E
L DαxN1 ,l

u(x, tN2, j) =
L1−α

Γ(2 − α)

(

I(y)

1
F ′x0:N1−1[xN1,l − Ly

1
1−α ] uxN1,0:N1−1 ,tN2 , j

+ I(y)

1 xE′int
N1, j

[xN1,l − Ly
1

1−α ]
)

=
L1−α

Γ(2 − α)



















∑

k∈JN1

u(xN1,k, tN2, j)
(

E
LQαNG ,l,k

+ E
λ,α

N1,NG ,k

(

ζk,l
)

)

+ I(y)

1 xE′int
N1, j

[xN1,l − Ly
1

1−α ]



















, (6.2)

∀s {ζ0:N1−1,l} ⊂ (0, 1), where Eλ,α
N1,NG ,k

is the FGPSQ error as defined by [2, Theorem 1] ∀k ∈ JN1
. By rearranging the

terms in Eq. (6) we obtain

E
L DαxN1 ,l

u(x, tN2, j) =
E
LD

α
NG ,l

uxN1 ,0:N1−1 ,tN2 , j
+

L1−α

Γ(2 − α)



















∑

k∈JN1

u(xN1,k, tN2, j)E
λ,α

N1,NG ,k

(

ζk,l
)

+ I(y)

1 xE′int
N1, j

[xN1,l − Ly
1

1−α ]



















.

Therefore,
∣

∣

∣

∣

E
L DαxN1 ,l

u(x, tN2, j) − E
LD

α
NG ,l

uxN1 ,0:N1−1 ,tN2 , j

∣

∣

∣

∣
≤ L1−α

Γ(2 − α)

[

N1 ‖u‖∞ E
λ,α

N1,NG
+

∥

∥

∥xE′int
N1

∥

∥

∥∞

]

, (6.3a)
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where
∥

∥

∥xE′int
N1

∥

∥

∥

∞ = max
j∈JN2

∥

∥

∥

∥xE′int
N1, j

∥

∥

∥

∥∞
. By similarity, we can readily show that

∣

∣

∣

∣

E
L D
β
tN2 , j

u(xN1,l, t) − E
LD

β

NG , j
uxN1 ,l

,tN2 ,0:N2−1

∣

∣

∣

∣
≤ L1−β

Γ(2 − β)
[

N2 ‖u‖∞ E
λ,β

N2,NG
+

∥

∥

∥tE
′int
N2

∥

∥

∥∞

]

, (6.3b)

where
∥

∥

∥tE
′int
N2

∥

∥

∥

∞ = max
l∈JN1

∥

∥

∥

∥tE
′int
N2,l

∥

∥

∥

∥∞
, and tE

int
N2,l

is the associated interpolation error of u(xN1,l, t) based on the mesh points

set S
T2

N2
∀l ∈ JN1

. Now, let Edi
N1,N2

= max
{∥

∥

∥xE′int
N1

∥

∥

∥

∞ ,
∥

∥

∥tE
′int
N2

∥

∥

∥

∞

}

. The proof is established by subtracting Eqs. (4) and

(4), imposing Ineqs. (6.1) and (6.1), and applying [2, Theorem 5.2].

The first term in the sum of Ineq. (6.1) is due to the FGPS approximations to the FDs of u, hence can be considered

pure FD computational (FDC) error. The second term is due to the Fourier interpolations of u at the collocation mesh

grid and thus can be viewed as a pure Fourier-interpolation-induced (FII) error. It is interesting to note that increasing

the maximum degree of Fourier interpolants of u generally decreases the FII error, but increases the FDC error. This

observation agrees with the recent findings of [2] on FDC errors based on FGPS approximations. Fortunately, both

FDC and FII errors can be made very small for sufficiently smooth periodic solutions using relatively small mesh

grids, owing to the rapid convergence of FGPS approximations and Fourier interpolation.

Remark 6.1. The reader should realize that the FGPS approximations of the periodic FDs converge exponentially

fast for sufficiently smooth periodic functions, as NG → ∞, while holding all other parameters fixed; cf. [2, Theorem

5.2 and the paragraph that follows].

The following corollary is a direct result of [25, Corollary 5.1], which states that the error of the FGPS method is

dominated by the FDC error when the solution of the FPDE is “β-analytic” owing to the collapse of the FII error; cf.

[24].

Corollary 6.1. Let the assumptions of Theorem 6.1 hold. If u is β-analytic with respect to both arguments, then Edi
N1,N2

collapses, and Ineq. (6.1) reduces to
∣

∣

∣Etr
l, j

∣

∣

∣ ≤ 2µNmaxL1−γ ‖u‖∞
Γ(2 − γ) Efd.

Remark 6.2. We draw the reader’s attention to the fact that β in the expression “β-analytic” has nothing to do with

the order of the FD, E
L

D
β
t , often used in the presentation of the paper, but rather pertained to a type of analyticity of

functions; the reader may consult [24] for more details.

7. Numerical Simulations

This section demonstrates the accuracy and performance of the proposed FGPS method on four novel test prob-

lems. All numerical experiments were carried out using MATLAB R2023a software installed on a personal laptop

equipped with a 2.9 GHz AMD Ryzen 7 4800H CPU and 16 GB memory running on a 64-bit Windows 11 operating

system. The linear system of equations (4) was solved using MATLAB mldivide solver. The FGPS was performed in

all cases using the parameter values N1 = N2 = 4, L = 30,NG = 1000, and λ = 0, except when otherwise explicitly

stated.

Problem 1. Consider the following time-dependent one-dimensional FPDE with variable coefficients and periodic

solutions:

x t E
L D1/2

x u(x, t)+(x+t) E
L D

1/2
t u(x, t) =

1

2

4
√
−1

[

e−it (t + x) sin (x)
(

erf (c) e2it − erfi (c)
)

− ite−ix x cos (t)
(

erf (c) e2ix + erfi (c)
)]

,

subject to the initial conditions

u(x, 0) = sin(x), u(0, t) = 0,

∀(x, t) ∈ Ω2π,2π, where c =
√

15 (1 + i). The exact solution of the problem is u(x, t) = sin x cos t. Figure 1 shows the

plots of the exact and approximate solution obtained by the FGPS method. The figure also shows the corresponding

9



absolute error surface, which indicates that the solution is resolved to about machine precision. κ(A) and the elapsed

time for running the FGPS method were about 12.615 and 0.064 s, respectively, rounded to three decimal digits.

Figure 2 demonstrates that one can still retain highly accurate approximations using relatively much smaller values of

NG. In addition, Figure 3 supports our theoretical error and convergence analysis study discussed in Section 6, where

we observe a decline in the approximations precision when increasing the degrees of Fourier interpolants of u by 16

orders due to the rise of the FDC error.

Figure 1: The plots of the exact (left), approximate solution obtained by the FGPS method (middle), and the corresponding absolute errors (right)

for Problem 1. The plots were generated using 100 equally-spaced nodes in the x- and t-directions from 0 to 2π.
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Figure 2: The plots of the exact (left), approximate solution obtained by the FGPS method (middle), and the corresponding absolute errors (right)

for Problem 1 using the parameter value NG = 40. The plots were generated using 100 equally-spaced nodes in the x- and t-directions from 0 to

2π.

Figure 3: The plots of the exact (left), approximate solution obtained by the FGPS method (middle), and the corresponding absolute errors (right)

for Problem 1 using the parameter values N1 = N2 = 20. The plots were generated using 100 equally-spaced nodes in the x- and t-directions from

0 to 2π.

Problem 2. Consider the following time-dependent one-dimensional FPDE with variable coefficients and periodic

11



solutions:

sin(x t) E
L D1/3

x u(x, t) + cos
(

x + t2
)

E
L D

2/3
t u(x, t) =

6
√
−1e−it cos

(

x + t2
)

2Γ
(

1
3

)

[

(−1)2/3e2it

(

Γ

(

1

3

)

− Γ
(

1

3
, 30i

))

− Γ
(

1

3

)

+ Γ

(

1

3
,−30i

)]

+

3
√

3e−i(3x+1) sin(xt)

4Γ
(

2
3

)

[

(√
3 + i

)

e6ix+2i

(

Γ

(

2

3

)

− Γ
(

2

3
, 90i

))

+
(√

3 − i
)

Γ

(

2

3

)

+ 2(−1)5/6Γ

(

2

3
,−90i

)]

,

subject to the initial conditions

u(x, 0) = cos(3x + 1), u(0, t) = cos 1 − sin t,

∀(x, t) ∈ Ω2π/3,2π. The exact solution of the problem is u(x, t) = cos(3x + 1) − sin t. The numerical results are shown

in Figure 4. κ(A) and the elapsed time for running the FGPS method were about 36.108 and 0.093 s, respectively,

rounded to three decimal digits.

Figure 4: The plots of the exact (left), approximate solution obtained by the FGPS method (middle), and the corresponding absolute errors (right)

for Problem 2. The plots were generated using 100 equally-spaced nodes in the x- and t-directions from (0, 0) to (2π/3, 2π).

Problem 3. Consider the following time-dependent one-dimensional FPDE with variable coefficients and periodic

solutions:

e−x t E
L D7/10

x u(x, t) + ln(x − t + 3π) E
L D

4/5
t u(x, t) =

(−1)3/20e−((t+2i)x) sin (t)

23/10Γ
(

3
10

)

[

(−1)7/10e4ix

(

−Γ
(

3

10

)

+ Γ

(

3

10
, 60i

))

+Γ

(

3

10

)

− Γ
(

3

10
,−60i

)]

+

10
√
−1e−it sin (2x) ln (−t + x + 3π)

2Γ
(

1
5

)

[

(−1)4/5e2it

(

−Γ
(

1

5

)

+ Γ

(

1

5
, 30i

))

+ Γ

(

1

5

)

− Γ
(

1

5
,−30i

)]

,

subject to the initial conditions

u(x, 0) = u(0, t) = 0,
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∀(x, t) ∈ Ωπ,2π. The exact solution of the problem is u(x, t) = sin(2x) sin(t). The numerical results are shown in Figure

5. κ(A) and the elapsed time for running the FGPS method were about 3.253 and 0.093 s, respectively, rounded to

three decimal digits.

Figure 5: The plots of the exact (left), approximate solution obtained by the FGPS method (middle), and the corresponding absolute errors (right)

for Problem 3. The plots were generated using 100 equally-spaced nodes in the x- and t-directions from (0, 0) to (π, 2π).

Problem 4. Consider the following time-dependent one-dimensional FPDE with variable coefficients and periodic

solutions:

(x + 5) E
L Dαx u(x, t) − xt2 E

L D
β
t u(x, t) =

[(

t2 − 1
)

x − 5
]

sin(x + t) + sinh(0.3)
[

(x + 5) cos(x) sin(t) − x t2 sin(x) cos(t)
]

,

subject to the initial conditions

u(x, 0) = cos x, u(0, t) = cos t,

∀(x, t) ∈ Ω2π,2π. The exact solution of the problem for α = β = 1 is u1,1(x, t) = cos(x + t) + sinh(0.3) sin(x) sin(t),

where uα,β denotes here the solution associated with the fractional orders α and β. Figure 6 shows the evolution of

the solution when α = β = 0.8, 0.9, 0.99, and 1. Observe how the surface profile of the approximate solution, denoted

here by I
α,β

N1,N2
ũ(x, t), converges to u1,1(x, t) as (α, β)→ (1, 1).
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Figure 6: The evolution of the approximate solution for some increasing fractional orders. The plots were generated using 100 equally-spaced

nodes in the x- and t-directions from 0 to 2π.

8. Conclusion

We proposed a new class of IVPs of time-dependent one-dimensional FPDEs with variable coefficients and peri-

odic solutions. This class of problems can be solved numerically very accurately and efficiently using the proposed

FGPS method. In particular, the FGPS method converts the IVP into a well conditioned linear system of equations

using a PS method based on Fourier collocations and Gegenbauer quadratures. The reduced linear system has a sparse

block global coefficient matrix that can be generated efficiently using the smart index matrix mappingN given by Eq.

(4), which allows most parts of the global matrix generation process to be optimized and arranged to work on chunks

of vectors; thus, the efficiency increases by allowing vectorized operations. This strategy enables us to solve the

reduced linear system of equations very rapidly to nearly within the machine precision using standard linear system

solvers. The method converges exponentially for sufficiently smooth periodic solutions using very small collocation

mesh grids as proven by Theorem 6.1 and verified through extensive numerical simulations. The rigorous analysis

of the error conveyed that the truncation errors are due to two sources of errors, namely, the FDC and FII errors.

The former is due to the FGPS approximations to the FDs of the FPDE and the latter is induced by the Fourier in-

terpolations of the solution at the collocation mesh grid. We discovered that reducing the FII error by increasing the

collocation mesh size generally amplifies the FDC error, so it is recommended to apply the FGPS method using a

low size of collocation mesh grid for sufficiently smooth periodic solutions. Corollary 6.1 shows that the errors are

dominated only by the FDC errors when the periodic solution is β-analytic. We highly anticipate that the idea and

results presented in this paper will become fruitful in the future to deal with more general problems involving FPDEs

with periodic solutions.
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