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Abstract  
 
In a recent paper, Demange (2004) has shown that hierarchical organizations can guarantee 
the existence of stable cooperative outcomes by appropriately allocating the blocking power 
to a subset of coalitions, the “teams”. This paper extends the analysis of Demange to 
cooperative problems with spillovers. We show that if blocking coalitions have “pessimistic 
expectations” on the reaction of outsiders, in all cooperative problems there exists an 
allocation which is blocked by no team. We also study the case of ”passive expectations”, 
for which the same result holds in all games with negative spillovers, while stable 
allocations may fail to exist in games with positive spillovers. In the latter class of games, 
however, hierarchies are shown to be the most stable organizational forms. 
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1 Introduction

Formal economic organizations arise as “means to achieve the benefits of collective action

in situations in which the price system fails” (Arrow, (1974)). Among the possible forms of

organization, hierarchies are by far the most widespread in economic, social and political life.

Formally, a hierarchy can be represented as a pyramidal network: a ”principal” is at the top

of the organization, and each organizational member has a unique direct superior. The chain

of authority is such that each other organizational member has a unique path of intermediate

superiors through which he can communicate with the principal.

In a recent paper, Demange (2004) has proposed new and insightful elements for a the-

oretical explanation of the emergence of hierarchies. Differently from most works on the

subject, which focus on the design of efficient organizational forms1, Demange (2004) stud-

ies the effect of a hierarchical order on the stability of cooperation. Taking a core-theoretic

approach to the problem, Demange focuses on the constraints that the hierarchy imposes

on the ability of subsets of players to organize in coalitions and to object to (or to ”block”)

a collective decision taken by the organization.2 By forcing players to report to a common

superior, the hierarchy endows only special coalitions - the ”teams” - to act autonomously of

the rest of the organization. Teams have the desired property of containing a player which

is superior in the hierarchy to all other team members and, as such, can coordinate their ac-

tions. Demange shows that to all cooperative problems we can associate a collective decision,

called ”hierarchical outcome”, which is blocked by no team in the hierarchy.

In Demange (2004), the payoff possibilities of each team are entirely determined by the

actions taken by its members. If utility is transferable, the cooperative situations studied by

Demange can be represented as games in characteristic function. Many important instances

of cooperative decision making do not, however, satisfy this assumption. On the contrary, it

is often the case that the payoff possibilities of a coalition depend also on the actions taken

by the players outside the coalition. These ”spillovers” arise in many economic and political

cooperative situations where hierarchies are a widespread forms of organization and stability

is a relevant issue.

1See the early contribution of Coase (1937), and, more receintly, Williamson (1975) and the subsequent

extensive literature, surveyed in Milgrom and Roberts (1992).
2A prior investigation of group stability when only a subclass of coalitions are effective in raising objections

(the ”basic” coalitions) is contained in Kaneko and Wooders (1982) and, for a very simple form of hierarchy,

in Greenberg and Weber (1983).
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In vertically integrated industries, for instance, major companies may have an incentive

to divest some of their production units to independent companies. The case of AT&T,

giving up its equipment division, and General Motors, giving up its auto part division, are

two eminent recent examples of an intrinsic instability of the vertically integrated structure.

Within the boundaries of the firm, another main source of instability is the incentives of

employees to make use of the training obtained within the firm to start their own independent

business, often in competition with their former employers. The case of Silicon Valley (and,

in general, of the high-tech industry) is a documented example where engineers and other

professionals often change firms or quit their jobs to start firms of their own, bringing with

them projects and licences. When an engineer involves in his new independent project his

own close collaborators, such defection take the form of ”team blocking” in the sense made

clear above. Political competition is still another example in which relevant spillovers from

coalition formation coexist with alliances which are internally organized as trees (think, for

instance, of the order of parties’ ideological positions on the left-right arrow).3

This paper extends Demange (2004) analysis to include such cooperative situation with

spillovers. In order to maintain the stability analysis based on the primitive notion of ”coali-

tional blocking”, specific assumptions on the expected reaction of outside players need to be

introduced, where by reaction we mean the configuration of outside players in coalitions after

the blocking. A formulation of reactions which are endogenously determined by the strate-

gic interaction among coalitions has motivated several recent papers in the coalition theory

literature (see, among others, Ray and Vohra (1997)). In this paper we do not attempt such

a task, by rely on exogenous assumption about players expectations.

We first study the case in which blocking coalitions form ”pessimistic expectations”,

in the sense that they consider the maximal payoff they can guarantee to their members

independently of the organization of outsiders. The use of these guarantee levels dates back

to Von Neumann and Morgenstern’s (1944) analysis of games in normal form and has recently

been adapted by Funaki and Yamato (1999) to problems of coalition formation. We show in

3Although political alliance may not be endowed with a clear hierarchical order, still teams can be identified

with coalitions which are consecutive in the ideological order. In fact Demange’s results can be reformulated

by replacing the notion of a team (based on the hierarchical order) by the notion of an ”internally connected”

coalition (based on the architecture of the network defining the internal organization of a coalition). In the

absence of a hierarchical order, the restriction of blocking power to connected coalitions is justified in terms

of communication and coordination possibilities.
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Theorem 1 that Demange’s result fully extends: whenever agents face gains from cooperation,

the hierarchical outcome is blocked by no team, independently of the shape of spillovers.

We establish this result also for the case in which the ”punishment” of blocking coalitions

is limited by the constraints imposed by the hierarchy on the coordination possibilities of

outsiders.4

We then turn to a less extreme form of expectations, with blocking coalitions expecting to

get the maximal feasible payoff compatible with the prediction that outsiders will maintain

the same bilateral relations that shape the hierarchical structure, and cooperate according to

such relations. In other words, the hierarchy is taken as given by agents, and fully determine

both their ability to coordinate on blocking and their ability to cooperate after blocking has

taken place (in Ichiishi’s (1997) terminology, these ”passive expectations” underlie the notion

of Strong Nash Equilibrium in normal form games).

With respect to the case of pessimistic expectations, this case is characterized by more

profitable coalitional objections, and the stability result of Demange (2004) does not extend

in general. However, we show in Proposition 2 that all hierarchies are stable in all problems

with negative spillovers.5 Although no stable allocation may exist under positive spillovers6,

Proposition 2 shows that hierarchies remain the most stable organizational forms in the

following sense: all allocations that are stable for some non hierarchical organization must

be stable for some hierarchical organization as well.

The paper is organized as follows. Section 2 presents the concepts and notation. Section

3 presents the main results. Section 4 concludes the paper.

2 Preliminaries

2.1 Games in Partition Function Form

We consider a set N = {1, 2, ..., n} of agents, called the grand coalition, with generic member
i ∈ N . A coalition is any subset S of N . For all S ⊆ N , we denote by ΠS the set of all

partitions πS of the set S, that is, all collections {B1, B2, ..., Bm} of subsets of S with empty
4These constraints are the same that justify the restriction of blocking power to teams.
5Negative spillovers arise when the formation of a coalition (or the merger of more coalitions) hurt the

other players in the system.(as, for instance, in custom unions and cost reducing R&D alliances).
6Positive spillovers arise when the formation of a coalition benefits other players, as in public good games

and Cournot oligopoly.
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pairwise intersection and whose union coincides with S. A partition πS ∈ ΠS is also called a
coalition structure on S.

Letting π ∈ ΠN and S ∈ π, we call the pair (S, π) an embedded coalition. A partition

function maps each embedded coalition (S, π) into a real number v(S, π), denoting the ag-

gregate payoff generated by coalition S when embedded in partition π. With slight abuse of

notation, we will write v(π) for
P
B∈π

v(B, π). Given an embedded coalition (S, π), we denote

by π\S the partition of the set N\S obtained by considering all the elements of π except S.
A partition function accounts for the fact that a coalition’s payoff possibilities may depend

on the configuration of other coalitions. Two classes of partition functions have played a

central role in the literature, and cover many well known cooperative problems. These classes

refer to the sign of the welfare effect exerted on a coalition S by a ”concentration” of the

coalition structure adopted by players in N\S. The notion of concentration is defined as
follows:7

Definition 1 Let S ⊆ N . The partition π ∈ ΠS is a concentration of π0 ∈ ΠS if π 6= π0 and

if it is possible to originate π by merging elements of π0. Formally, π is a concentration of π0

if for all B ∈ π either B ∈ π0 or there exists a collection {B1, .., Bp} of elements of π0 such

that B =

p[
k=1

Bk.

Definition 2 The partition function v exhibits positive spillovers if v (S, π) ≥ v (S, π0)

whenever π is a concentration of π0.

Definition 3 The partition function v exhibits negative spillovers if v (S, π) ≤ v (S, π0)

whenever π is a concentration of π0.

A partition function is cohesive when the grand coalition generates more value than any

other coalition structure.

Definition 4 The function v is cohesive if for all partitions π ∈ ΠN :

v(N, {N}) ≥ v (π) .

7The definition given by Yi (1997) and used in other works in the literature (see for instance the surveys

by Bloch (1997, 2003)), makes use of the notion of concentration of a partition, and is more general than the

one used here.
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Full cohesiveness is a stronger condition, requiring that each coalition generates a higher

value than any of its partitions, for any coalition structure in which it may be embedded. In

defining this property, and elsewhere in the paper, we will use the superadditive cover v̂ of

v, defined as follows for any πS ∈ ΠS and πN\S ∈ ΠN\S:

v̂
¡
S,
©
πS , πN\S

ª¢
≡
X
B∈πS

v
¡
B,
©
πS, πN\S

ª¢
.

Definition 5 The function v is fully cohesive if for all embedded coalitions (S, π) and all

π̄S ∈ ΠS :
v(S, π) ≥ v̂ (S, {π̄S , π\S}) .

The different requirements imposed by cohesiveness and full cohesiveness deserve further

discussion. Cohesiveness basically requires that coordination of individual strategies is always

(weakly) better than the absence of cooperation. For instance, it requires that a monopolistic

cartel generates more aggregate profit than any other market structure. It would be indeed

difficult to argue that the members of the cartel are not allowed to replicate the same strategies

they would play in any other market structure. Full cohesiveness, in contrast, may fail because

of the interplay between different coalitions. So, two Cournot triopolist may generate a higher

(Nash Equilibrium) aggregate profit than if they merged to form a duopoly. Although after

merging they would be able to replicate the equilibrium strategy they played as triopolists,

these strategies may fail to be part of the equilibrium of the duopoly game, from which the

failure of full cohesiveness.

2.2 Graphs and Hierarchies

We now introduce some basic concepts, borrowed from the theory of graphs, that will allow

us to formally represent the hierarchical organizations adopted by the grand coalition N .

2.2.1 Graphs

Given a set of vertices N , a graph (or network) g on N is defined as any subset of the set of

all (unordered) pairs of vertices in N :

g ⊆ {ij : i ∈ N and j ∈ N, i 6= j} .

The pair ij ∈ g is called a ”link”, and the link ij is called ”incident” to vertices i and j.

The set of vertices that are incident to at least one link in the graph g is denoted by N(g).
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The graph g is connected if for all pairs of vertices i and j in N there exists a connecting

path P (i, j), that is, a set of vertices {i1, i2, ..., ik} such that i = i1, j = ik, and ipip+1 ∈ g for

all p = 1, ..., k− 1. A coalition S ⊂ N is connected in g if for all pairs of vertices i and j in S

there exists a connecting path P (i, j) in g all included in S. The set of connected coalitions

in g is denoted by CC(g). Given the graph g with vertex set N , the graph h with vertex set

S ⊆ N is a subgraph of g if h ⊆ g. The subgraph h of g is a component of g if it is connected

and if for all i ∈ N(h) and j /∈ N(h) we have ij /∈ g.

2.2.2 Connected graphs as organizations

If we interpret each player in the players’ setN as a vertex, the connected graph g onN can be

viewed as the organizational form through which the grandcoalition achieves coordination. As

suggested by Myerson (1977), the graph can be thought of as describing the communication

possibilities of players in N , directly implying that the set of players N acts as a ”coalition”,

in the sense of cooperative game theory, if and only if g is connected. More generally, the

set C(g) of components of a disconnected graph g describes a set of coexisting organizations.

We can express the coalitions of cooperating players in a graph g through the associated

partition π (g), uniquely obtained as follows:

π (g) = {N(h) : h ∈ C(g)} . (1)

It will be sometimes useful to refer to the restriction g|S of a graph g to the subset of

vertices S ⊂ N ; the restricted graph g|S has vertex set S and contains all the links (and only
those) of g that are not incident to vertices in N\S.

2.2.3 Trees and hierarchies

The graph g contains a cycle if there exists a path P (i, j) in g that contains at least three

vertices and for which i = j. A connected graph containing no cycle is called a tree (or

minimally connected graph). The tree g is a ”spanning tree” of the connected graph g0 if

N(g) = N(g0) and g ⊂ g0.

It is possible to interpret trees as hierarchies by selecting a vertex r and defining the

partial order Âg,r on N as follows:

j Âg,r k ⇐⇒ k ∈ P (r, j).
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Since r Âg,r k for all k ∈ N , r is the top element of the order Âg,r. We say that r is the root

of the hierarchy. For all other vertices j an k we read j Âg,r k as ”j follows k in g with root

r”.

Definition 6 A hierarchy is a pair (g, r), where g is a tree defined on the set of vertices N

and r ∈ N .

We say that vertex k is a direct superior of vertex j if j Âg,r k and jk ∈ g. We will denote

by Fg(i) the set of all vertices that follow vertex i in g, including vertex i itself (see figure 1

below). For each S ⊂ N , we denote by Dg(S) the set of direct followers of S in g, that is,

those vertices that are not in S but whose direct superior belongs to S. Finally, we denote

by Tg the set of terminal vertices in the hierarchy g, that is, those vertices with no followers.

It is clear that every connected coalition S in a tree g defines a restricted graph g|S which
is itself a tree. Once we have specifies a root r for g, then every connected coalition S defines a

new hierarchy (g|S, i(S)), where i(S) is the uniquely defined vertex in S which is not followed
by any vertex in S. Following Demange (2004), we will refer to such connected coalitions as

teams (see Figure 1 below). Note that the set of teams of a hierarchy is independent of the

choice of the root r. For this reason we will refer to the set of teams of the tree g.

team S D(S)

i

F(i)

r

Figure 1: A Hierarchy
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2.3 Feasible and Efficient Allocations

A payoff allocation for the grand coalition N is a vector u ∈ Rn
+ of individual payoffs for the

members of N . The allocation u is feasible under partition function v is there exists a way

in which the players in N can partition themselves and generate the values distributed by u.

Definition 7 The payoff allocation u ∈ Rn
+ is feasible under partition function v if there

exists a coalition structure π ∈ ΠN such that
P
i∈B

ui ≤ v (B, π) for all B ∈ π. In this case we

say that π supports u.

Note that the organizational form(s) adopted by players does not enter the above defin-

ition. Having defined payoff possibilities in terms of a partition function we have implicitly

assumed that the type of hierarchical structure adopted by players does not affect the aggre-

gate payoff they can generate by cooperating.

Among feasible allocations we will focus on those which are efficient in the sense of the

following definition:

Definition 8 The feasible payoff allocation u ∈ Rn
+ is efficient under partition function v if

there exists no other feasible allocation u0 for which u0i > ui for all i ∈ N .

If the function v is cohesive, then the grand coalition supports all efficient allocations.

3 Stability

In this section we establish a set of results that extend the stability features of hierarchies

proved in Demange (2004) to games in partition function.

3.1 Games Without Spillovers: Demange’s Result

The analysis of Demange (2004) takes as primitive the claims that each coalition S has on

aggregate payoffs. Such claims are measured by the feasible allocations that the members of

S can guarantee themselves by acting without the cooperation of the players in N\S. In
Demange (2004), these allocations are fully determined by the set of actions available to the

members of S. In a context of transferable utility, these claims can be expressed in terms of

a a ”characteristic function” φ, mapping each coalition S ⊆ N into a real number φ(S). The
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function φ is a special case of a partition function v for which v(S, π) = v(S, π0) for all π and

π0.

If any pair of disjoint coalitions increase their claims by acting together, the function φ

is said to be superadditive.

Definition 9 The characteristic function φ is superadditive if for all S ⊂ N and T ⊂ N

such that S ∩ T = ∅ the following inequality holds:

φ (S) + φ (T ) ≤ φ (S ∪ T ) .

Claims define the incentives of each coalition to ”block” any proposed payoff allocation

for the grand coalition.

Definition 10 Let φ be superadditive. The payoff allocation u is blocked by coalition S ⊆ N

if
X
i∈S

ui < φ (S).

When all coalitions have the ”ability” to block, the set of unblocked allocations defines

the core of the associated cooperative game (N,φ).

The main point raised by Demange (2004) is that the hierarchical structure (and, more

in general, any internal organization adopted by the grand coalition) may limit the block-

ing ability of certain coalitions by limiting the possibility that their members communicate

without the help of players outside the coalition. In Demange’s paper, this ability is assigned

only to the set of ”teams” in the hierarchy (see section 2.2.3), in which a common superior

coordinate the joint blocking decision. Demange (2004) has shown that a specific allocation,

called the ”hierarchical outcome”, distributes the efficient aggregate payoff in such a way that

the claims of all teams are satisfied. When the characteristic function φ is superadditive, the

hierarchical outcome u ∈ Rn
+ associated with the hierarchy (g, r) is obtained as follows: each

terminal player i ∈ Tg is allocated the payoff ui = φ({i}). Any player i /∈ Tg is allocated the

difference between φ(Fg(i)) and the sum
X

i∈Fg(i)\{i}
ui.

Theorem 1 (Theorem 1 in Demange (2004)). Let φ be superadditive. The hierarchical

outcome associated with the hierarchy (g, r) is not blocked by any team in g.

Theorem 2 in Demange’s paper studies the case of non superadditive decision problems.

It is there shown that a variation of the hierarchical outcome described above is not blocked
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by any team and is supported by some partition of the set of players N . We discuss this

possibility after proposition 1 in the next section.

3.2 Games with Spillovers: Pessimistic Expectations

When a hierarchical organization operates in the presence of spillovers, the claim of each

blocking coalition does not depend solely on the actions available to its members, but also

on the actions that the other players in the organization are expected to take in case of

blocking. Specific assumptions are needed on the coalition structure that would be induced

as a consequence of each coalitional blocking.

In this section we study the case of ”pessimistic expectations”, first suggested by von

Neumann and Morgenstern (1944) for games in normal form and recently applied to the

analysis of games in partition function form by Funaki and Yamato (1999).8 The spirit of

pessimistic expectations is to assume that each blocking coalition considers as its claim the

maximal payoff it can guarantee to its members, independently of the reaction of outsiders.

Formally, the claim of coalition S under partition function v is defined by the following

auxiliary characteristic function:

φ(S) ≡ max
πS∈ΠS

min
πN\S∈ΠN\S

v̂
¡
S,
©
πS , πN\S

ª¢
. (2)

Remark 1 Definition (2) implicitly says that even if S decides to split in the coalition

structure πS , the players in S are still able to commit to any sort of transfers, independently

of the subcoalition they end up belonging to in πS . This assumption obviously gives stronger

incentives to block than if such transfers were not allowed. However, since the results of

propositions 1 and 2 will prove the existence of unblocked allocations, the same result would

a fortiori hold if transfers were not allowed.

Remark 2 Pessimistic expectations take a clear-cut form in the classes of games with nega-

tive and positive spillovers. In the first class, players in N\S are expected to stay together in
one united coalition; in the second, these players are expected to split up into the singletons

partition of the set N\S. We will return to these two classes of games and on the role of
expectations in the section 3.3.

8See also Hart and Kurz (1983), defining the α− core and the β − core of games of coalition formation.
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Remark 3 Both the members of S and of N\S are allowed to partition themselves in any
arbitrary way, independently of the starting hierarchical structure g. In certain applications,

where the constraint on coordination imposed by the graph g survive after the blocking of S,

this assumption may not be appropriate, and both the optimal choice of S and the reaction

of N\S should be subject to the existing coordination possibilities.

The definition of the function φ can be modified in order to account for the observations

raised in remark 3. For any tree g and any coalition C ⊂ N , we denote by ΠgC the set of

partitions πC ∈ ΠC that are also subpartitions of π (g|C) (the partition derived from g by

considering the set of components of the restricted graph g|C). So, every element of πC is
either an element or a subset of some element of π (g|C). The claim of a blocking coalition S

in g is redefined as follows:

φg(S) ≡ max
πS∈Πg

S

min
πN\S∈ΠgN\S

v̂
¡
S,
©
πS , πN\S

ª¢
. (3)

Note that we cannot say whether a coalition S is made better by blocking under character-

istic functions φ or under φg. In fact, while the first allows for more effective ”punishments”

by N\S, the second restricts the set of possibilities of S.
The following proposition extends theorem 1 to all games in partition function form, for

both the associated characteristic functions φ and φg.

Proposition 1 The characteristic functions φ and φg are superadditive for all partition func-

tions v.

Proof. We prove the result for the function φ. All steps are valid for function φg as well.

For any set C ⊂ N , define the function fC : ΠC → ΠN\C as follows:9

fC(πC) = arg min
πN\C∈ΠN\C

v̂
¡
C,
©
πC , πN\C

ª¢
. (4)

Consider now any pair of disjoint coalitions S, T . We need to show that

φ(S) + φ(T ) ≤ φ(S ∪ T ). (5)

9For simplicity, we are restricting the analysis for simplicity to partition functions v such that

v(C,
©
πC , πN\C

ª
6= v(C,

©
πC , π̄N\C

ª
whenever πN\C 6= π̄N\C . This assumption can be easily dropped at

the cost of a lenghtier proof.
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Definition (2) applied to S ∪ T gives:

φ(S ∪ T ) = max
π(S∪T )∈Π(S∪T )

v̂ (S ∪ T, {πS∪T , fS∪T (πS∪T )}) . (6)

We can therefore write:

φ(S ∪ T ) ≥ max
(πS ,πT )∈ΠS×ΠT

v̂ (S ∪ T, {πS , πT , f(πS , πT )}) . (7)

Consider now the values φ(S) and φ(T ). Denote by π̂S and π̂T the partitions of S and T

that originate such values:

π̂S = arg max
πS∈ΠS

v̂ (S, {πS, fS (πS)}) ; (8)

π̂T = arg max
πT∈ΠT

v̂ (T, {πT , fT (πT )}) .

By definition of the functions φ and fS∪T , the following inequalities hold:

φ(S) ≤ v̂ (S, {π̂S , π̂T , fS∪T (π̂S , π̂T )}) ; (9)

φ(T ) ≤ v̂ (T, {π̂S, π̂T , fS∪T (π̂S, π̂T )}) ..

Inequalities (7) and (9) directly imply:

φ(S ∪ T ) ≥ max
(πS ,πT )∈ΠS×ΠT

v̂ (S ∪ T, {πS, πT , f(πS , πT )}) ≥

≥ v̂ (S, {π̂S, π̂T , fS∪T (π̂S, π̂T )}) + v̂ (T, {π̂S, π̂T , fS∪T (π̂S , π̂T )}) ≥ φ(S) + φ(T ).

The fact that functions φ and φg are superadditive does not, without further restrictions

on v, ensure that the hierarchical outcomes associated with such functions define feasible

payoff imputations in the sense of definition 7. In fact, if v is not cohesive, then the parti-

tions π∗ and π∗g that generate the values φ(N) and φg(N) may contain more than one set.

Definitions 7 would require therefore that the hierarchical outcomes satisfy the requirement

that each coalition B ∈ π∗ (resp., B ∈ π∗g) receives exactly an aggregate payoff of v (B, π
∗)

(resp., v
¡
B, π∗g

¢
. However, as shown in the next example, this is not true in general because

of the effect of spillovers.

Example 1 Consider the hierarchy g = {12, 23}, with root 1. Let the partition function v

be such that:

π∗g = {12, 3} ;

v (3, {12, 3}) > v (3, {1, 2, 3}) .

13



In this case the hierarchical outcome u for φg allocates to 3 less than the value generated by

3 in π∗g , violating definition 7:

u3 = φg(3) = v (3, {1, 2, 3}) < v
¡
3, π∗g

¢
.

This problem is due to the very definitions of φ(N) and of φg(N), which implicitly assume

that transfers across elements of π∗ and π∗g are possible, while such transfers are not allowed

by definition 7. For this reason, in the next theorem we need to impose that v is cohesive,

thereby ensuring that no transfers across coalitions are needed at the hierarchical outcome.

We remark, however, that cohesiveness of v does not require a superadditivity property for

all coalitions (as, in contrast, would be required by full cohesiveness), but only that maximal

gains from trade are exploited by the grand coalition.

Theorem 2 Let g be a tree with set of vertex N , and let v be a cohesive partition function.

For all r ∈ N , if coalitional claims are measured by the characteristic function φ (resp., by

φg), the hierarchical outcome associated with the hierarchy (g, r) and with φ (resp., with φg)

is a feasible payoff allocation supported by the grandcoalition and is blocked by no team in g.

Proof. Cohesiveness of v implies that {N} ∈ argmaxπ∈ΠN
v(π). Superadditivity of the

functions φ and φg imply that the hierarchical outcome allocates a non negative payoff to all

players and that it exactly exhausts the value v(N, {N}). The fact that hierarchical outcomes
are not blocked by any team in g is directly implied by Proposition 1 and Theorem 1.

Note, finally, that transfers across coalitions are implicit in the definitions of φ(S) and

of φg(S) for any coalition S ⊂ N . Although such transfers imply a violation of definition 7

for the reasons made clear above, the overstatement of the blocking power of coalitions that

derives from this violation reinforces the stability result of theorem 1.

We conclude this section by applying the above analysis to three simple examples of

vertical integration, political competition and international cooperation. While the first

application is derived in full detail, the other two are briefly sketched.

Example 2 Vertical Integration - Consider three vertically integrated firms, A, B and R.

Firms A and B jointly produce a consumption good to be sold on the market by firm R (the

retailer). Firm A buys inputs on a competitive factor market at constant marginal cost c,

and produces an intermediate good xA that firm B uses as input. Firm B transforms each

14



unit of good xA into one unit of final good. Firm R finally markets the final good. The

produced goods are specific to the integrated firms, in the sense that there is no alternative

market for these goods outside the vertical structure. The vertically integrated structure acts

as a monopolist and makes the monopolist profit uM . A payoff allocation for the vertically

integrated firm is any distribution of uM among the three firms. Blocking is here identified

with the decision to opt out of the vertically integrated structure and to act independently

of what remains of it. For instance, the retailer may opt out by deciding to buy the final

good from B, to market the good and to receive the profits. Also, firms A and B may jointly

opt out of the vertical structure and sell their output to firm R. Similarly, firms B and R

can opt out, buy the intermediate input from firm A and sell the final good on the market.

However, firms A and R cannot exert the same threat, since they cannot jointly produce

anything without the contribution of firm B.

We derive the partition function for this problem by looking at the equilibrium profits in

the price setting game in which firms move sequentially according to the vertical structure

A,B,R. For all proper partitions of N , we will assume that upstream firms set their prices

first, and that the demand for the final good is given by 1 − pR. We obtain the following

values.

{ABR} pM = 1+c
2 v(N) ≡ (1−c)2

4

{A,BR}
pA =

1+c
2

pBR =
3+c
4

v(A, {A,BR}) ≡ (1−c)2
8

v(BR, {A,BR}) ≡ (1−c)2
16

{AB,R}
pAB =

1+c
2

pR =
3+c
4

v(AB, {AB,R}) ≡ (1−c)2
8

v(R, {AB,R}) ≡ (1−c)2
16

{A,B,R}
pA =

1+c
2

pB =
3+c
4

pR =
7+c
8

v(A, {A,B,R}) ≡ (1−c)2
16

v(B, {A,B,R}) ≡ (1−c)2
32

v(R, {A,B,R}) ≡ (1−c)2
64

We then derive function φg for this problem. Expectations do not play any role in deter-

mining the claims of coalitions AB, BR and B. Pessimistic expectations are instead used to

derive the claims of firms A and R: we obtain φ(A) = (1−c)2
16 and φ(R) = (1−c)2

64 . Summing

up we get:

φg(AB) φg(BR) φg(B) φg(A) φg(R)

(1−c)2
8

(1−c)2
16

(1−c)2
32

(1−c)2
16

(1−c)2
64
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The function φg is superadditive, and theorem 2 directly implies that the hierarchical

outcome is not blocked by any connected coalition of firms. To appreciate the role of the

hierarchy in generating stable allocations, consider what would happen if disconnected coali-

tions could block. To obtain the claim of the disconnected coalition AR we cannot simply

vertically integrate these two firms, since this is not technologically feasible by assumption.

We could however allow A and R to collude on prices. So, firm R sets its price given the prices

set by A and B; firm B sets pB given pA; firm A sets pA so as to maximize the aggregate

profit of A and R, given the optimal reactions of B and R. Simple computations give us

the following prices and profits: pA =
2c+1
3 , pB =

2+c
3 , pR =

5+c
6 ; v(AR, {AR,B}) =

(1−c)2
12 .

Note that although the function φg is superadditive, the core of the game (N,φg) is empty.

In fact, the core constraints for coalitions AB, BR and AR imply that

uA + uB + uR ≥
(1− c)2

4

13

12
> v(ABR, {ABR}).

Example 3 Political Alliances. - Consider a political alliance in which parties L, M and R

are ordered on a one dimensional spectrum of ideological positions. The alliance has to take

decisions on various issues, on which parties may have different opinions. If a party or a

subset of parties is not happy with a proposed decision, it can threaten to defect from the

alliance. However, while a restricted alliance between parties L andM could be envisaged, an

alliance between L and R may not credible without the mediation of M . This situation can

be modeled by assuming that there is some fixed utility ū from being in power, from which

each party i has to subtract the square of the distance between the chosen policy x and its

preferred policy xi. If we assume that ū is small enough we obtain that the aggregate utility

of coalition (LR) is always negative, while the aggregate value of the three party alliance and

of every other two party alliance is strictly positive. Under these circumstances, exiting the

alliance is likely to be less attractive for R than for M , the former having to face a larger

and more powerful competitor. The game has therefore negative spillovers.

Example 4 International Cooperation: At the international level, bilateral relations be-

tween countries are characterized by different degrees of trust and friendship. An agreement

to increase domestic production of an international public good (e.g., abatement of polluting

emissions) is possible only if cooperating countries are connected in the ”trust” network. This
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constraint applies both to the global cooperation process (involving the grand coalition) and

to possible objections (involving subcoalitions of participants proposing alternative partial

agreements or inaction). Suppose that each country i has a utility function q + xi, defined

on the aggregate internationally produced public good q and a private good consumption xi.

The public good is produced by each country with strictly convex cost function c(qi), where

qi is the production of public good of country i, and q ≡
P

i qi (all countries are therefore

symmetric). Given some initial endowment of private good, in the absence of cooperation

each country chooses qi to maximize the function q − c(qi) with respect to qi. If a given

partition π emerges, each element B of π acts as a single player, maximizing the aggregate

utility of the set of countries in B. Suppose there is one country j that all countries trust

and which trusts all countries, but no other links are present in the trust network (which has

therefore a ”star” architecture, with central vertex j). The game has positive spillovers, and

the worst coalition structure for a blocking coalition S is the one in which all countries in N\S
split up into singletons. Moreover, the game is cohesive. Therefore, the stable hierarchical

outcome associated with the hierarchy that has j as root vertex allocates to all countries but

j their utility level at the non cooperative equilibrium, while country j obtains all the gains

from cooperation. In all other hierarchies (that is, for all other choices of the root), country

j still gets some gain from cooperation by virtue of its central position (by which it is never

a terminal vertex of the network).

3.3 Games with Spillovers: Passive Expectations

Although under pessimistic expectations coalitional claims have the natural interpretation of

”guarantee levels”, other more optimistic behavioural principles can be envisaged. Players

may think, for instance, that the links within the organization will stay on for some time

after the objection. This may be a good assumption when the hierarchy is made of exogenous

and fixed communication or technological constraints.

Such ”passive expectations” (see Ichiishi (1997)) generate a characteristic function φ∗g

which differs from φg in that residual players do not sever existing links in order to ”punish”

the blocking coalition. It follows that claims are higher under φ∗g than under φg. The

characteristic function φ∗g is derived by looking at the value generated by the blocking coalition

S in the following partition:

π(S, g) ≡
©
π(g|S), π(g|N\S)

ª
.
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The next example shows that stable allocation may fail to exist in this case:

Example 5 Let N = {1, 2, 3} , let g = {12, 13} and the (anonymous) function v be as

follows:

v(N, {N}) = 3;

φ∗g(2) = v (2, {2, 13}) = 2;

v (1, {1, 2, 3}) = 1− ε > 0;

v ({13} , {13, 2}) ≡ φ∗g(13) = 2,

with ε > 0. The function v satisfies positive spillovers. Considering the disjoint coalitions

(1) and (23), we obtain:

φ∗g(2) + φ∗g(13) = 4 > 3 = v(N, {N}),

showing that φ∗g is not superadditive. Also, it can be checked that no allocation exists that

meet the claims of both player 2 and of coalition 13.¥

In this example, the lack of stable allocation is generated by the strong incentives to free

ride, due to the presence of positive spillovers. In such games, the harshest punishment for the

blocking coalition is the disintegration of the residual organization, which is here prevented

by the existing links, and is, in contrast, allowed under φ and φg.

The same problem does not arise under negative spillovers. In fact, the structure π(g|N\S)
induced by the coalition S is the coarsest structure allowed to the players in N\S by the

definition of φg, and therefore the harshest punishment for S. The same result derived for

the function φg for all partition functions extends therefore here for the class of functions

with negative spillovers. This is stated as point i) of the next proposition. In point ii) we

establish a property for games with positive spillovers, reaffirming the role of hierarchies for

stability even in this class of games.

Proposition 2 i) Let v be cohesive and exhibit negative spillovers and let g be a tree. For

all hierarchies (g, r) the associated hierarchical outcome is blocked by no team. ii) Let v be

fully cohesive and exhibit positive spillovers. For all organizations g0 containing cycles, if the

allocation ū is blocked by no team in g0, then u is blocked by no team in all the spanning trees

of g0.
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Proof. i) Proposition 1 has shown that no team in g blocks the hierarchical outcome when

φg is the characteristic function. Letting u denote the hierarchical outcome, this means that

for all teams S ⊂ N we have:

φg (S) = max
πS∈Πg

S

min
πN\S∈Πg

N\S

v̂
¡
S,
©
πS, πN\S

ª¢
≤
X
i∈S

ui.

Since πN\S ∈ ΠgN\S implies that πN\S is a subpartition of π(g|N\S), given the negative
spillovers of v we can write for all teams S:

φ∗g (S) ≤ max
πS∈Πg

S

min
πN\S∈Πg

N\S

v̂
¡
S,
©
πS, πN\S

ª¢
≤
X
i∈S

ui.

ii) Consider any non hierarchical organization g0, which, by definition, is not minimally con-

nected (that is, contains cycles). Suppose that g0 admits a stable allocation when coalitional

claims are given by φ∗g. This means that for each connected coalition S ∈ CC(g0) we haveP
i∈S ui ≥ φ∗g(S). Consider now any spanning tree g of g

0. Clearly, we have CC(g) ⊆ CC(g0).

This means that all coalitions that have the ability to object to g can also object to g0. Also,

by the full cohesiveness assumption, we need not worry about any partition πS , since S will

always stay united. Since for each S ∈ CC(g) each component of g0|N\S is either a component
of g|N\S or can be obtained by merging two or more components of g|N\S , it follows that
the partition π (S, g0) must concentrate the partition π (S, g). Positive spillovers imply that

φ∗g(S) ≤ φ∗g0(S). We conclude that the stability of g
0 directly implies the stability of g.

Point ii) in Proposition 2 shows that, under positive spillovers, the set of allocations which

are stable for at least one hierarchical structure includes all allocations which are stable for

at least one arbitrary organization. This property does not extend to games with negative

spillovers both under the functions φg and φ∗g. The reason is that, under these functions,

adding links to a hierarchy (thereby creating cycles) has two effects: it enlarges the set

of connected coalitions and it induces (weakly) more concentrated coalition structure after

all objections. While both effects decrease the stability of the organization under positive

spillovers (from which the result of proposition 2), they move in opposite directions under

negative spillovers, where a larger set of connected coalitions possess weaker incentives to

object. In this latter case, non hierarchical organizations may well sustain stable allocations

which are objected in all hierarchies (including those generated by the spanning trees).
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4 Conclusions

We have studied the stability of collective decisions when players are organized in a hierarchy

and coalitional payoff possibilities are described by a partition function. Our analysis has built

on the work of Demange (2004), with which it shares the basic assumption that the hierarchy

limits the ability to block collective decisions to the set of coalitions that are internally

connected (the set of ”teams”). We have shown that if blocking coalitions have ”pessimistic

expectations” about the reaction of residual players, then Demange’s stability result carry

over to all games in partition function form. If players form ”passive expectations”, then a

stable allocation exists in all games with negative spillovers, but may fail to exist if spillovers

are positive. In the latter case, however, hierarchies are still the most stable organizational

form, since the set of allocations that are stable within a hierarchy include all allocations

that are stable in at least one arbitrary organizational form.
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