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Evolutionary dynamics may eliminate all

strategies used in correlated equilibrium

Yannick Viossat∗†

CEREMADE, Université Paris-Dauphine

Abstract

We show on a 4 × 4 example that many dynamics may eliminate all

strategies used in correlated equilibria, and this for an open set of games.

This holds for the best-response dynamics, the Brown-von Neumann-Nash

dynamics and any monotonic or weakly sign-preserving dynamics satisfy-

ing some standard regularity conditions. For the replicator dynamics and

the best-response dynamics, elimination of all strategies used in correlated

equilibrium is shown to be robust to the addition of mixed strategies as

new pure strategies.

JEL classification numbers: C73 ; C72

Key-words: correlated equilibrium; evolutionary dynamics; elimina-

tion; as-if rationality

1 Introduction

A number of positive connections have been found between Nash equilibria and

the outcome of evolutionary dynamics. For instance, for a wide clas of dynamics,

if a solution converges to a point from an interior initial condition, then this

point is a Nash equilibrium (Weibull, 1995). However, solutions of evolutionary
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the Laboratoire d’économétrie de l’Ecole polytechnique under the supervision of Sylvain Sorin.

I am much grateful to him, J orgen Weibull, and Larry Samuelson. I also thank two anonymous

referees, the editor, and seminar audiences at the Maison des Sciences Economiques (Université
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dynamics need not converge and may cycle away from the set of Nash equilibria

(Zeeman, 1980; Hofbauer and Sigmund, 1998).

Since the set of correlated equilibria of a game is often much larger than

its set of Nash equilibria, it might be hoped that correlated equilibria better

capture the outcome of evolutionary dynamics than Nash equilibria. This hope

is reinforced by the recent litterature on adaptive processes converging, in a

time-average sense, to the set of correlated equilibria (Hart, 2005).

It was found, however, that there are games for which, for some initial condi-

tions, the replicator dynamics eliminate all strategies belonging to the support

of at least one correlated equilibrium (Viossat, 2007a). Thus, only strategies

that do not take part in any equilibrium remain, rulling out convergence of any

kind of time-average to the set of correlated equilibria.

The purpose of this article is to show, on a 4× 4 example, that elimination

of all strategies used in correlated equilibrium does not only occur under the

replicator dynamics and for very specific games, but for many dynamics and for

an open set of games. We also study the robustness of this result when agents

are explicitly allowed to use mixed strategies.

The article is organized as follows. After presenting the framework and no-

tations, we introduce the games we consider and explain the technique used to

show that all strategies used in correlated equilibrium are eliminated (section

2). Sections 3, 4 and 5 deal in turn with monotonic or weakly sign-preserving

dynamics, the best-response dynamics and the Brown-von Neumann-Nash dy-

namics. Section 6 and the appendix show that elimination of all strategies used

in correlated equilibrium still occurs when agents are explicitly allowed to play

mixed strategies. Section 7 concludes.

Framework and notations. We study single-population dynamics in

two-player, finite symmetric games. The set of pure strategies is I = {1, 2, .., N}

and SN denotes the simplex of mixed strategies (henceforth, “the simplex”).

Its vertices ei, 1 ≤ i ≤ N , correspond to the pure strategies of the game. We

denote by xi(t) the proportion of the population playing strategy i at time t

and by x(t) = (x1(t), ..., xN (t)) ∈ SN the population profile (or mean strategy).

We study its evolution under dynamics of type ẋ(t) = f(x(t),U), where U =

(uij)1≤i,j≤N is the payoff matrix of the game. We often skip the indication of

time. For every x in SN , the probability distribution on I × I induced by x is

denoted by x⊗ x. If A is a subset of SN , then conv(A) denotes its convex hull.

We assume known the definition of a correlated equilibrium distribution

(Aumann, 1974) and, with a slight abuse of vocabulary, we write throughout

correlated equilibrium for correlated equilibrium distribution. A pure strat-

egy i is used in correlated equilibrium if there exists a correlated equilibrium

µ under which strategy i has positive marginal probability (since the game is

symmetric, whether we restrict attention to symmetric correlated equilibria or
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not is irrelevant; see footnote 2 in (Viossat, 2007a)). Finally, the pure strategy

i is eliminated (for a given solution x(·) of a given dynamics) if xi(t) → 0 as

t → +∞.

2 A family of games with a unique correlated

equilibrium

The games considered in (Viossat, 2007a) were 4 × 4 symmetric games with

payoff matrix

Uα =











0 −1 ε −α

ε 0 −1 −α

−1 ε 0 −α
−1+ε

3
+ α −1+ε

3
+ α −1+ε

3
+ α 0











(1)

with ε in ]0, 1[, and 0 < α < (1 − ε)/3. The 3 × 3 game obtained by omitting

the fourth strategy is a Rock-Paper-Scissors game (RPS). This game has a

unique Nash equilibrium : (1/3, 1/3, 1/3), which is also the unique correlated

equilibrium. When α = 0, the fourth strategy of the full game earns the same

payoff as n = (1/3, 1/3, 1/3, 0), and there is a segment of symmetric Nash

equilibria : for every x ∈ [n, e4] = {λn + (1 − λ)e4, λ ∈ [0, 1]}, (x,x) is a

Nash equilibrium. For α > 0, e4 earns more than n, so (e4, e4) is a strict Nash

equilibrium, and the unique correlated equilibrium is e4 ⊗ e4. However, for α

small enough, the best-response cycle e1 → e2 → e3 → e1 remains and the

corresponding set :

Γ = {x ∈ S4 : x4 = 0 and x1x2x3 = 0}. (2)

is asymptotically stable under the replicator dynamics

ẋi(t) = xi(t) [(Ux(t))i − x(t) ·Ux(t)] .

It follows that there exist games for which, for an open set of initial conditions,

the replicator dynamics eliminate all strategies used in correlated equilibrium

(Viossat, 2007a).

This article shows that elimination of all strategies used in correlated equi-

librium does not only occur for non-generic games and the replicator dynamics,

but for an open set of games and many other dynamics. This is done by showing

that, for many dynamics, there are values of α and ε such that, for every game

in a neighborhood of (1):

(i) the unique correlated equilibrium is e4 ⊗ e4;

(ii) for an open set of initial conditions, strategy 4 is eliminated.

Point (i) is the object of the following proposition:
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Proposition 2.1 For every ε in ]0, 1[ and every α in ]0, (1− ε)/3[, every game

in the neighborhood of (1) has a unique correlated equilibrium: e4 ⊗ e4.

Proof. Since the set of games with a unique correlated equilibrium is open

(Viossat, 2007b) and game (1) has a unique correlated equilibrium, it follows

that every game in a neighborhood of (1) has a unique correlated equilibrium.

Since e4 ⊗ e4 is clearly a correlated equilibrium of every game sufficiently close

to (1), the result follows.

To prove (ii), a first method is to show that in (1), and every nearby game,

the cyclic attractor of the underlying RPS game is still asymptotically sta-

ble. This is the method we use for monotonic dynamics and for weakly sign-

preserving dynamics. When in the underlying RPS game the attractor is not

precisely known, but the Nash equilibrium is repelling, another method may be

used. It consists in showing that there is a tube surrounding the segment [n, e4]

which repels solutions and such that outside of this tube, x4 decreases along all

trajectories. We use this method for the Brown-von-Neumann-Nash dynamics.

For the best-response dynamics, both methods work.

3 Monotonic or weakly sign-preserving dynam-

ics

We first need some definitions. Consider a dynamics of the form

ẋi = xigi(x) (3)

where the C1 functions gi have the property that
∑

i∈I xigi(x) = 0 for all x

in S4, so that the simplex S4 and its boundary faces are invariant. Such a

dynamics is monotonic if the growth rates of the different strategies are ranked

according to their payoffs:1

gi(x) > gj(x) ⇔ (Ux)i > (Ux)j ∀i ∈ I, ∀j ∈ I.

It is weakly sign-preserving (WSP) (Ritzberger and Weibull, 1995) if whenever

a strategy earns below average, its growth rate is negative:

[(Ux)i < x ·Ux] ⇒ gi(x) < 0.

Dynamics2 of type (3) implicitly depend on the payoff matrix U. Thus, a more

correct writing of (3) would be: ẋi = xigi(x,U). Such a dynamics depends

1This property goes under various names in the literature: relative monotonicity in (Nach-

bar, 1990), order-compatibility of pre-dynamics in (Friedman, 1991), monotonicity in (Samuel-

son and Zhang, 1992), which we follow, and payoff monotonicity in (Hofbauer and Weibull,

1996).
2Instead of dynamics of type (3), Ritzberger and Weibull (1995) consider dynamics of the

more general type ẋi = hi(x), that need not leave the faces of the simplex positively invariant.

Thus, we only consider a subclass of their WSP dynamics.
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continuously on the payoff matrix if, for every i in I, gi depends continuously

on U. A prime example of a dynamics of type (3) which is monotonic, WSP,

and depends continuously on the payoff matrix is the replicator dynamics.

Finally, a closed subset C of S4 is asymptotically stable if it is both:

(a) Lyapunov stable: for every neighborhood N1 of C, there exists a neigh-

borhood N2 of C such that, for every initial condition x(0) in N2, x(t) ∈ N1 for

all t ≥ 0.

(b) locally attracting: there exists a neighborhood N of C such that, for

every initial condition x(0) in N , minc∈C ||x(t) − c|| →t→+∞ 0 (where || · || is

any norm on R
I).

Proposition 3.1 Fix a monotonic or WSP dynamics (3) that depends contin-

uously on the payoff matrix. For every α in ]0, 1/3[, there exists ε > 0 such that

for every game in the neighborhood of (1), the set Γ defined by (2) is asymptot-

ically stable.

Proof for monotonic dynamics. Consider a monotonic dynamics (3). Un-

der this dynamics, for every game in the neighborhood of (1), the set Γ is a

heteroclinic cycle. That is, a set consisting of saddle rest points and the saddle

orbits connecting these rest points. Thus we may use the asymptotic stability’s

criteria for heteroclinic cycles developed by Hofbauer (1994) (a more accessible

reference for this result is theorem 17.5.1 in (Hofbauer and Sigmund, 1998)).

Specifically, associate with the heteroclinic cycle Γ its so-called characteristic

matrix. That is, the 3 × 4 matrix whose entry in row i and column j is gj(ei)

(for i 6= j, this is the eigenvalue in the direction of ej of the linearization of the

vector field at ei):

1 2 3 4

e1 0 g2(e1) g3(e1) g4(e1)

e2 g1(e2) 0 g3(e2) g4(e2)

e3 g1(e3) g2(e3) 0 g4(e3)

(gi(ei) = 0 because ei is a rest point of (3)).

Call C this matrix. If p is a real vector, let p < 0 (resp. p > 0) mean that

all coordinates of p are negative (resp. positive). Hofbauer (1994) shows that

if the following conditions are satisfied, then Γ is asymptotically stable:

There exists a vector p in R
4 such that p > 0 and Cp < 0. (4)

Γ is asymptotically stable within the boundary of S4.
3 (5)

Therefore, to prove proposition 3.1, it is enough to show that for every α in

]0, 1/3[, there exists ε > 0 such that, for every game in the neighborhood of (1),

3That is, for each proper face (subsimplex) F of S4, if Γ ∩ F is nonempty, then it is

asymptotically stable for the dynamics restricted to F .
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conditions (4) and (5) are satisfied. We begin with a lemma. In the remainder

of this section, i ∈ {1, 2, 3} and i− 1 and i+ 1 are counted modulo 3.

Lemma 3.2 For every 0 < α < 1/3, there exists ε > 0 such that in game (1),

for every i in {1, 2, 3},

g4(ei) < 0 and 0 < gi+1(ei) < −gi−1(ei). (6)

Proof. For ε > 0, at the vertex ei, the payoff of strategy 4 (resp. i + 1)

is strictly smaller (greater) than the payoff of strategy i. Since the growth

rate of strategy i at ei is 0, this implies by monotonicity g4(ei) < 0 (resp.

gi+1(ei) > 0). It remains to show that gi+1(ei) < −gi−1(ei). For ε = 0, we

have: (Uei)i = (Uei)i+1 > (Uei)i−1 so that 0 = gi+1(ei) > gi−1(ei). There-

fore gi+1(ei) < −gi−1(ei) and since the dynamics depends continuously on the

payoff matrix, this still holds for small positive ε.

We now prove proposition 3.1. Fix α and ε as in lemma 3.2. Note that since the

dynamics we consider depends continuously on the payoff matrix, there exists

a neighborhood of the game (1) in which the strict inequalities (6) still hold.

Thus, to prove proposition 3.1, it suffices to show that (6) implies (4) and (5).

(6) ⇒ (4) : It follows from (6) that if p1 = p2 = p3 = 1 and p4 > 0, then

Cp < 0. Therefore, condition (4) is satisfied.

(6) ⇒ (5) : We use again characteristic matrices. Let Ĉ denote the 3 × 3

matrix obtained from C by omitting the fourth column. This corresponds to the

characteristic matrix of Γ, when viewed as a heteroclinic cycle of the underlying

3× 3 RPS game. In this RPS game, the set Γ is trivially asymptotically stable

on the relative boundary of S3 (Γ is the relative boundary!). Furthermore, for

p̂ = (1/3, 1/3, 1/3) > 0, the last inequality in (6) implies that Ĉp̂ < 0. There-

fore, it follows from theorem 1 of Hofbauer (1994) that, in the 4×4 initial game,

Γ is asymptotically stable on the face spanned by e1, e2, e3. Asymptotic stabil-

ity on the face spanned by ei, ei+1, e4 follows easily from the following facts :

on this face, ei+1 is a sink, ei a saddle, every solution starting in ]ei, ei+1] con-

verges to ei+1, and x(t) depends smoothly on x(0). This concludes the proof.

Proof of proposition 3.1 for WSP dynamics. The proof is exactly the

same, except for the proof of lemma 3.2, which is as follows: Fix a WSP dy-

namics (3). For concreteness, set i = 2. At e2, strategy 4 earns less than average.

Therefore g4(e2) < 0. Now consider the case ε = 0: at every point x in the

relative interior of the edge [e1, e2], strategy 3 earns strictly less than average

hence its growth rate is negative. By continuity at e2 this implies g3(e2) ≤ 0.
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Since at e2, strategy 1 earns strictly less than average, it follows that g1(e2) < 0,

hence g3(e2) < −g1(e2). Since the dynamics depends continuously on the payoff

matrix, this still holds for small positive ε.

To establish (6), it suffices to show that g3(e2) is positive for every sufficiently

small positive ε. Let ε > 0. If λ > 0 is sufficiently small then, for all µ > 0 small

enough, the unique strategy which earns weakly above average at x = (λµ, 1−

µ− λµ, µ, 0) is strategy 3, hence gi(x) < 0 for i 6= 3. Since
∑

1≤i≤4
xigi(x) = 0,

it follows that x1g1(x) + x3g3(x) > 0, hence λµg1(x) + µg3(x) > 0, hence

g3(x) > −λg1(x). Letting µ go to zero, we obtain g3(e2) ≥ −λg1(e2) > 0

(g1(e2) < 0 was proved in the previous paragraph).

4 Best-response dynamics

4.1 Main result

The best-response dynamics (Gilboa and Matsui, 1991; Matsui, 1992) is given

by the differential inclusion:

ẋ(t) ∈ BR(x(t))− x(t), (7)

where BR(x) is the set of best responses to x:

BR(x) = {y ∈ SN : y ·Ux = max
z∈SN

z ·Ux}.

A solution x(·) of the best-response dynamics is an absolutely continuous func-

tion satisfying (7) for almost every t. For the games and the initial conditions

that we will consider, there is a unique solution starting from each initial con-

dition.4

Consider a 4× 4 symmetric game with payoff matrix U. Let

V (x) := max
1≤i≤3



(Ux)i −
∑

1≤i≤4

uiixi



 and W (x) := max(x4, |V (x)|). (8)

For every game sufficiently close to (1), the set

ST := {x ∈ S4 : W (x) = 0} (9)

is a triangle, which, following Gaunersdorfer and Hofbauer (1995), we call the

Shapley triangle.

Proposition 4.1 For every game sufficiently close to (1), if strategy 4 is not

a best response to x(0), then for all t ≥ 0, x(t) is uniquely defined, and x(t)

converges to the Shapley triangle (9) as t → +∞.

4We focus on forward time and never study whether a solution is uniquely defined in

backward time.
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Proof. We begin with a lemma, which is the continuous time version of the

improvement principle of Monderer and Sela (1997):

Lemma 4.2 (Improvement principle) Let t1 < t2, let b be a best response

to x(t1) and let b
′ ∈ S4. Assume that ẋ = b − x (hence the solution points

towards b) for all t in ]t1, t2[. If b
′ is a best response to x(t2) then b

′·Ub ≥ b·Ub,

with strict inequality if b′ is not a best response to x(t1).

Proof of lemma 4.2. Between t1 and t2, the solution points towards b. There-

fore there exists λ in ]0, 1[ such that

x(t2) = λx(t1) + (1 − λ)b. (10)

If b′ is a best response to x(t2) then (b′ − b) ·Ux(t2) ≥ 0 so that, substituting

the right-hand-side of (10) for x(t2), we get:

(1 − λ)(b′ − b) ·Ub ≥ λ(b− b′) ·Ux(t1). (11)

Since b is a best response to x(t1), the right-hand-side of (11) is nonnegative,

and positive if b′ is not a best response to x(t1). The result follows.

Proof of proposition 4.1 for game (1). Fix a solution x(·) of (7) such

that strategy 4 is not a best response to x(0). Note that for any x in S4,

BR(x) 6= conv ({e1, e2, e3}), because e4 strictly dominates (1/3, 1/3, 1/3, 0).

Thus, either there is a unique best response to x(0) or, counting i modulo 3,

BR(x(0)) = conv ({ei, ei+1}) for some i in {1, 2, 3}. Assume for concreteness

that strategy 1 is the unique best response to x(0). The solution then initially

points towards e1, until some other pure strategy becomes a best response. Due

to the improvement principle (lemma 4.2), this strategy can only be strategy 2.

Thus, the solution must then point towards the edge [e1, e2]. Since strategy 2

strictly dominates strategy 1 in the game restricted to {1, 2} × {1, 2}, strategy

2 immediately becomes the unique best response. Iterating this argument, we

see that the solution will point towards e2, till 3 becomes a best response, then

towards e3, till 1 becomes a best response again, and so on.

To show that this behaviour continues for ever, it suffices to show that the

times at which the direction of the trajectory changes do not accumulate. This

is the object of the following claim, which will be proved in the end:

Claim 4.3 The time length between two successive times when the direction of

x(t) changes is bounded away from zero.

Now recall (8), and note that for game (1) the terms uii are zero, so that

V (x) = max1≤i≤3(Ux)i. Let v(t) := V (x(t)), w(t) := W (x(t)). When x(t)

points towards ei (with i in {1, 2, 3}), we have ẋ4 = −x4 and

v̇ = (Uẋ)i = (U(ei − x))i = −v. (12)
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Therefore ẇ = −w. Since for almost all time t, x(t) points towards e1, e2 or

e3, it follows that w(t) decreases exponentially to 0. Therefore x(t) converges

to the Shapley triangle.

To complete the proof, we still need to prove claim 4.3:

Proof of claim 4.3: In what follows i ∈ {1, 2, 3} and i+ 1 is counted modulo

3. Fix an initial condition and let

g(t) := max
1≤i,j≤3

[(Ux(t))i − (Ux(t))j ]

denote the maximum difference between the payoffs of strategies in {1, 2, 3}. Let

tki denote the kth time at which strategy i becomes a best response and choose i

such that tki < tki+1. Simple computations, detailed in (Viossat, 2006, p.11-12),

show that:

g(tk+1

i ) =
1

ε3 + g(tki )(1 + ε+ ε2)
g(tki ). (13)

Since ε < 1, it follows that for small g(tki ), we have g(tk+1

i ) > g(tki ); therefore

g(tki ) is bounded away from zero. Now, since (Ux(t))i − (Ux(t))i+1 decreases

from g(tki ) to 0 between tki and tki+1, and since the speed at which this quantity

varies is bounded, it follows that tki+1− tki is bounded away from zero too. That

is, the time length between two successive times at which the direction of x(t)

changes is bounded away from zero.

Proof of proposition 4.1 for games close to (1). Counting i modulo 3,

let αi = uii − ui−1,i and βi = ui+1,i − uii, i = 1, 2, 3. Let i ∈ {1, 2, 3}. For

every game sufficiently close to (1), αi and βi are positive, α1α2α3 > β1β2β3,

u4i < uii, and strategy 4 strictly dominates (1/3, 1/3, 1/3, 0). Furthermore, for

every game satisfying these conditions, the proof of proposition 4.1 for game (1)

goes through. The only differences are that equation (12) becomes

v̇ = (Uẋ)i −
∑

1≤j≤4

ujj ẋj = (U(ei − x))i −



uii −
∑

1≤j≤4

ujjxj



 = −v

and equation (13) becomes

g(tk+1

i ) =
α1α2α3

β1β2β3 + g(tki )(α1α2 + α1β3 + β2β3)
g(tki ).

See (Viossat, 2006) for details. This completes the proof.

Note that for every η > 0, we may set the parameters of (1) so that the

set {x ∈ S4 : e4 ∈ BR(x)} has Lebesgue measure less than η. In this sense,

the basin of attraction of the Shapley triangle can be made arbitrarily large.

Similarly, for the replicator dynamics, the basin of attraction of the heteroclinic

cycle (2) can be made arbitrarily large (Viossat, 2007a). For additional results
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on the best-response dynamics and of the replicator dynamics in 4 × 4 games

based on a RPS game, see (Viossat, 2006).

5 Brown-von Neumann-Nash dynamics

The Brown-von Neumann-Nash dynamics (henceforth BNN) is given by:

ẋi = ki(x)− xi

∑

j∈I

kj(x) (14)

where

ki(x) := max(0, (Ux)i − x ·Ux) (15)

is the excess payoff of strategy i over the average payoff. We refer to (Hofbauer, 2000;

Berger and Hofbauer, 2006) and references therein for a motivation of and re-

sults on BNN.

Let G0 denote the game (1) with α = 0. Recall that U0 denotes its payoff

matrix and n =
(

1

3
, 1

3
, 1

3
, 0
)

the mixed strategy corresponding to the Nash equi-

librium of the underlying RPS game. It may be shown that the set of symmetric

Nash equilibria of G0 is the segment E0 = [n, e4].
5 This section is devoted to a

proof of the following proposition:

Proposition 5.1 If C is a closed subset of S4 disjoint from E0, then there

exists a neighborhood of G0 such that, for every game in this neighborhood and

every initial condition in C, x4(t) → 0 as t → +∞.

Any neighborhood of G0 contains a neighborhood of a game of kind (1), hence

an open set of games for which e4 ⊗ e4 is the unique correlated equilibrium.

Together with proposition 5.1, this implies that there exists an open set of games

for which, under BNN, the unique strategy played in correlated equilibrium is

eliminated from an open set of initial conditions.

The essence of the proof of proposition 5.1 is to show that, for games close

to G0, there is a “tube” surrounding E0 such that: (i) the tube repels solutions

coming from outside; (ii) outside of the tube, strategy 4 earns less than average,

hence x4 decreases. We first show that in G0 the segment E0 is locally repelling.

The function

V0(x) :=
1

2

∑

i∈I

k2i =
1

2

∑

i∈I

[max (0, (U0x)i − x ·U0x)]
2

is continuous, nonnegative and equals 0 exactly on the symmetric Nash equilib-

ria, i.e. on E0, so that V0(x) may be seen as a distance from x to E0. Fix an

initial condition and let v0(t) := V0(x(t)).

5The game G0 has other, asymmetric equilibria, but they will play no role.
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Lemma 5.2 There exists an open neighborhood Neq of E0 such that, under

BNN in the game G0, v̇0(t) > 0 whenever x(t) ∈ Neq\E0.

Proof. It is easily checked that:

n ·U0x = e4 ·U0x ∀x ∈ S4 (16)

(that is, n and e4 always earn the same payoff) and

(x− x′) ·U0e4 = (x− x′) ·U0n = 0 ∀x ∈ S4, ∀x
′ ∈ S4 (17)

(that is, against e4 [resp. n], all strategies earn the same payoff). Furthermore,

as follows from lemma 4.1 in (Viossat, 2007a), for every p in E0 and every

x /∈ E0,

(x − p) ·U0x = (x− p) ·U0(x− p) =
1− ε

2

∑

1≤i≤3

(

xi −
1− x4

3

)2

> 0. (18)

Hofbauer (2000) shows that the function v0 satisfies

v̇0 = k̄2 [(q− x) ·U0(q− x)− (q− x) ·U0x] (19)

with x = x(t), k̄ =
∑

i ki and qi = ki/k̄. It follows from equation (17) that if

p ∈ E0, then against p all strategies earn the same payoff. Therefore the second

term (q− x) ·U0x goes to 0 as x approaches E0. Thus, to prove lemma 5.2, it

suffices to show that as x approaches E0, the first term (q − x) ·U0(q − x) is

positive and bounded away from 0. But for x /∈ E0,

min
1≤i≤3

(U0x)i ≤ n ·U0x = (U0x)4 < x ·U0x (20)

(the first inequality holds because n is a convex combination of e1, e2 and e3,

the equality follows from (16) and the strict inequality from (18) applied to

p = e4). It follows from (U0x)4 < x ·U0x that k4 = 0 hence q4 = 0; similarly,

it follows from min1≤i≤3(U0x)i < x · U0x that qi = 0 for some i in {1, 2, 3}.

Together with (18) applied to x = q, this implies that for every p in E0,

(q− p) ·U0(q− p) =
1− ε

2

∑

1≤i≤3

(

qi −
1

3

)2

≥
1− ε

18
.

This completes the proof.

Proof of proposition 5.1. Consider first the BNN dynamics in the game

G0. Recall lemma 5.2 and let

0 < δ < min
x∈S4\Neq

V0(x) (21)
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(the latter is positive because V0 is positive on S4\E0, hence on S4\Neq, and

because S4\Neq is compact). Note that if V0(x) ≤ δ then x ∈ Neq. Therefore it

follows from lemma 5.2 and δ > 0 that

v0(t) = δ ⇒ v̇0(t) > 0. (22)

Let

Cδ := {x ∈ S4 : V0(x) ≥ δ}.

Since δ > 0, the sets Cδ and E0 are disjoint. Therefore, by (18) applied to

p = e4,

x ∈ Cδ ⇒ (U0x)4 − x ·U0x < 0 (23)

so that x4 decreases strictly as long as x ∈ Cδ and x4 > 0. Since, by (22),

the set Cδ is forward invariant, it follows that for any initial condition in Cδ,

strategy 4 is eliminated.

Now let ∇V0(x) = (∂V0/∂xi)1≤i≤n (x) denote the gradient of V0 at x. It is

easy to see that V0 is C1. Therefore it follows from (22), v̇0(t) = ∇V0(x(t)) · ẋ(t)

and compactness of {x ∈ S4 : V0(x) = δ} that

∃γ > 0, [v0(t) = δ ⇒ v̇0(t) ≥ γ > 0] . (24)

Similarly, since Cδ is compact, it follows from (23) that there exists γ′ > 0 such

that

x ∈ Cδ ⇒ (U0x)4 − x ·U0x ≤ −γ′ < 0. (25)

Since ẋ is Lipschitz in the payoff matrix, it follows from (24) that for U close

enough to U0, we still have v0(t) = δ ⇒ v̇0 > 0 under the perturbed dynamics.

Similarly, due to (25), we still have x ∈ Cδ ⇒ (Ux)4 − x · Ux < 0. Therefore

the above reasoning applies and for every initial condition in Cδ, strategy 4 is

eliminated.

Note that δ can be chosen arbitrarily small (see (21)). Therefore, to complete

the proof of proposition 5.1, it suffices to show that if C is a compact set disjoint

from E0 then, for δ sufficiently small, C ⊂ Cδ. But since V0 is positive on S4\E0,

and since C is compact and disjoint from E0, it follows that there exists δ′ > 0

such that, for all x in C, V0(x) ≥ δ′; hence, for all δ ≤ δ′, C ⊂ Cδ. This

completes the proof.

Hofbauer (2000, section 6) considers the following generalization of the BNN

dynamics:

ẋi = f(ki)− xi

n
∑

j=1

f(kj) (26)

where f : R+ → R+ is a continuous function with f(0) = 0 and f(u) > 0 for

u > 0, and where ki is defined as in (15). The results of this section generalize

to any such dynamics:
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Proposition 5.3 Consider a dynamics of type (26). If C is a closed subset

of S4 disjoint from E0, then there exists a neighborhood of G0 such that, for

every game in this neighborhood and every initial condition in C, x4(t) → 0 as

t → +∞.

Proof. Replace V0(x) by W0(x) :=
∑

i F (ki(x)), where F is an anti-derivative

of f , and replace ki by f(ki). Let f̄ =
∑

i f(ki), f̃i = f(ki)/f̄ , and f̃ =
(

f̃i

)

1≤i≤N
. Finally, let w0(t) = W0(x(t)). As shown by Hofbauer (2000),

ẇ0 = f̄ 2

[

(̃f− x) ·U0(̃f− x)− (̃f− x) ·U0x
]

which is the analogue of (19). Then apply exactly the same proof as for BNN.

6 Robustness to the addition of mixed strategies

as new pure strategies

We showed that for many dynamics, there exists an open set of symmetric 4×4

games for which, from an open set of initial conditions, the unique strategy used

in correlated equilibrium is eliminated. Since we might not want to rule out the

possibility that individuals use mixed strategies, and that mixed strategies be

heritable, it is important to check whether our results change if we explicitly

introduce mixed strategies as new pure strategies of the game. The paradigm is

the following (Hofbauer and Sigmund, 1998, section 7.2): there is an underlying

normal-form game, called the base game, and a finite number of types of agents.

Each type plays a pure or mixed strategy of the base game. We assume that

each pure strategy of the base game is played (as a pure strategy) by at least one

type of agent, but otherwise we make no assumptions on the agents’ types. The

question is whether we can nonetheless be sure that, for an open set of initial

conditions, all strategies used in correlated equilibrium are eliminated. This

section shows that the answer is positive, at least for the best-response dynamics

and the replicator dynamics. We first need some notations and vocabulary.

Let G be a finite game with strategy set I = {1, ..., N} and payoff matrix U.

A finite game G′ is built on G by adding mixed strategies as new pure strategies

if:

First, letting I ′ = {1, ..., N,N + 1, ..., N ′} be the set of pure strategies of G′

and U′ its payoff matrix, we may associate to each pure strategy i in I ′ a mixed

strategy pi in SN in such a way that:

∀i ∈ I ′, ∀j ∈ I ′, e′i ·U
′e′j = pi ·Upj (27)

where e′i is the unit vector in SN ′ corresponding to the pure strategy i.
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Second, if 1 ≤ i ≤ N , the pure strategy i in the game G′ corresponds to the

pure strategy i in the base game G:

1 ≤ i ≤ N ⇒ pi = ei. (28)

If µ′ = (µ(k, l))1≤k,l≤N ′ is a probability distribution over I ′× I ′, then it induces

the probability distribution µ on I × I given by:

µ(i, j) =
∑

1≤k,l≤N ′

µ′(k, l)pki p
l
j ∀(i, j) ∈ I × I.

It follows from a version of the revelation principle (see Myerson, 1994) that, if

G′ is built on G by adding mixed strategies as new pure strategies, then for any

correlated equilibrium µ′ of G′, the induced probability distribution on I × I

is a correlated equilibrium of G. Thus, if G is a 4 × 4 symmetric game with

e4 ⊗ e4 as unique correlated equilibrium, then µ′ is a correlated equilibrium of

G′ if and only if, for every k, l in I ′ such that µ′(k, l) is positive, pk = pl = e4.

Thus, the unique strategy of G used in correlated equilibria of G′ is strategy 4.

We show below that:

Proposition 6.1 For the replicator dynamics and for the best-response dynam-

ics, there exists an open set of 4× 4 symmetric games such that, for any game

G in this set:

(i) e4 ⊗ e4 is the unique correlated equilibrium of G

(ii) For any game G′ built on G by adding mixed strategies as new pure

strategies and for an open set of initial conditions, every pure strategy k in I ′

such that pk4 > 0 is eliminated.

(the open set of initial conditions in property (ii) is a subset of SN ′ , the simplex

of mixed strategies of G′, and may depend on G′)

6.1 Proof for the best-response dynamics

Let G be a finite game and let G′ be a finite game built on G by adding mixed

strategies of G as new pure strategies. Associate to each mixed strategy x′ in

SN ′ the induced mixed strategy x in SN defined by:

x :=
N ′

∑

k=1

x′
kp

k. (29)

Let x′(·) be a solution of the best-response dynamics in G′ and x(·) the induced

mapping from R+ to SN .

Proposition 6.2 x(·) is a solution of the best-response dynamics in G.

14



Proof. For almost all t ≥ 0, there exists a vector b′ ∈ BR(x′(t)) such that

ẋ′(t) = b′ − x′(t). Let b :=
∑

k∈I′ b′kp
k ∈ SN . It follows from (29) that:

ẋ(t) =

N ′

∑

k=1

ẋ′
kp

k =

N ′

∑

k=1

(b′k − x′
k)p

k = b− x(t). (30)

Furthermore, since b′ is a best response to x′(t), it follows from (27) and (28)

that b is a best response to x(t). Together with (30), this implies that, for

almost all t, ẋ ∈ BR(x)− x. The result follows.

Since

xi(t) → 0 ⇒
(

∀k ∈ N ′,
[

pki > 0 ⇒ x′
k(t) → 0

])

proposition 6.1 follows from propositions 4.1 and 6.2.

6.2 Proof for the replicator dynamics

Recall that G0 denotes game (1) with α = 0. Since, as already mentioned,

every neighborhood of G0 contains an open set of games with e4 ⊗ e4 as unique

correlated equilibrium, it suffices to show that every game close enough to G0

satisfies property (ii) of proposition 6.1. This is done in the appendix.

The intuition is the following: first note that, for a game G close to G0, the

set Γ defined in (2) is an attractor, close to which strategy 4 earns less than

average. Now consider a game G′ built on G by adding mixed strategies as new

pure strategies and let Γ′ denote the subset of SN ′ corresponding to Γ:

Γ′ = {x ∈ SN ′ : x1 + x2 + x3 = 1 and x1x2x3 = 0}

For an initial condition close to Γ′: (a) as long as the share of strategies k ≥ 4

remains low, the solution remains close to Γ′; (b) as long as the solution is close

to Γ′, strategy 4 earns less than average and its share decreases; (c) as long as

the share of strategy 4 does not increase, the share of strategies k ≥ 5 remains

low; moreover, if the share of strategy x4 decreases, so does, on average, the

share of each added mixed strategy in which strategy 4 is played with positive

probability.

Putting (a), (b) and (c) together gives the result.

7 Discussion

We showed that elimination of all strategies used in correlated equilibrium is a

robust phenomenon, in that it occurs for many dynamics, an open set of games

and an open set of initial conditions. Furthermore, at least for some of the lead-

ing dynamics, the results are robust to the addition of mixed strategies as new

pure strategies. Under the replicator dynamics, the best-response dynamics or

15



the Brown-von Neumann-Nash dynamics, the basin of attraction of the Nash

equilibrium of (1) can be made arbitrarily small. In particular, the minimal dis-

tance from the cyclic attractor to the basin of attraction of the Nash equilibrium

can be made much larger than the minimal distance from the Nash equilibrium

to the basin of attraction of the cyclic attractor. The latter would thus be

stochastically stable in a model à la Kandori, Mailath and Rob (1993).6 These

results show a sharp difference between evolutionary dynamics and “adaptive

heuristics” such as no-regret dynamics (Hart and Mas-Collel, 2003; Hart, 2005)

or hypothesis testing (Young, 2004, chapter 8).

Some limitations of our results should however be stressed. First, our results

have been shown here only for single-population dynamics. They imply that

for some games and some interior initial conditions, two-population dynamics

eliminate all strategies used in correlated equilibrium7; but maybe not for an

open set of games nor for an open set of initial conditions.

Second, the monotonic and weakly sign-preserving dynamics of section 3

are non-innovative: strategies initially absent do not appear. This has the

effect that, even when focusing on interior initial conditions, the growth of

the share of the population playing strategy i is limited by the current value

of this share. This is appropriate if we assume that agents have to meet an

agent playing strategy i to become aware of the possibility of playing strategy

i; but in general, as discussed by e.g. Swinkels (1993, p.459), this seems more

appropriate in biology than in economics. While our results hold also for some

important innovative dynamics, such as the best-response dynamics and a family

of dynamics including the Brown-von Neumann-Nash dynamics, more general

results would be welcome.

Third, in the games we considered, the unique correlated equilibrium is a

strict Nash equilibrium, and is thus asymptotically stable under most reasonable

dynamics, including all those we studied. Thus, there is still an important

connection between equilibria and the outcome of evolutionary dynamics.

For Nash equilibrium, these three limitations can be overcome, at least par-

tially: there are wide classes of multi-population innovative dynamics for which

there exists an open set of games such that, for an open set of initial condi-

tions, all strategies belonging to the support of at least one Nash equilibrium

are eliminated (Viossat, 2005, chapter 11). Moreover, for the single-population

replicator dynamics or the single-population best-response dynamics, there are

games for which, for almost all initial conditions, all strategies used in Nash

6The (unperturbed) dynamics used by Kandori, Mailath and Rob (1993) is a discrete-

time version of the best-response dynamics, but it could easily be replaced by a discrete-time

version of another dynamics.
7This is because for symmetric two-player games with symmetric initial conditions, two-

population dynamics reduce to single-population dynamics, at least for the replicator dynam-

ics, the best-response dynamics and the Brown-von-Neumann Nash dynamics.
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equilibrium are eliminated (Viossat, 2005, chapter 12). Whether these results

extend to correlated equilibrium is an open question.

A Proof of proposition 6.1 for the replicator dy-

namics

We need to show that for every game close enough to G0, property (ii) of propo-

sition 6.1 is satisfied. As in section 5, let E0 = [n, e4], with n = (1/3, 1/3, 1/3, 0).

For x in S4\{e4}, let

V (x) := 3
(x1x2x3)

1/3

x1 + x2 + x3

.

The function V takes its maximal value 1 on E0\{e4} and its minimal value 0

on the set {x ∈ S4\{e4} : x1x2x3 = 0}. Fix δ in ]0, 1[. If V (x) ≤ δ then x /∈ E0,

hence it follows from (20) that, at x, strategy 4 earns strictly less than average.

Together with a compactness argument, this implies that there exists γ1 > 0

such that:

V (x) ≤ δ ⇒ [(U0x)4 − x ·U0x ≤ −γ1] . (31)

Furthermore, it is shown in (Viossat, 2007a) that in G0, under the replicator

dynamics, the function V (x) decreases strictly along interior trajectories (except

those starting in E0). More precisely, for every interior initial condition x(0) /∈

E0 and every t in R, the function v0(t) := V (x(t)) satisfies v̇0(t) < 0. Together

with the compactness of {x ∈ S4\{e4}, V (x) = δ}, this implies that there exists

γ2 > 0 such that

v0(t) = δ ⇒ v̇0(t) ≤ −γ2. (32)

Fix a 4× 4 matrix U and a solution x(·) of the replicator dynamics with payoff

matrix U, with x(0) 6= e4. Let v(t) := V (x(t)). Thus, the difference between v0
and v is that, in the definition of v, x(·) is a solution of the replicator dynamics

for the payoff matrix U and not for U0. Since (Ux)4 − x · Ux and ẋ are

Lipschitz in U, it follows from (31) and (32) that there exists γ > 0 such that,

if ||U−U0|| < γ:

V (x) ≤ δ ⇒ [(Ux)4 − x ·Ux ≤ −γ] (33)

and

v(t) = δ ⇒ v̇(t) ≤ −γ. (34)

Fix a game G with payoff matrix U such that ||U−U0|| < γ. Let G′ be a game

built on G by adding mixed strategies of G as new pure strategies, and let U′

be its payoff matrix. For x′ in SN ′ such that x′
1 + x′

2 + x′
3 > 0, let

V ′(x′) := 3
(x′

1x
′
2x

′
3)

1/3

x′
1 + x′

2 + x′
3

.
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Consider a solution x′(·) of the replicator dynamics in G′ (with
∑

1≤i≤3
x′
i(0) >

0) and let v′(t) = V ′(x′(t)). On the face of SN ′ spanned by the strategies of the

original game:






x′ ∈ SN ′ :
∑

1≤i≤4

x′
i = 1







,

the replicator dynamics behaves just as in the base-game. Therefore, (33) and

(34) imply trivially that:





∑

1≤i≤4

x′
i = 1 and V ′(x′) ≤ δ



 ⇒
[

(U′x′)4 − x′ ·U′x′ ≤ −γ
]

(35)

and




∑

1≤i≤4

x′
i = 1 and v′(t) = δ



 ⇒ v̇′(t) ≤ −γ. (36)

Now define x̄′ ∈ SN ′ as the projection of x′ on the face of SN ′ spanned by the

strategies of the original game. That is,

x̄′
i =

x′
i

∑

1≤j≤4
x′
j

if 1 ≤ i ≤ 4, and x̄′
i = 0 otherwise.

Note that V ′(x′) = V (x̄′). Furthermore, a simple computation shows that

max
1≤i≤N ′

|x′
i − x̄′

i| ≤ N ′ max
5≤k≤N ′

x′
k.

Therefore, since (U′x′)4 − x′ ·U′x′ and the vector field ẋ′ are Lipschitz in x′,

it follows from (35) and (36) that there exist positive constants η and γ′ such

that
[

max
5≤k≤N ′

x′
k ≤ η and V ′(x′) ≤ δ

]

⇒ (U′x′)4 − x′ ·U′x′ ≤ −γ′ (37)

and
[

max
5≤k≤N ′

x′
k ≤ η and v′(t) = δ

]

⇒ v̇′(t) ≤ −γ′. (38)

Fix y′ ∈ SN ′ such that

∑

1≤i≤4

y′i = 1, V ′(y′) < δ and C := min
1≤i≤3

y′i > 0.

There exists an open neighborhood Ω of y′ in SN ′ such that

∀x′ ∈ Ω,

[

min
1≤i≤3

x′
i > C/2, max

5≤k≤N ′

x′
k < Cη/2, and V ′(x′) < δ

]

.
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Consider an interior solution x′(·) of the replicator dynamics in G′ with initial

condition in Ω. Recall that pk denotes the mixed strategy of G associated with

the pure strategy k of G′. To prove proposition 6.1 for the replicator dynamics,

it suffices to show that:

Proposition A.1 For all k in {4, ..., N ′} such that pk4 > 0, x′
k(t) →t→+∞ 0.

Proof. We begin with two lemmas:

Lemma A.2 Let T > 0 and k ∈ {5, ..., N ′}. If x′
4(T ) ≤ x′

4(0) then x′
k(T ) < η.

Proof. By construction of G′, strategy k ∈ I ′ earns the same payoff as the

mixed strategy
∑

1≤i≤4
pki e

′
i:

(U′x′)k =
∑

1≤i≤4

pki (U
′x′)i ∀x′ ∈ SN ′ .

Therefore, it follows from the definition of the replicator dynamics that:

ẋ′
k

x′
k

=
∑

1≤i≤4

pki
ẋ′
i

x′
i

.

Integrating between 0 and T and taking the exponential of both sides leads to:

x′
k(T ) = x′

k(0)
∏

1≤i≤4

(

x′
i(T )

x′
i(0)

)pk
i

. (39)

Noting that for 1 ≤ i ≤ 3, we have x′
i(T ) ≤ 1, 1/x′

i(0) ≤ 2/C and 1 ≤ 2/C, we

get:
∏

1≤i≤3

(

x′
i(T )

x′
i(0)

)pk
i

≤
∏

1≤i≤3

(

2

C

)pk
i

=

(

2

C

)1−pk
4

≤
2

C
. (40)

Since furthermore x′
k(0) < Cη/2, we obtain from (39) and (40):

x′
k(T ) <

Cη

2

2

C

(

x′
4(T )

x′
4(0)

)pk
4

= η

(

x′
4(T )

x′
4(0)

)pk
4

. (41)

The result follows.

Lemma A.3 For all t > 0, maxk∈{5,...,N ′} x
′
k(t) < η and v′(t) < δ.

Proof. Otherwise there is a first time T > 0 such that maxk∈{5,...,N ′} x
′
k(T ) = η

or v′(T ) = δ (or both). It follows from (37) and the definition of the replicator

dynamics that if 0 ≤ t ≤ T then
ẋ′

4

x′

4

(t) ≤ −γ′ < 0. Therefore x′
4(T ) ≤ x′

4(0). By

lemma A.2, this implies that maxk∈{5,...,N ′} x
′
k(T ) < η. Therefore, v′(T ) = δ.

Due to (38), this implies that v̇′(T ) < 0. Therefore, there exists a time T1 with
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0 < T1 < T such that v′(T1) > δ, hence a time T2 with 0 < T2 < T1 < T such

v′(T2) = δ, contradicting the minimality of T .

We now conclude: it follows from lemma A.3, equation (37) and the defini-

tion of the replicator dynamics that for all t ≥ 0, x′
4(t) ≤ exp(−γ′t)x′

4(0). By

(41) this implies that for every k in {5, ..., N ′},

∀t ≥ 0, x′
k(t) < η exp(−pk4γ

′t).

Therefore, if pk4 > 0 then x′
k(t) → 0 as t → +∞.
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