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1 Introduction

This paper is a note on how Information Theory and Codification Theory are helpful
in the computational design of both communication protocols and strategy sets in
the framework of finitely repeated games played by boundedly rational agents. More
precisely, we will show their usefulness for improving the existing automaton bounds
of Neyman’s [12] work on finitely repeated games played by finite automata.

Until quite recently, Economics and Game Theory have not yet considered com-
putational complexity as a valuable resource. Therefore, it has sometimes been
predicted that rational agents will invest a large amount of computation even for
small payoffs and for all kind of deviations, in particular, for those from cooperative
behavior. However, if we limit players’ computational power, then new solutions
might emerge, thus providing one of the main motivations for theories of bounded
rationality in Economics (see, Simon [18]). Theories of bounded rationality assume
that decision makers are rational in a broad sense, but not omniscient: they are ra-
tional but with limited abilities. One way to model computational capacity bounds
is by assuming that decision makers use machines (automata) to implement their
strategies. The machine size, or the number of states of the automaton, determines
the bounds on the agents’ rationality.

From the eighties onwards, there have been several papers in the repeated games
literature, which have studied conditions under which the set of feasible and rational
payoffs are equilibrium outcomes, when there are bounds (possibly very large) in the
number of strategies that players may use. In the context of strategies implemented
by finite automata, these bounds have been related to the complexity of the au-
tomata playing the equilibrium strategy (see Neyman [10]; Rubinstein [17]; Abreu
and Rubinstein [1]; Ben-Porath [2]; Neyman [10]; Papadimitriou and Yannakakis
[16]; Neyman and Okada [13], [14], [15], Gossner and Hernández [4]; Zemel [19],
among others).

The number of strategies in finitely repeated games is finite but huge, hence
full rationality in this context can be understood as the ability to implement any
strategy of such games. In the context of finite automata, this implies that if an
agent used an automaton of exponential size with respect to the length of the game,
then he could implement all the strategies and, in particular, the one entailing the
knowledge of the last stage of the game. Alternatively, if the automaton size is
polynomial on the length of the game, then there will be several strategies which
could not be implemented, for instance, defection at the last stage of the game.
Bounds on automata complexity are important for they give a measure of how
far agents are from rational behavior. The bigger the bounds the closer to full
rationality. Therefore, improving the automata bounds means getting closer to a
fully rational behavior yet achieving the Folk Theorem payoffs.

Neyman [12] has shown that players of a long but finite interaction can get arbi-
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trarily close to the cooperative payoffs even if they chose large automata, provided
that they are allowed to randomize on their choices of machines. Specifically, the
key idea is that if a player randomizes among strategies, then her opponent will be
forced to fill up his complexity in order to be able to answer to all the strategies
in the support of such a random strategy. The structure of Neyman’s equilibrium
strategy is twofold: first, the stronger player (the one with the bigger automaton)
specifies the finite set of plays which forms her mixed strategy (uniformly distributed
over the above set); and second, she communicates a play through a message to the
weaker player.

The proof of the existence of such an equilibrium strategy is by construction
and the framework of finite automata imposes two additional requirements, apart
from strategic considerations. One refers to the computational work, which entails
measuring the number of plays and building up a communication protocol between
the two machines. The other is related to the problem of the automata design in
the framework of game theory. These requirements jointly determine the complex-
ity needed to support the equilibrium strategy in games played by finite automata.
Specifically, the complexity of the set of plays is related to the complexity of the
weaker player and the design of this set can be understood as a codification problem
where the weaker player’s complexity is what is codified. These equilibrium strate-
gies can be implemented by finite automata whose size is a subexponential function
of the approximation to the targeted payoff and of the length of the repeated game.
This is a very important result for two reasons. The first is that it suggests that
almost rational agents may follow a cooperative behavior in finitely repeated games
as opposed to their behavior under full rationality. The second is that it allows to
quantify the distance from full rationality through a bound on the automaton size.

We focus on the computational work and apply Information Theory to construct
the set of equilibrium plays, where plays differ from each other in a sequence of
actions called the verification phase. In our approach the complexity of the mixed
strategy is related to the entropy of the empirical distribution of each verification
sequence, which captures, from an Information Theory viewpoint, the cardinality
of the set of equilibrium plays and hence its complexity. Second, by Codification
Theory we offer an optimal communication scheme, mapping plays into messages,
which produces “short words” guaranteeing the efficiency of the process. We propose
a set of messages with the properties that each of them has the same empirical
distribution and all of them exhibit the minimal length. The former property implies
the same payoff for all messages (plays) and the latter ensures the efficiency of the
process. Since the complexity of the weaker player’s automaton implementing the
equilibrium strategy is determined by that of the set of plays, we expand it as
much as possible while maintaining the same payoff per play. Moreover, the length
of communication is the shortest one given the above set. Both procedures allow
us to obtain an equilibrium condition which improves that of Neyman. Under his
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strategic approach, our result offers the biggest upper bound on the weaker player’s
automaton implementing the cooperative outcome: this bound is an exponential
function of both the entropy of the approximation to the targeted payoff and the
number of repetitions.

The paper is organized as follows. The standard model of finite automata play-
ing finitely repeated games is refreshed in Section 2. Section 3 offers our main result
and states Neyman’s Theorem, with Section 4 explaining the key features behind
his construction. The tools of Information Theory and Codification Theory needed
for our approach are presented in Section 5. This section also shows the construc-
tion of the verification and communication sets as well as the consequences of our
construction on the measure of the weaker player’s complexity bound. Concluding
remarks close the paper.

2 The model

For k ∈ R, we let ⌈k⌉ denote the superior integer part of k, i.e. k ≤ ⌈k⌉ < k + 1.
Given a finite set Q, |Q| denotes the cardinality of Q.

Let G = ({1, 2}, (Ai)i∈{1,2}, (ri)i∈{1,2}) be a game where {1, 2} is the set of play-
ers. Ai is a finite set of actions for player i (or pure strategies of player i) and
ri : A = A1 × A2 −→ R is the payoff function of player i.

We denote by ui(G) the individually rational payoff of player i in pure strategies,
i.e., ui(G) = min max ri(ai, a−i) where the max ranges over all pure strategies of
player i, and the min ranges over all pure strategies of the other player. For any
finite set B we denote by ∆(B) the set of all probability distributions on B. An
equilibrium of G is a pair σ = (σ1, σ2) ∈ ∆(A1)×∆(A2) such that for every i and any
strategy of player i, τ i ∈ Ai, ri(τ

i, σ−i) ≤ ri(σ
1, σ2), where r(σ) = Eσ(r(ai, a−i)).

If σ is an equilibrium, the vector payoff r(σ) is called an equilibrium payoff and let
E(G) be the set of all equilibrium payoffs of G.

From G we define a new game in strategic form GT which models a sequence
of T plays of G, called stages. By choosing actions at stage t, players are informed
of actions chosen in previous stages of the game. We denote the set of all pure
strategies of player i in GT by Σi(T ).

Any 2-tuple σ = (σ1, σ2) ∈ ×Σi(T ) of pure strategies induces a play ω(σ) =
(ω1(σ), . . . , ωT (σ)) with ωt(σ) = (ωt

1(σ), ωt
2(σ)) defined by ω1(σ) = (σ1(⊘), σ2(⊘))

and by the induction relation ωt
i(σ) = σi(ω1(σ), . . . , ωt−1(σ)).

Let rT (σ) = 1
T

∑T
t=1 r(ωt(σ)) be the average vector payoff during the first T

stages induced by the strategy profile σ.

A finite automaton Mi of player i, is a finite machine which implements pure
strategies for player i in strategic games, in general, and in repeated games, in
particular. Formally, Mi =< Qi, q

0
i , fi, gi >, where, Qi is the set of states; q0

i is the
initial state; fi is the action function, fi : Qi → Ai and gi is the transition function
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from state to state, gi : Qi×A−i → Qi. The size of a finite automaton is the number
of its states, i.e. the cardinality of |Qi| = mi.

Finally, we define a new game in strategic form GT (m1,m2) which denotes the
T stage repeated version of G, with the average payoff as evaluation criterion and
with all the finite automata of size mi as the pure strategies of player i, i = 1, 2.
Let Σi(T,mi) be the set of pure strategies in GT (m1,m2) that are induced by an
automaton of size mi.

A finite automaton for player i can be viewed as a prescription for this player to
choose her action in each stage of the repeated game. If at state q the other player
chooses the action tuple a−i, then the automaton’s next state is qi = gi(q, a−i) and
the associated action is f i(qi) = f i(gi(q, a−i)). More generally, define inductively,
gi(q, b1, ..., bt) = gi(gi(q, b1, ..., bt−1), bt), where a−i

j ∈ A−i, the action prescribed by

the automaton for player i at stage j is f i(gi(qi, a−i
1 , ..., a−i

t−1)).

For every automaton Mi, we consider the strategy σM
i , of player i in GT (m1,m2),

such that the action at stage t is the one dictated by the action function of the
automaton, after the updating of the transition function for the history of length t−1.
Namely, σM

i (a1, . . . , at−1) = fi(gi(q, a
1
−i, . . . , a

t−1
−i )). The strategy σi for player i in

GT is implementable by the automaton Mi if both strategies generate the same play
for any strategy τ of the opponent, i.e., σi is equivalent to σM

i for every τ ∈ Σ−i(T ):
ω(σi, τ) = ω(σM

i , τ). Denote by E(GT (m1,m2)) the set of equilibrium payoffs of
GT (m1,m2).

Define the complexity of σi denoted by comp(σi), as the size of the smallest
automaton that implements σi. See Kalai and Stanford [9] and Neyman [12], for a
deeper treatment.

Any 2-tuple σ = (σ1, σ2) of pure strategies GT (m1,m2) induces a play ω(σ1, σ2)
of length T (ω, henceforth). Conversely, since a finite play of actions, ω, can be
regarded as a finite sequence of pairs of actions, i.e., ω = (a1, . . . , at) then, the play
ω and a pure strategy σi are compatible, if for every 1 ≤ s ≤ T , σi(a1, . . . , as−1) = as

i .
Now, given a play ω, define player i’s complexity of ω, compi(ω), as the smallest
complexity of a strategy σi of player i which is compatible with ω.

compi(ω) = inf
{

comp(σi) : σi ∈ Σi is compatible with ω
}

.

Let Q be a set of plays. A pure strategy σi of player i is conformable to Q if it is
compatible with any ω ∈ Q. The complexity of player i of a set of plays Q is defined
as the smallest complexity of a strategy σi of player i that is comformable to Q.

compi(Q) = inf
{

compi(σ) : σ ∈ Σi is comformable to Q
}

Assume without any loss of generality that player 2 has a bigger complexity than
player 1, i.e. m2 > m1, therefore player 1 will be referred to as the ”weaker player”
(he) and player 2 as the ”stronger” player (she).
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3 Main result

The main result improves upon the weaker player’s automaton upper bound -m1-,
which guarantees the existence of an equilibrium payoff of GT (m1,m2), ε-close to a
feasible and rational payoff.

It is well known that in the context of finitely repeated games, deviations in the
last stages could be precluded if players did not know the end of the game. This may
be achieved if players implemented their strategies by playing with finite automata
which cannot count until the last stage of the game. On the contrary, player i will
deviate if she is able to implement cycles of length at least the number of repetitions.
Hence, if player i has to answer to different plays of length smaller than the number
of repetitions, then she could exhaust her capacity and, at the same time, she would
be unable to count until the end of the game. Therefore, a player could fill up the
rival’s complexity by requiring her to conform with distinct plays of sufficiently large
length.

With this idea in mind, Neyman (1998) establishes the existence of an equilib-
rium payoff of GT (m1, m2) which is ε-close to a feasible and rational payoff even if
the complexity of player 1’s automaton (the smaller automaton) is quite big, i.e, a
subexponential function of ε and of the number of repetition:

Theorem (Neyman, 1998) Let G = ({1, 2}, A, r) be a two person game in

strategic form. Then for every ε sufficiently small, there exist positive integers T0

and m0, such that if T ≥ T0, and x ∈ co(r(A)) with xi > ui(G) and m1 ≤ exp(ε3T )
and m2 > T then there exists y ∈ E(GT (m1,m2)) with |yi − xi| < ε.

Basically, the structure of Neyman’s equilibrium strategies is as follows:

• The stronger player selects uniformly at random a play, among a finite set of
plays denoted by Q, which leads approximately to the targeted payoff.

• This player codifies the selected play into a message, transmitted to the other
player in the communication phase.

• There exists a one-to-one correspondence between set Q and the set of messages
M .

• The difference among the distinct plays is a small portion of each play, which
is called the verification phase. The set of sequences to implement such specific
part of the equilibrium play is denoted by V .

From the above description it follows that the cardinality of the set of messages
M is related with the cardinality of Q (or V ). This allows us to bound the weaker
player’s capacity. This is so because the number of states to implement such struc-
ture is at least the number of plays times the length of each play. This entails the
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existence of a mapping from the set of messages to the complexity bound. Hence,
the design of the set of plays can be understood as a codification problem where the
weaker player’s complexity is codified.

Similarly to Neyman’s result, we offer the equilibrium conditions in terms of the
complexity of the weaker player’s automaton implementing the equilibrium play.
The main difference is that our upper bound includes previous bound domains. This
is due to the application of Information Theory to codify this player’s complexity, in
particular, to the optimal construction of the set of verification sequences and the
associated communication scheme. Neyman’s equilibrium structure does not change
but the weaker player’s equilibrium condition is relaxed: the size of m1 increases,
getting closer to full rationality.

More specifically, to establish theorem 1 below, we characterize the verification
sequences as those sequences over a finite alphabet with a given empirical distri-
bution which depends on ε -the approximation to the targeted payoff- and on a
positive integer k, denoting their length. Recall that the set of such verification
sequences is denoted by V . Given this set, we construct the set of communication
sequences, M , described also by both the length of the sequences belonging to it,
and their empirical distribution. Such length k is about k times the entropy1 of the
empirical distribution of the sequences in V . Moreover, by the property of optimal
codification (minimal expected length) the empirical distribution of the sequences
in M coincides with the uniform distribution. As the finite alphabet is the binary
alphabet, this implies that messages are balanced2 sequences with minimal length.

We summarize the above argument in the following result 1, which is needed to
show that, under our construction, the verification and communication sequences
are the shortest ones to codify the weaker player’s complexity. The formal state-
ment of this result is presented in section 5 below (see lemma 1) where the tools of
Information Theory needed to prove it are introduced.

Result 1: Let V be a subset of sequences of length k over a finite alphabet

Θ = {0, 1} with empirical rational distribution (r, 1 − r) ∈ ∆(Θ). Then, the set of

messages for the communication phase, codifying the uniform random variable over

V , coincides with the set of sequences of length k̄ such that ⌈kH(r)⌉ < k̄ ≤ 2kH(r)
with the uniform rational empirical distribution over Θ, where H corresponds to the

entropy function.

Our theorem is stated as follows:

Theorem 1 Let G = ({1, 2}, A, r) be a two person game in strategic form. Then

for every ε sufficiently small, there exist positive integers T0 and m0, such that if T
≥ T0, and x ∈ co(r(A)) with xi > ui(G) and m0 ≤ min{m1, m2} ≤ exp( T

27H(ε))
and max{m1, m2} > T then there exists y ∈ E(GT (m1,m2)) with |yi − xi| < ε.

1The entropy function H is given by H(x) = −x log2 x − (1 − x) log2(1 − x) for 0 < x < 1.
2Sequences with the same number of zeros and ones.
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Both Theorems follow from conditions on: 1) a feasible payoff x ∈ co(r(A)); 2)
a positive constant ε > 0; 3) the number of repetitions T , and 4) the bounds of the
automata sizes m1 and m2, that guarantee the existence of an equilibrium payoff y
of the game GT (m1,m2) that is ε-close to x.

One of the conditions is specified in terms of the inequalities mi ≥ m0, where m0

is sufficiently large. Another condition requires the bound of one or both automata
sizes to be subexponential in the number of repetitions, i.e., a condition that asserts
that (log mi)/T is sufficiently small. Neyman’s condition is written in terms of
ε3T. As already said, our constraint, T

27H(ε), comes from the use of Codification
tools to construct the communication and verification sets and hence, as it will be
made clear later on, it is expressed in terms of the entropy function. Therefore,
the improvement on the subexponential condition is connected to the codification
schemes to be explained in Section 5.

4 The scheme of Neyman’s equilibrium play

We present an informal description of the equilibrium strategy construction. Since
the structure of the equilibrium strategies as well as their formalization are as in
Neyman, we present a sketch of the construction (for more details see: Neyman [12],
pages 534-549). Recall that m1 ≤ m2.

Communication phase: Neyman’s Theorem is stated in terms of an upper
bound, m1 ≤ exp(ε3T ), of the weaker player’s complexity which is related to the
length of the game T , and the ε-approximation to the targeted payoff. This bound
gives the constraints on a new parameter k which determines both the cardinality of
the set of plays Q and the length of the communication phase. Following Neyman[12]
(pag: 534), let k be the largest integer such that:

2k−1 ≤
m1 − l

l
< 2k (1)

where l is the length of each play.
Consider any pair of players’ actions and rename them by 0 and 1. Knowing

player 1’s complexity, player 2 determines a precise number of plays where each
one is indicated by a sequence of the two actions. Player 1 responds properly to
any message playing a fixed action (for instance 0), independently of the message
(signal) sent by player 2. By equation 1, the cardinality of the set of plays Q is at
most 2k. The communication sequences consist of messages of balanced sequences in
the sense that they have the same number of actions. Specifically, the first k stages
coincide with an element of {0, 1}k and the remaining stages start with a string of
zeros followed by a string of ones such that the total number of ones (or that of
zeros) equals k. The set of messages M is then a subset of {0, 1}2k .
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Play phase: After the communication phase the equilibrium play enters into
the play phase which consists of a cycle repeated along the play until T . The length
of the cycle does not depend on the signal sent by player 2. Each one of the cycles
has associated payoff approximately equal to the efficient and rational payoff x.
The cycle has two parts: the verification play and the regular play. The regular
play is common for every signal and it consists of a sequence of different action
pairs ε-close to the efficient and rational targeted payoff x. Both players follow a
verification play that consists of a coordinated sequence of actions of length 2k,
which coincides with the signal sent in the communication phase. This sequence
of actions can be understood as a coordination process which determines each pure
strategy. Each play in Q has a different verification sequence which coincides with
the associated message from M . The relationship between the communication phase
and the verification play is summarized as follows: 1) Set M coincides with set V ,
2) both phases have the same length 2k and, 3) the coding rule is the identity.

The number of states needed to follow such strategies corresponds to those states
for each play times the number of possible plays (the cardinality of the verification
set), which yields 2kT states. The upper bound of player 1 has to be at most this
number in order to implement both the communication phase and the play phase,
i.e.: m1 ≤ 2kT . It is straightforward to check that player 1 is able to implement
both phases for any k satisfying equation (1). In particular, for k = ⌈ε3T

ln 2 − ln T
ln 2 ⌉,

m1 ≤ T2k

= T ln 2 exp(k)

≤ T exp(
ε3T

ln 2
−

ln T

ln 2
)

= exp(ε3T )

The above analysis uncovers the two computational features to design the equi-
librium structure. The first one is the design of the set of possible plays given the
parameters of the game. The difference among the sequences is given by the ver-
ification play which satisfies the following properties. First, each sequence has the
same empirical distribution to deter player 2’s deviations by selecting the best payoff
sequence. Second, player 2 fills up player 1’s capacity by generating enough pure
strategies so that the number of remaining states is sufficiently small. In this way,
player 1’s deviations from the proposed play by counting up until the last stage of
the game are avoided. Therefore, the size of this set gives the upper bound on the
weaker player’s complexity supporting the equilibrium strategies.

The second computational feature is concerned with the communication phase:
given the set of plays, player 2 selects one of these possible plays and communicates
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it by a message. Since player 2 proposes the plays, messages have to be independent
of the associated payoffs to each of them3.

The above are the main points of Neyman’s construction. It should be clear
that not any 3-tuple of sets Q, M , and V of the equilibrium strategies can be
implemented by finite automata but those implementable provide the upper bound
on m1. Our query is whether it is possible to improve upon such a bound in order
to get automata that are closer to fully rational behavior. To do that, we stick to
the same equilibrium structure and the same implementation procedure and focus
on the computational features of the equilibrium strategies. Namely, we focus on
the design of sets Q, M and V . Since, the construct of the set of plays can be
understood as a codification problem we proceed to design an optimal codification
scheme.

5 Codification schemes and the equilibrium play

The complexity of player 1 (the set of states) has to be allocated in such a way
that he first identifies and then plays a specific path. We can view this task as
the construction of a matrix of automaton states with O(T ) columns (the length
of the cycle) and about m1

T
rows (the number of possible paths). Then, the rows

correspond to the set of plays which player 1 has to conform with, thus filling up
his complexity.

A solution to this problem is equivalent to solving a codification problem in
Information Theory, since the verification sequences have to be codified in the com-
munication phase. To codify means to describe a phenomenon. The realization of
this phenomenon can be viewed as the representation of a random variable. Then,
a codification problem is just a one-to-one mapping (the source code) from a finite
set (the range of a random variable or input) to another set of sequences of finite
length (output sequences) with specific properties. The most important one is that
the expected length of the source code of the random variable is as short as possible.
With this requirement we achieve an optimal data compression.

We proceed to construct the set of verification sequences and the associated
communication scheme under the framework of finite automata. The key points of
the construction are: 1) the characterization of such sequences by their empirical
distribution and 2) the design of the set of communication sequences by the optimal
codification of the verification set. Nevertheless, codification results are not enough
to guarantee the improvement of automata bounds.

These two features have to be combined with the implementation requirements
of finite automata, specially for player 1. On the one hand, player 1 has to follow

3These two features have to be combined with the implementation requirements of finite au-
tomata. To avoid repetition, this issue is explained in more detail in the next section.
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the specific play selected by player 2, therefore he stores all possible cycles. On
the other hand, he wants to design a “smart” automaton making a good use of his
complexity. Player 1’s information processing is minimized by using the same states
to process the signal and to follow the regular part of the different cycles. However,
this introduces a difficulty since these states of player 1’s automaton admit more
than one action, giving rise to the existence of deviations by player 2 that might
remain unpunished. To avoid this problem, player 1 uses a mixed strategy whose
support consists of a subset of pure strategies, conformable with all the proposed
plays. The mixed strategy generates enough randomization to obscure the location
of the reused states.

Namely, in the framework of repeated games with finite automata the corre-
sponding set of sequences of verification and of communication have to satisfy the
following requirements:

• R1: Each message determines a unique play, therefore a unique verification
sequence.

• R2: Each communication sequence and each verification sequence have the
same associated payoff in order to preclude any strategic deviation.

• R3: The length of each signal is the smallest positive integer such that it can
be implemented by a finite automaton and that generates the lowest distortion
from the targeted payoff.

• R4: It is required to signal the end of both the communication and the verifi-
cation phases in order to properly compute the complexity associated to any
equilibrium strategy.

In our setting the set of verification sequences is the input set, the set of messages
corresponds to the output set and the random variable is the uniform distribution
over the input set. The verification phase is composed of the set of sequences with the
same rational empirical distribution of finite length k and with a fixed last component
to signal the end of such a phase. This set satisfies all of the above requirements.
The codification of this set results in the set of messages for the communication
phase. This is the output set consisting of strings of finite length from the binary
alphabet and with the optimal length. The communication sequences have the
same empirical rational distribution to deter payoff deviation and minimal length
by optimal codification theory results.

The formal details of our construction are presented next. Firstly, by the method-
ology of types, we consider sequences with the same empirical distribution. Secondly,
we analyze the information properties of these sequences by using the entropy con-
cept. Finally, we state the codification minimal length of the verification sequences
to become those of the communication phase.
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5.1 Information theory and codification

We present here some basic results from Information Theory. For a more complete
treatment consult Cover and Thomas [3].

Let X be a random variable over a finite set Θ, whose distribution is p ∈ ∆(Θ),
i.e.: p(θ) = Pr(X = θ) for each θ ∈ Θ. The entropy H(X) of X is defined by
H(X) = −Σθ∈Θp(θ) log(p(θ) = −EX [log p(X)] , where 0 log 0 = 0 by convention.
With some abuse of notation, we denote the entropy of a binary random variable X
by H(p), where p ∈ [0, 1].

Let x = x1, . . . , xn be a sequence of n symbols from a finite alphabet Θ. The
type Px (or empirical probability distribution) of x is the relative proportion of

occurrences of each symbol of Θ, i.e.: Px(a) = N(a|x)
n

for all a ∈ Θ, where N(a | x)
is the number of times that a occurs in the sequence x ∈ Θn. The set of types
of sequences of length n is denoted by Pn = {Px | x ∈ Θn}. If P ∈ Pn, then the
set of sequences of length n and type P is called the type class of P , denoted by
Sn(P ) = {x ∈ Θn : Px = P} .

The cardinality of a type class Sn(P ) is related to the type entropy:

1

(n + 1)|Θ|
2nH(P ) ≤ |Sn(P )| ≤ 2nH(P ) (2)

Now we present the definitions of codification and data compression.

A source code C for a random variable X is a mapping from Θ, the range of X,
to D

∗ the set of finite length strings of symbols from a D-ary alphabet. Denote by
C(x) the codeword corresponding to x and let l(x) be the length of C(x). A code
is said to be non-singular if every element of the range of X maps into a different
string in D

∗, i.e.: xi 6= xj ⇒ C(xi) 6= C(xj).

The expected length L(C) of a source C(x) for a random variable X with prob-
ability mass function p(x) is given by L(C) =

∑

x∈Θ p(x)l(x), where l(x) is the
length of the codeword associated with x. An optimal code is a source code with the
minimum expected length.

The sufficient condition for the existence of a codeword set with the specified set
of codeword lengths is known as the Kraft inequality: for any code over an alphabet
of size D, the codeword lengths l1, l2, . . . , lm must satisfy the inequality ΣD−li ≤ 1.
Given this condition we ask what is the optimal coding among a feasible code. The
optimal coding is found by minimizing L =

∑

pili subject to ΣD−li ≤ 1. By the
Lagrangian multipliers, the optimal code lengths are l∗i = − logD pi. Therefore, the
expected length is L∗ =

∑

pil
∗
i = −

∑

pi logD pi which coincides with HD(X). Since
the codeword length must be integers, it is not always possible to construct codes
with minimal length exactly equal to l∗i = − logD pi. The next remark summarizes
these issues.
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Remark 1 The expected length of a source C(X) for a random variable X is greater

than or equal to the entropy of X. Therefore, the optimal expected length of C(X)
coincides with the entropy of X.

5.2 Construction of the verification and communication sets

We first construct the communication set M . Let k be a positive integer. Con-
sider a source code of a uniformly distributed random variable X over a finite
alphabet of size 2k (k-adica distribution). The associated entropy of X is H =

−
∑2k

i=1 2−k log 2−k = k. By the above bound on L∗, such a source is optimally cod-
ified by all codewords with length k. Hence, if the random variable has a k-adica
(uniform) distribution over a binary alphabet, then the optimal code length is equal
to k since the entropy is an integer number.

In the framework of repeated games with finite automata, let V be the set of
verification sequences of length k belonging to the same type set over a binary
alphabet and the last component equals 1; i.e.: V ⊂ Sk(P )×{1} for some4 P ∈ Pk.
Let k̂ = log2 |V | and X be a k̂-adica uniform random variable and a source code C
for X to {0, 1}∗. By remark 1 above, the optimal length is equal to the entropy of
X, which coincides with the logarithm of the cardinality of V , i.e. k̂, and it also
provides the shortest length of the communication sequences. Notice that k̂ need
not be an integer. Let K̄ be the set of integers greater than or equal to k̂.

Given the above remark and the four requirements summarized in section 5,
we can construct the optimal set of messages M , implementing the communication
phase:

• By remark 1 and requirement R3, M ⊆ {0, 1}k for some k ∈ K̄

• By R2 and R4, M ⊂ Sk(r) × 1 for some r ∈ Pk

• By requirement R1, |M | ≥ |V |.

Therefore, to completely describe the set of signals for the communication phase,
we have to establish both the length k ∈ K̄ and the empirical distribution r of
the sequences belonging to M . With abuse of notation we denote the empirical

distribution R as r = Pr(0). Let G(k, r) = {(k, r) ∈ (K̄ × Pk)|
1

(k+1)2
2kH(r) > 2k̂}

be the set of pairs (k, r) which determines the communication set. Define k̄ as the
smallest positive even integer such that there exists some r ∈ [0, 1

2 ] which verifies that
(k̄, r) ∈ G(k, r). Fixing k, let rk ∈ [0, 1

2 ] be the smallest r such that (k, rk) ∈ G(k, r).

The next Lemma, that formalizes the previously presented Result 1, states that
fixing k̄, the corresponding rk̄ is unique and equal to 1

2 . It also provides the bounds

4An extra 1 is added in order to signal the end of the verification phase.
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of k̄. As a consequence, the set of signals for the communication phase consists of
the set of sequences with the same number of zeros and ones5 with length k̄ which
might be shorter than the length of the sequences for the verification play.

Lemma 1 • (k̄, r) /∈ G(k, r) for any r < 1
2 .

• rk̄ = 1
2 .

• ⌈k̂⌉ < k̄ ≤ 2k̂ for k̂ > 6.694.

Proof. Suppose that (k̄, r) ∈ G(k, r) for r ∈ [0, 1
2).

Let k̃ = ⌈k̄H(r)⌉. We can assume without any loss of generality that k̃ < k̂.

If k̃ is even, consider the pair (k̃, 1
2 ) and the corresponding type set S

k̃
(1
2). By

property 2 we get:
1

(k̃+1)2
2k̃H( 1

2
) ≤ |S

k̃
(r)| ≤ 2k̃H( 1

2
), and then

1

(k̃ + 1)2
2k̃H( 1

2
) =

1

(k̃ + 1)2
2⌈k̄H(r)⌉H(

1

2
)

>
1

(k̃ + 1)2
2k̄H(r)

>
1

(k̄ + 1)2
2k̄H(r)

> 2k̂

Therefore (k̃, 1
2 ) ∈ G(k, r). This is a contradiction because k̃ < k̄ since H(r) < 1

for r ∈ [0, 1
2 ).

If k̃ is odd then k̃ ≤ k̄ − 1. It suffices to prove the statement for k̄ − 1. Consider

the pair (k̃, k̃−1
2k̃

) = (⌈k̄H(r)⌉, ⌈k̄H(r)⌉−1
2⌈k̄H(r)⌉

). Then,

1

(k̃ + 1)2
2k̃H( k̃−1

2k̃
) =

1

(k̃ + 1)2
2
⌈k̄H(r)⌉H(

⌈k̄H(r)⌉−1

2⌈k̄H(r)⌉
)

≥
1

(k̃ + 1)2
2
⌈k̄H(r)⌉(

⌈k̄H(r)⌉−1

⌈k̄H(r)⌉
+ 1

⌈k̄H(r)⌉
)

=
1

(k̃ + 1)2
2⌈k̄H(r)⌉

>
1

(k̄ + 1)2
2k̄H(r)

> 2k̂

5Neyman’s construction gives the same kind of balanced sequences for the communication phase
but their length is not the lowest one.
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where the first inequality follows from the fact that H( ⌈k̄H(r)⌉−1
2⌈k̄H(r)⌉

) is greater than

2( ⌈k̄H(r)⌉−1

2⌈k̄H(r)⌉
+ 1

2⌈k̄H(r)⌉
); the second inequality is given by the definition of the upper

integer part of a number and the last one comes from the assumption that the pair
(k̄,H(r)) ∈ G(k, r). We obtain, again, a contradiction because k̃ < k̄

Moreover, from above we get that (k̄, 1
2) ∈ G(k, r). In other words, rk̄ = 1

2 .

Finally, ⌈k̂⌉ < k̄ since 1
(⌈k̂⌉+1)2

2⌈k̂⌉H(r) < 1
(k̂+1)2

2k̄H( 1
2
) for any r ∈ [0, 1

2). In order

to prove that k̄ ≤ 2k̂ for k̂ > 6.694 it suffices to see that

1

(2k̂ + 1)2
22k̂H( 1

2
) ≥ 2k̂

for k̂ > 6.694.

We now construct the set of equilibrium plays Q and the corresponding set of
sequences of the verification phase V . We consider sequences of action pairs of
length l = O(T ). This means that plays are cycles that are repeated until the end
of the game. In order to determine the number of repetitions we have to take into
account any possible deviation by player 1, who has to be unable to count until
the end of the game. Moreover, it is necessary to obscure the location of the states
to implement the communication phase. Recall that player 1’s automaton can be
viewed as a matrix with |Q| rows and l columns. Therefore, the mixed strategy
has to be constructed such that the states for the communication phase have to be
allocated in a window6 inside the matrix of states. We can assume that the size of
such window is l

6 . Following Neyman’s construction on page 534, the specification of
length l could be the integer part of

[

2T
9

]

. Therefore, if the number of repetitions is
larger than 9

2 , then the construction could be repeated. Then consider, for instance,
that the number of repetitions is the integer part of 9

2 , i.e., l = [2T
9 ], with a fixed part

for the regular play of length 5T
27 and T

27 stages for the verification phase. Assume
that only two actions are used for such phase, that we label by 0 and 1, with εT

27
stages for one action pair such that the different plays achieve the targeted payoff
x. Then, the set of sequences for set V is defined as those sequences belonging to
the type set S T

27
(1 − ε, ε). By equation 2, the cardinality of V verifies:

1

( T
27 + 1)2

2
T

27
H(ε) ≤ |V | ≤ 2

T

27
H(ε)

To summarize, the set of plays Q has the same cardinality than that of V . This

cardinality is approximately 2
T

27
H(ε) (i.e., the number of rows of the matrix of player

6A window is a submatrix of states where player 1 processes the signal sent by player 2. No-
tice that after the communication phase player 1 has to follow the row -in the general matrix-
corresponding to the play chosen by player 2.
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1’s automaton). The set of messages M is the typical set with empirical distribution
(1
2 , 1

2 ) and length k̄ satisfying:

⌈
T

27
H(ε)⌉ < k̄ ≤ 2

T

27
H(ε)

Then,

m1 ≤ [
2T

9
]2

2T

27
H(ε)

≈ exp(
T

27
H(ε))

This construction, as well as that of Neyman, relies on three key parameters: the
cardinality of Q, the length of the messages belonging to M and the ε-approximation
to the targeted payoff x. First, we fix one of them and examine the consequences
on the other two. We use an N superscript to refer to Neyman’s parameters
and an HU superscript to denote ours. We beging by comparing that, for a
fixed ε-approximation, mHU

1 exceeds mN
1 . Notice that to consider the same ε-

approximation, implies that k is the same for the two constructions. Then,

Fix the ε-approximation, then kN = kHU = k. From Neyman‘s construction,
mN

1 is about T2k and from ours, mHU
1 is about T22k, then mHU

1 > mN
1 .

Alternatively, and in order to see the efficiency of our construction, let us now
consider the dual of this result. Start by fixing the number of plays, i.e., the car-
dinality of Q for both constructions. Namely, |Q| = 2k. This means that both
upper bounds coincide, i.e., mN

1 = mHU
1 . Then, Neyman’s length of the messages is

kN = 2k while ours is kHU = k̄, where k̄ satisfies k ≤ k̄ ≤ 2k. This implies that our
length is shorter than Neyman’s and therefore the number of communication stages
is smaller in our case. Hence, the distortion generated by the communication phase
is also smaller and then εHU < εN .

Now consider that no parameter is fixed. We compare the biggest bound of our
smaller automaton, mHU

1 , with that of Neyman, mN
1 . Let us recall that the set of

plays in Neyman’s construction has cardinality 2kN

where kN satisfies equation (1)
and, in particular,

kN = ⌈
ε3T

ln 2
−

ln T

ln 2
⌉
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and that in our construction, the set of plays has cardinality equal to |V | = |S T

27
(1−

ε, ε)|. Therefore, |V | ≈ 2kHU

where kHU is larger than

kHU >
T

27
H(ε) − 2 log(

T

27
+ 1).

As already shown, m1 directly depends on the number of plays, which is an expo-
nential number of the length of the communication phase. To stress the consequences
of our construction, the next figure illustrates one of its keypoints: we increase the
cardinality of the set of plays while guaranteeing that the communication length
is the shortest one. This provides an “efficient” construction, in the sense of the
ε-approximation. More precisely, for a T large enough, Figure 1 plots the exponents
of the size of m1 (i.e., log m1

T
) in the y-axis, both in Neyman and ours, as functions

of ε (x-axis). Neyman’s approach is represented by the dotted curve ε3T , and ours
by the full-line curve T

27H(ε). For small values of ε, the increase in mN
1 is very slow,

while the increase in mHU
1 is very fast, strongly approaching the exponential size of

m1(full rationality). Actually, the limit of the ratio
log(mHU

1 )

log(mN
1 )

= H(ε)
27ε3 tends to infinity

as ε goes to 0. In other words, for small distortions from the targeted payoff, our ex-
ponent grows very fast, thus making mHU

1 very close to full rational behavior. More
precisely, the concave shape of H(ε) versus the convex shape of ε3, captures the
usefulness of Information Theory and Codification Theory to solve computational
designs in the framework of repeated games played by finite automata.
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Figure 1: Range of ε with respect to log m1

T

17

ivie
18



6 Concluding remarks

This paper has developed a codification approach to construct the computational fea-
tures of equilibrium strategies in finitely repeated games played by finite automata.
We assumed that punishment levels were in pure strategies. Different punishments,
either in pure strategies for player 2 and mixed strategies for player 1, or in mixed
strategies for both players convey additional relationships between the automata
complexity bounds, i.e., between m1 and m2, that depend on the bound on m1, al-
ready obtained in the pure strategy construction. For example, the former case is in
Theorem 2 in Neyman (1998, page 522), where m1 ≤ min(m2, exp(ε3T )), and the lat-
ter case in Theorem 3 in Neyman, same page, with m1 ≤ m2 ≤ exp(ε3 min(T,m1)).
As it is easily seen the above conditions depend on the constraint stated in Ney-
man’s Theorem 1 (page 521), i.e., m1 ≤ exp(ε3T ). Then, the bounds in both these
Theorem can also be improved by our construction.

As already shown, the bound improvement directly depends on the design of
both the verification and communication sets. There are several ways to construct
both sets and characterize the equilibrium strategies, and therefore the equilibrium
bounds. Neyman presented one of them and we have proven that ours is the best
one, by means of optimal codification tools applied to repeated games played by
finite automata and in the framework of Neyman’s equilibrium design (see Lemma
1).

Codification tools and/or Information Theory have been applied to solve differ-
ent questions in the framework of long strategic interactions. For instance, Gossner,
Hernández and Neyman [5] design the optimal strategies in a three-player zero-sum
game by the Type methodology and Gossner, Hernández and Neyman [6] apply
codification theory to construct strategies in repeated games with asymmetric in-
formation about a dynamic state of nature. Their main theorem provides how to
construct equilibrium strategies by means of the existence of a code-book, ensuring
an appropriate communication level in order to reduce the inefficiencies due to in-
formation asymmetries between players. Tools of Information Theory, in particular,
the entropy concept, the Kullback distance and typical sets have also been applied by
Gossner and Vieille [8], when constructing epsilon-optimal strategies in two-person
repeated zero sum games and in Gossner and Tomala [7], to characterize the set of
limits of the expected empirical distribution of a stochastic process with respect to
the conditional beliefs of the observer.

References

[1] D. Abreu and A. Rubinstein. The structure of Nash equilibrium in repeated
games with finite automata. Econometrica 56, 1259-1281, 1988.

18

ivie
19



[2] E. Ben-Porath, Repeated games with finite automata. Journal of Economic

Theory 59, 17-32, 1993.

[3] T.M. Cover, and J.A. Thomas, Elements of Information Theory. Wiley Series

in Telecommunications, Wiley, New York.

[4] O. Gossner and P. Hernández, On the complexity of coordination Mathematics

of Operations Research, 28, 1, 127-140, 2003.

[5] O. Gossner, P. Hernández and A. Neyman, Online Matching Pennies Discussion

Papers of Center for Rationality and Interactive Decision Theory, DP 316,
2003.

[6] O. Gossner, P. Hernández and A. Neyman, Optimal use of communication
resources Econometrica, 74, 6, 1603-1636, 2006.

[7] O. Gossner and T. Tomala, Empirical distributions of beliefs under imperfect
observation Mathematics of Operations Research, 31, 13-30, 2006.

[8] O. Gossner and N. Vieille, How to play with a biased coin? Games and

Economic Behavior, 41, 206-222, 2002.

[9] E. Kalai, and W. Standford, Finite Rationality and Interpersonal Complexity
in Repeated Games. Econometrica, 56, 2, 397-410, 1988.

[10] A. Neyman. Bounded complexity justifies cooperation in the finitely repeated
prisoner’s dilemma. Economics Letters, 19, 227-229, 1985.

[11] A. Neyman. Cooperation, repetition, and automata, S. Hart, A. Mas Colell,
eds., Cooperation: Game-Theoretic Approaches, NATO ASI Series F, 155.
Springer-Verlag, 233-255, 1997.

[12] A. Neyman. Finitely Repeated Games with Finite Automata. Mathematics of

Operations Research, 23, 3, 513-552, 1998.

[13] A. Neyman, and D. Okada, Strategic Entropy and Complexity in Repeated
Games. Games and Economic Behavior, 29, 191-223, 1999.

[14] A. Neyman, and D. Okada, Repeated Games with Bounded Entropy. Games

and Economic Behavior, 30, 228-247, 2000.

19

ivie
20



[15] A. Neyman, and D. Okada, Two-Person Repeated Games with Finite Au-
tomata. International Journal of Game Theory, 29, 309-325, 2000.

[16] C.H. Papadrimitriou, and M. Yannakakis, On complexity as bounded rational-
ity . STOC, 726-733, 1994.

[17] A. Rubinstein, Finite Automata play the repeated prisoners’ dilemma. Journal

of Economic Theory, 39, 183-96, 1986.

[18] H. Simon. A behavioral model of rational choice. The Quarterly Journal of
Economics, 69(1), 99-118, 1955.

[19] E. Zemel, Small talk and cooperation: A note on bounded rationality. Journal

of Economic Theory 49, 1, 1-9, 1989.

20

ivie
21




