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Abstract

It is well known that the literature on judgment aggregation inherits
the impossibility results from the aggregation of preferences that it
generalises. This is due to the fact that the typical judgment aggregation
problem induces an ultrafilter on the the set of individuals. We propose
a model-theoretic framework for the analysis of judgment aggregation
and show that the conditions typically imposed on aggregators induce
an ultrafilter on the set of individuals, thus establishing a generalised
version of the Kirman-Sondermann correspondence. In the finite
case, dictatorship then immediately follows from the principality of an
ultrafilter on a finite set. This is not the case for an infinite set of
individuals, where there exist free ultrafilters, as Fishburn already stressed
in 1970. Following Lauwers and Van Liedekerke’s (1995) seminal paper, we
investigate another source of impossibility results for free ultrafilters: The
domain of an ultraproduct over a free ultrafilter extends the individual
factor domains, such that the preservation of the truth value of some
sentences by the aggregate model — if this is as usual to be restricted to
the original domain — may again require the exclusion of free ultrafilters,
leading to dictatorship once again.
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1 Introduction
In the last decades, the literature on social choice theory has seen important
generalisations of the classical Arrovian problem of preference aggregation,
starting with isolated contributions on abstract and algebraic aggregation theory
by Wilson [16] resp. by Rubinstein and Fishburn [15] and culminating in the
new field of judgment aggregation (for a survey see List and Puppe [12]). An
essential feature of these generalisations is the extension of the problem of
aggregation from the aggregation of preferences to the aggregation of arbitrary
information. It thus seems natural to exploit the potential of model theory
which, broadly speaking, studies the relation between abstract structures and
statements about them (for an introduction to model theory see Bell and
Slomson [1]) and to analyse the problem of judgment aggregation as the
problem of aggregating the models that satisfy these judgments (section 2).
This approach is justified by the fact that one of the major tools of model
theory, namely the ultraproduct construction, can be shown to be equivalent
to the construction of an aggregation rule satisfying properties in the spirit
of the conditions of Arrow’s impossibility theorem, an equivalence which is
based on the role of ultrafilters in both cases. Thus a generalisation of the
Kirman-Sondermann [9] correspondence between Arrovian aggregation rules and
ultrafilters on the set of individuals is presented in section 3. For the case of
a finite set of individuals, this equivalence immediately allows one to derive a
dictatorship result, as ultrafilters on finite sets are necessary principal, whence
the ultrafilter on a finite set of individuals always is the set of all supersets of a
singleton — the dictator.

Whilst this dictatorship result does not carry over to the case of an infinite
set of individuals (where free ultrafilters exist), we explore in section 4 another
source of impossibility in the infinite case which was first identified by Lauwers
and Van Liedekerke [10]. (Similar results for infinite populations are going
to appear in another proceedings volume, cf. Herzberg and Eckert [7].) We
conclude in section 5 by challenging the seemingly natural condition that an
aggregate model has the same domain as the individual models.

2 A model-theoretic framework for abstract
aggregation theory

Fix an arbitrary set A, and let L be a language consisting of constant symbols
ȧ for all elements a of A as well as (at most countably many) predicate symbols
Ṗn, n ∈ N. We shall denote the arity of Ṗn by δ(n) (for all n ∈ N).1

Let S be the set of atomic formulae in L, and let T be the Boolean closure
of S, i.e. the closure of S under the logical connectives ¬̇, ∧̇, ∨̇.

Let T be a consistent set of sentences in L; we shall later impose additional
assumptions on T that are satisfied for every consistent universal T .2

1We follow the common practise in mathematical logic of using dots on top of symbols to
distinguish between symbols in the meta-language and those in the object language: Symbols
of the object language will usually be dotted, whereas symbols of the meta-language will not.
Note that a free variable which is to be interpreted as formula in the object language is still
a symbol of the meta language and thus will not be dotted.

2A sentence is universal if it (in its prenex normal form) has the form (̇∀̇v̇k1 )̇ · · · (̇∀̇v̇km )̇ψ
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The relational structure B = 〈B, {Rn : n ∈ N}〉 with A ⊆ B is called a
realisation of L with domain B or an L-structure if and only if the arities of
the relations Rn correspond to the arities of the predicate symbols Ṗn, that is
if Rn ⊆ Bδ(n) for each n. The interpretation of the constant symbols does not
need to be specified, but will be fixed uniformly for all L-structures: For each
L-structure B, the interpretation of the constant symbol ȧ is, for every a ∈ A,
just ȧB = a. In other words, in this article, all L-structures are understood to
have a domain ⊇ A and to interpret the constant symbols canonically (i.e. ȧ is
always interpreted by a, for all a ∈ A).

An L-structure B is a model of the theory T if B |= ϕ for all ϕ ∈ T , i.e. if
all sentences of the theory hold true in B (with the usual Tarski definition of
truth3).

Let B = 〈B, {Rn : n ∈ N}〉 be an L-structure with domain B. (Note that
this entails A ⊆ B by our convention.) According to standard model-theoretic
termininology (cf. e.g. Bell and Slomson [1, p. 73]), the restriction of B to A
is the L-structure

〈
A, {Rn ∩Aδ(n) : n ∈ N}

〉
and will be denoted by resAB.

(In other words, the restriction of B to A is the L-structure that is obtained by
restricting the interpretations of the relation symbols to the domain A ⊆ B.)

Suppose now that B = 〈B, {Rn : n ∈ N}〉 is a relational structure with
Rn ⊆ Bδ(n) for each n and such that there exists an injective map i :
A → B. Then, the restriction of B to A under i is the L-structure〈
A, {i−1

[
Rn ∩ i[A]δ(n)

]
: n ∈ N}

〉
and will be denoted by resi,AB. We shall

drop the subscript i where no ambiguity can arise, e.g. if A ⊆ B and i is the
identity map or if B is the reduced product of A with respect to some filter
D and i is the canonical embedding (see below for a definition of the reduced
product).4

Let Ω be the collection of models of T with domain A. We assume that the
following propositions hold for all L-structures A,A1,A2:

(∀λ ∈ S (A1 |= λ⇔ A2 |= λ))⇒ A1 = A2. (1)

A |= T ⇒ resAA ∈ Ω (2)

∀λ ∈ T (A |= λ⇔ resAA |= λ) . (3)

Remark 2.1. If S is the set of all atomic L-sentences, then the implication (1)
holds for all A1,A2 with domain A.

Proof by contraposition. If A1 6= A2 for A1 =
〈
A,
{
R1
n : n ∈ N

}〉
and A2 =〈

A,
{
R2
n : n ∈ N

}〉
, then R1

n 6= R2
n for some n ∈ N. Since A1,A2 ∈ Ω,

both R1
n and R2

n are (different) subsets of Aδ(n). Hence, there exists some

for some formula ψ that does not contain any quantifiers. A set of sentences is said to be
universal if and only if all its elements are universal.

3For instance, if B = 〈B, {Rn : n ∈ N}〉 is an L-structure, then for all a1, . . . , aδ(n) ∈ A,
one has

B |= Ṗn(ȧ1, . . . , ȧδ(n))⇔ 〈a1, . . . , aδ(n)〉 ∈ Rn.

4One could also define the restriction of B to A as follows: Suppose A and B are L-
structures where the domain A of A is a subset of the domain B. If the inclusion mapping i is
an elementary embedding, then A is the restriction of B to A and will be denoted resAB. This
alternative definition is more general since it can also be used where L-structures are allowed
to have different, non-canonical interpretations for the constant symbols ȧ, a ∈ A (which in
our framework is excluded by definition).
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〈a1, . . . , aδ(n)〉 ∈ Aδ(n) such that either 〈a1, . . . , aδ(n)〉 ∈ R1
n and 〈a1, . . . , aδ(n)〉 6∈

R2
n or 〈a1, . . . , aδ(n)〉 6∈ R1

n and 〈a1, . . . , aδ(n)〉 ∈ R2. In both cases

〈a1, . . . , aδ(n)〉 ∈ R1
n 6⇔ 〈a1, . . . , aδ(n)〉 6∈ R2

n

hence
A1 |= Ṗn(ȧ1, . . . , ȧδ(n)) 6⇔ A2 |= Ṗn(ȧ1, . . . , ȧδ(n)),

although Ṗn(ȧ1, . . . , ȧδ(n)) ∈ S.

Remark 2.2. If T is universal, then the implication (2) holds for all L-
structures A.

Proof. If T is universal and A |= T , then resAA |= T and thus resAA ∈ Ω.

Remark 2.3. If S is a set of atomic sentences, then the equivalence (3) holds
for any L-structure A.

Proof. If S only consists of atomic sentences, clearly

∀λ ∈ S (A |= λ⇔ resAA |= λ) .

Since T is just the Boolean closure of S, the equivalence (3) is established.

Let I be a (finite or infinite) set. Elements of I will be called individuals,
elements of ΩI will be called profiles. An aggregator is a map f : dom(f) →
ran(f) whose domain dom(f) is a subset of ΩI and whose range ran(f) is a
subset of Ω.

This framework is sufficiently general to cover the cases of preference
aggregation, propositional judgment aggregation, and modal aggregation:

• For the case of preference aggregation, the centrality of binary relations
makes it particularly natural to express preferences by a binary predicate
in first order logic (cf. Rubinstein [14], Lauwers and Van Liedekerke [10]).
A more elaborate formalisation and complete axiomatisation of Arrow’s
theorem in first order logic was recently given by Grandi and Endriss [6].

• For propositional judgment aggregation à la Dietrich and List [3], one
lets L have a single unary predicate Ḃ, modelling a belief operator. The
set A will be the agenda. The interpretation of Ḃȧ is “a is accepted”.
(Thus, the interpretation of Ai |= Ḃȧ is “under profile A, individual i
accepts a”, and the interpretation of f(A) |= Ḃȧ is “under profile A, a is
socially accepted”.) T can be any universal theory in that language. (The
use of the belief operator B enables us to distinguish between sentences
concerning acceptance or rejection of propositions in the agenda on the
one hand and elements of the agenda themselves on the other hand. By
that means we can take into account the more recent contributions on
judgment aggregation without full rationality, cf. e.g. Dietrich and List
[3], and allow judgment sets to be incomplete.5)

5Put more simply: If the individuals are not assumed to have complete judgment sets,
it makes a difference whether an individual actually rejects a proposition, i.e. accepts its
negation, or simply does not endorse that proposition. If one wants to make this distinction
in a formal framework, one needs a belief operator such as our B. We are grateful to an
anonymous referee who helped us to formulate this point more clearly.
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• For modal propositional judgment aggregation, one simply uses the
reduction of modal logic to first-order predicate logic, where the
individuals correspond to possible states of the world. Thus, the set A
will be the set of states of the world. Let there be in L one predicate Mp

each for the elements p of the agenda, modelling a modal belief operator
with world argument and proposition index. Let there also be a binary
predicate Ṙ in L, denoting the accessibility relation. The interpretation
of Ṙ(ȧ, ḃ) will thus be “b is accessible from world a”. The interpretation of
Ṁpȧ will be “proposition p is accepted in world a”. (The interpretation of
Ai |= Ṁpȧ is thus “under profile A, individual i accepts p in world a”, and
the interpretation of f(A) |= Ṁpȧ is “under profile A, p is socially accepted
in world a”.) The modal operator � will then not be an operator in the
strict sense any longer, but in can be defined as a family of sentences,
indexed by p:

�pv̇0 :≡ (̇∀̇v̇1)̇(̇Ṙ(v̇0, v̇1)→ Ṁpv̇1)̇

The interpretation of�pȧ is “p is accepted in all worlds which are accessible
from world a”, or just “p is necessarily accepted in world a”. T can be any
universal theory in that language, which includes the axioms of the modal
logical system employed (such as K, S4, S5, etc.).

3 Kirman-Sondermann generalised and the
impossibility in the finite case

As the literature on judgment aggregation has amply shown, the interplay of
the logical richness of the theory with the properties of aggregation rules is the
driving force of the impossibility results. The reason for this lies in the fact that
an important axiom for aggregation rules is the independence property, which
requires that the social acceptance of any given sentence only depends on the
individual support for this particular sentence (cf. Dietrich and List [4]).

For all λ ∈ T and all A ∈ ΩI , we denote the coalition supporting λ given
profile A, by

C(A, λ) := {i ∈ I : Ai |= λ} .

An aggregator f is said to be independent if and only if for all λ ∈ T and all
A,A′ ∈ dom(f), such that C(A, λ) = C(A′, λ) one has f(A) |= λ if and only if
f(A′) |= λ.

Now, every aggregator f induces a collection of decisive coalitions Cλf defined
by

Cλf := {C ⊆ I : ∀A ∈ dom(f) (C = C(A, λ)⇒ f(A) |= λ)} ,

and it is easily seen that if f is independent, then

Cλf = {C ⊆ I : ∃A ∈ dom(f) (C = C(A, λ), f(A) |= λ)}
= {C(A, λ) : A ∈ dom(f), f(A) |= λ}

We say that an aggregator f is paretian if and only if I ∈ Cλf for all λ ∈ T.
The independence and the Pareto properties have considerable strength together
which is well known from the contagion lemma in the theory of preference
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aggregation (according to which a decisive coalition for a particular pair of
alternatives is decisive for any pair of alternatives).6

Consider any formulae ς, τ ∈ T. Following standard terminology in the
literature on judgment aggregation (see List and Puppe [12]), we say that ς
conditionally entails τ under T (written ς `∗T τ) if there exists λ ∈ T such that
ς∧̇λ∧¬̇τ is inconsistent with T , while both ς∧̇λ and λ∧̇¬̇τ are consistent with T .
The set T is said to be totally blocked if the transitive closure of the conditional
entailment relation `∗T is strongly connected, i.e. if any formula is related to
any other one by a sequence of conditional entailments.

Lemma 3.1 (Contagion Lemma). Let f : ΩI → Ω be paretian and independent.
If T is totally blocked, then Cςf = Cτf for all ς, τ ∈ T.

Proof. Consider two sentences ς, τ such that ς `∗T τ . Then there exists some
λ ∈ T such that T ∪{λ, ς} ` τ . Given any independent and paretian aggregator
f as well as some C ∈ Cςf , construct a profile A ∈ ΩI such that

1. C = C(A, ς∧̇λ)

2. N \ C = C(A, λ∧̇¬̇τ), whence in particular

3. C(A, λ) = I

Since f is paretian, property 3 implies that C(A, λ) ∈ Cλf , hence f(A) |= λ,
and since f is independent, property 1 implies that f(A) |= ς. It follows that
f(A) |= τ (since Ai |= T for all i ∈ I as A ∈ ΩI , hence f(A) |= T by the Pareto
property, and T ∪ {λ, σ} ` τ). In other words, C(A, τ) ∈ Cτf . However, by
property 3, we have

C(A, λ∧̇¬̇τ) = C(A, ¬̇τ) = N \ C(A, τ),

thus C(A, τ) = C by property 2. Hence, we have actually shown that C =
C(A, τ) ∈ Cτf . Since this holds for an arbitrary C ∈ Cςf and for all σ, τ with
ς `∗T τ , it follows that C

ς
f ⊆ Cτf for all ς, τ ∈ T such that ς `∗T τ . If T is totally

blocked, one has
ς `∗T φ1 `∗T · · · `∗T φm `∗T τ

and
τ `∗T ψ1 `∗T · · · `∗T ψn `∗T ς

for certain φ1, . . . φm, ψ1, . . . , ψn ∈ T (m,n ≥ 0), hence

Cςf ⊆ C
φ1

f ⊆ · · · ⊆ C
φm

f ⊆ Cτf ,

i.e. Cςf ⊆ Cτf , and
Cτf ⊆ C

ψ1

f ⊆ · · · ⊆ C
ψn

f ⊆ Cςf ,

i.e. Cτf ⊆ C
ς
f , thus Cτf = Cςf .

6For the role of the contagion lemma in judgment and preference aggregation see List and
Polak [11].
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Consider the set of decisive coalitions

Df := {C ⊆ I : ∀λ ∈ T ∀A ∈ dom(f) (C = C(A, λ)⇒ f(A) |= λ)} .

If T is totally blocked, then the Contagion Lemma allows us to characterise
any paretian independent aggregator with universal domain in a neutral way by
a single collection Df = Cλf for all λ ∈ T. The set of decisive coalitions then
simply becomes

Df =
{
C ⊆ I : ∀λ ∈ T C ∈ Cλf

}
=
{
C ⊆ I : ∃λ ∈ T C ∈ Cλf

}
= {C ⊆ I : ∃λ ∈ T ∃A ∈ dom(f) (C = C(A, λ)⇒ f(A) |= λ)}
= {C(A, λ) : λ ∈ T, A ∈ dom(f), f(A) |= λ} .

We now introduce in the model-theoretic framework a set of axioms that are
related to the standard assumptions on aggregation rules in the literature both
on preference and on judgment aggregation.

(A1). dom(f) = ΩI .

(A1’). There exist models A1,A2,A3 ∈ Ω such that

1. A1 |= µ∧̇ν, A2 |= µ∧̇¬̇ν, A3 |= ¬̇µ∧̇ν, and
2. {A1,A2,A3}I ⊆ dom(f).

(A2). For all A ∈ dom(f) and all λ ∈ T, if f(A) |= λ, then C(A, λ) 6= ∅.

(A3). For all A,A′ ∈ dom(f) and all λ, λ′ ∈ T such that C(A, λ) = C(A′, λ′),
one has f(A) |= λ if and only if f(A′) |= λ′.

(A1) is the axiom of Universal Domain of which Axiom (A1’) is a significant
weakening. Indeed, it is not difficult to prove that axiom (A1) implies axiom
(A1’):

Remark 3.2. If there exist µ, ν ∈ S such that µ∧̇ν, µ∧̇¬̇ν, ¬̇µ∧̇ν are each
consistent with T , then there already exist three pairwise different models
A1,A2,A3 ∈ Ω such that A1 |= µ∧̇ν, A2 |= µ∧̇¬̇ν, and A3 |= ¬̇µ∧̇ν.

Proof. Since each of the three test sentences µ∧̇ν, µ∧̇¬̇ν, ¬̇µ∧̇ν is consistent with
T , the completeness of predicate logic yields models B1,B2,B3 such that B1 |=
T ∪ {µ∧̇ν}, B2 |= T ∪ {µ∧̇¬̇ν}, and B3 |= T ∪ {¬̇µ∧̇ν}. Define A1 := resAB1,
A2 := resAB2, and A3 := resAB3. By implication (2), A1,A2,A3 ∈ Ω, and by
equivalence (3), we have A1 |= µ∧̇ν, A2 |= µ∧̇¬̇ν, and A3 |= ¬̇µ∧̇ν. Finally, since
the three test sentences are pairwise inconsistent, the three models A1,A2,A3

must be pairwise different.

Axiom (A2) is a generalised Pareto Principle obtained by weakening the
usual Pareto property. (A3) is a generalised form of the axiom of Systematicity,
which itself is a combination of the independence property and the neutrality
property implied by the Contagion Lemma. Admittedly, it is hard to find a
direct justification for this strong condition and its relaxation plays an important
role in the literature on judgment aggregation (see e.g. Pauly and van Hees [13]).
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However, the contagion of decisiveness via conditional entailment plays such a
central role in aggregation problems that systematicity can be considered the
reference case.

An aggregator f will be called Arrow-rational if and only if the axioms
(A1),(A2),(A3) are satisfied for T; f will be called weakly Arrow-rational if and
only if the axioms (A1’),(A2),(A3) are satisfied.

We denote by AR the set of all Arrow-rational aggregators, and by AR′

the set of all weakly Arrow-rational aggregators. Since (A1) implies (A1’) (see
Remark 3.2), AR ⊆ AR′.

Remark 3.3. If f satisfies (A3), then for all A ∈ dom(f) and λ ∈ T,

C(A, λ) ∈ Df ⇔ f(A) |= λ.

Proof. Suppose f satisfies (A3), let A ∈ dom(f) and λ ∈ T. By definition,
f(A) |= λ implies C(A, λ) ∈ Df . Conversely, if C(A, λ) ∈ Df , then there exist
A′ ∈ dom(f) and λ′ ∈ T with f(A′) |= λ′ and C(A, λ) = C(A′, λ′). As f satisfies
(A3), this means f(A) |= λ.

Now we verify the (ultra)filter properties of Df :

Definition 3.4. A collection D ⊆ 2I of coalitions is a filter on I if and only if
it has the following properties:

(F1). ∅ /∈ D (non-triviality).

(F2). For all C ∈ D and C ′ ∈ 2I , if C ⊆ C ′ then C ′ ∈ D (closure under
supersets).

(F3). For all C,C ′ ∈ D, C ∩ C ′ ∈ D (closure under intersections).

A filter D ⊆ 2I is an ultrafilter if for all C ∈ 2I either C ∈ D or I\C ∈ D

(but not both).

Lemma 3.5. Let f ∈ AR′, then Df is an ultrafilter.

Proof. We have to verify the ultrafilter properties for Df . First, since f satisfies
(A2), Df cannot contain ∅.

The next property which we have to verify is that Df is closed under
supersets; we will need this result in order to show that Df is closed under
intersections. Let, for that purpose, C ∈ Df and C ′ ⊆ I with C ⊆ C ′. We shall
show that C ′ ∈ Df . Since f satisfies (A1’), the domain of f contains a profile
A such that

∀i ∈ C Ai |= µ∧̇ν
∀j ∈ C ′ \ C Aj |= µ∧̇¬̇ν
∀k ∈ I \ C ′ Ak |= ¬̇µ∧̇ν.

Note that C (A, µ∧̇ν) = C ∈ Df , so f(A) |= µ∧̇ν due to Remark 3.3. In
particular, f(A) |= µ, whence readily C (A, µ) ∈ Df . On the other hand,
however, C ′ = C (A, µ) by the choice of A. Summarising this, we arrive at
C ′ ∈ Df .
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Now we prove that Df is closed under intersections. Let C,C ′ ⊆ I. Again
since f satisfies (A1’), there must be a profile A ∈ dom(f) such that

∀i ∈ C ∩ C ′ Ai |= µ∧̇ν
∀j ∈ C \ (C ∩ C ′) Aj |= µ∧̇¬̇ν

∀k ∈ I \ C Ak |= ¬̇µ∧̇ν.

Then C = C(A, µ) ∈ Df , so f(A) |= µ by Remark 3.3. Also C ′ ⊆ C(A, ν)
and C ′ ∈ Df , therefore C(A, ν) ∈ Df , as we have already shown that Df is
closed under supersets. Again by Remark 3.3, we obtain f(A) |= ν, too. Thus,
f(A) |= µ∧̇ν, therefore C ∩ C ′ = C(A, µ∧̇ν) ∈ Df .

Finally, we need to show that Df is an ultrafilter, not merely a filter. Hence,
let C ⊆ I, and let us show that C ∈ Df or I \ C ∈ Df . Since f satisfies (A1’),
the domain of f contains a profile A such that

∀i ∈ C Ai |= µ∧̇¬̇ν
∀j ∈ I \ C Aj |= ¬̇µ∧̇ν.

Then Ai |= (̇µ∨̇ν )̇∧̇¬̇(̇µ∧̇ν )̇ for all i ∈ I, therefore Ai |= ¬̇(̇(̇µ∨̇ν )̇∧̇¬̇(̇µ∧̇ν )̇)̇ for
no i ∈ I. In other words,

C
(
A, ¬̇(̇(̇µ∨̇ν )̇∧̇¬̇(̇µ∧̇ν )̇)̇

)
= ∅,

whence
f(A) 6|= ¬̇(̇(̇µ∨̇ν )̇∧̇¬̇(̇µ∧̇ν )̇)̇

as f satisfies (A2). Therefore,

f(A) |= (̇µ∨̇ν )̇∧̇¬̇(̇µ∧̇ν )̇.

This means that either f(A) |= µ or f(A) |= ν, hence either C(A, µ) ∈ Df

or I \ C = C(A, ν) ∈ Df . However, I \ C = C(A, ν) and C = C(A, µ) by
construction of A. Hence, either C ∈ Df or I \ C ∈ Df .

A well-known construction from model theory is based precisely on the
notion of a (ultra)filter and captures the idea that what holds in “many”
(measured by means of the (ultra)filter) individual structures should hold in the
aggregate structure. This is the reduced product (or ultraproduct) construction.

In order to define this concept, let us fix a filter D on I. Define a relation
∼D on AI by

∀a, a′ ∈ AI a ∼D a′ ⇔ {i ∈ I : ai = a′i} ∈ D.

The filter properties of D make it easy to verify that ∼D is an equivalence
relation. For any a ∈ AI , the equivalence class of a with respect to ∼D shall
be denoted [a]D, and we shall write AI/D for the set of all such equivalence
classes.

Definition 3.6. Let D be a filter on I. Consider a family 〈Ai〉i∈I of L-
structures, and denote by Rn,i the interpretation of predicate Ṗn under Ai.
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The reduced product of 〈Ai〉i∈I with respect to D is an L-structure B =
〈B, {Rn : n ∈ N}〉 wherein B = AI/D and

Rn =
{〈

[a1]D, . . . , [a
δ(n)]D

〉
:
{
i ∈ I :

〈
a1i , . . . , a

δ(n)
i

〉
∈ Rn.i

}
∈ D

}
for all n ∈ N.

The reduced product of 〈Ai〉i∈I with respect to D will be denoted
∏
i∈I Ai/D.

If D is an ultrafilter on I, then
∏
i∈I Ai/D is called the ultraproduct of 〈Ai〉i∈I

with respect to D.

Note that the filter properties of D ensure that the above definition of Rn,
the interpretation of Ṗn under the reduced product, is well-defined!

Remark 3.7. Let D be a filter on I and A ∈ ΩI . Then

resA
∏
i∈I

Ai/D |= λ⇔ C(A, λ) ∈ D (4)

for all λ ∈ S. If D is an ultrafilter, then equivalence (4) holds even for all λ ∈ T.

Proof. Let D be a filter, let A ∈ ΩI and let λ ∈ T. By equivalence (3),

resA
∏
i∈I

Ai/D |= λ⇔
∏
i∈I

Ai/D |= λ.

Now, for all λ ∈ S, one has

resA
∏
i∈I

Ai/D |= λ⇔ {i ∈ I : Ai |= λ} ∈ D

by definition of the reduced product, which already is equivalence (4) (by the
definition of C(A, λ)). If D is an ultrafilter, then Łoś’s theorem assures us that
this equivalence even holds for all λ ∈ T.

Lemma 3.8. Let f ∈ AR′, then f(A) = resA
∏
i∈I Ai/Df for all A ∈ dom(f).

Proof. By Lemma 3.5, Df is a filter, whence resA
∏
i∈I Ai/Df is well-defined

for all A ∈ dom(f). Let us now fix arbitrary A ∈ dom(f) and λ ∈ S. Combining
Remark 3.7 and Remark 3.3,

resA
∏
i∈I

Ai/Df |= λ⇔ C(A, λ) ∈ Df ⇔ f(A) |= λ,

thus resA
∏
i∈I Ai/Df |= λ ⇔ f(A) |= λ. Since λ ∈ S was arbitrary, we deduce

by means of implication (1) that f(A) = resA
∏
i∈I Ai/Df .

Lemma 3.9. Suppose D is an ultrafilter, and consider the aggregator
resA

∏
/D, defined by

resA
∏

/D : ΩI → Ω, A 7→ resA
∏
i∈I

Ai/D.

Then resA
∏
/D ∈ AR.
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Proof. Let A ∈ ΩI . Clearly, both the ultraproduct
∏
i∈I Ai/D and its restriction

to A are well-defined. By Łoś’s theorem,
∏
i∈I Ai/D |= T , and by implication

(2), resA
∏
i∈I Ai/D ∈ Ω. Therefore, resA

∏
/D : ΩI → Ω. Let us now verify

the axioms (A1), (A2), and (A3) for resA
∏
/D.

(A1). As we have just seen, resA
∏
/D is well-defined on ΩI .

(A2). Let A ∈ ΩI and λ ∈ T such that resA
∏
/D(A) |= λ, that is

resA
∏
i∈I Ai/D |= λ. Then, by Remark 3.7, we have C(A, λ) ∈ D, hence

C(A, λ) 6= ∅ as D is an ultrafilter.

(A3). For all A,A′ ∈ ΩI and all λ, λ′ ∈ T such that C(A, λ) = C(A′, λ′), Remark
3.7 entails that resA

∏
/D(A) |= λ if and only if resA

∏
/D(A′) |= λ′.

Let βI denote the set of all ultrafilters on the set I.

Theorem 3.10 (Kirman-Sondermann correspondence (generalised)). There is
a bijection between AR and βI, given by Λ : AR → βI, f 7→ Df . Its inverse
is given by Λ−1 : βI → AR, D 7→ resA

∏
/D, wherein, as in Lemma 3.9,

resA
∏
/D denotes the aggregator A 7→ resA

∏
i∈I Ai/D.

Proof. First, note that for all f ∈ AR, Λ(f) = Df is an ultrafilter by Lemma 3.5,
whence the range of Λ is indeed a subset of βI. Next, it is easy to see that the
map D 7→ resA

∏
/D must be inverse to Λ because Lemma 3.8 teaches that

f = resA
∏
/Df , in other words resA

∏
/ (Λ(f)) = f for all f ∈ AR.

Furthermore, since Λ has an inverse Λ−1, it must be injective. (Indeed,
if Λ(f) = Λ(g) for any f, g ∈ AR, then f = Λ−1 (Λ(f)) = Λ−1 (Λ(g)) = g.)
Finally, by Lemma 3.9, the range of Λ−1 is contained in AR. Hence, for any
D ∈ βI, the aggregator Λ−1(D) is in the domain of Λ, whence D = Λ

(
Λ−1(D)

)
is in the range of Λ. Therefore, Λ is surjective.

As corollary of this result we immediately obtain the well-known
impossibility result for a finite set of individuals.

We say that f is dictatorial if and only if there exists some if ∈ I such that
Df = {J ⊆ I : if ∈ J}.

Remark 3.11. Let f be an aggregator, and suppose I is finite. Then, f is
dictatorial if and only if Df is an ultrafilter.

Proof. A filter on a finite set is an ultrafilter if and only if its intersection is a
singleton. Thus, {if} =

⋂
Df .

Corollary 3.12 (Impossibility theorem). Suppose I is finite. If f ∈ AR, then
f is dictatorial.

4 Impossibility theorems for infinite populations
For the following, assume that there is some filter Df on I such that for all
A ∈ dom(f),

f(A) = resA
∏
i∈I

Ai/Df .
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Observe that the restriction to A is important since it is a necessary condition
(for f to be an aggregator) that the aggregate model f(A) belongs to Ω and
thus must have A as its domain. Moreover, if Df is an ultrafilter, then, by
application of Łos’s theorem, for every L-sentence ψ,∏

i∈I
Ai/Df |= ψ ⇔ {i ∈ I : Ai |= ψ} ∈ Df ,

which guarantees that
∏
i∈I Ai/Df |= T and hence f(A) = resA

∏
i∈I Ai/Df |=

T since T consists only of universal sentences. Therefore, if f is given as the
restriction of an ultraproduct to A, then f(A) ∈ Ω for all profiles A ∈ ΩI .

For the case of an infinite set of individuals there exist free ultrafilters and
therefore Arrow’s impossibility theorem does not apply (as was already shown
by Fishburn [5]).

However, the very construction of an ultraproduct bears another source
of impossibility results as remarked by Lauwers and Van Liedekerke [10]:
Ultraproducts with respect to free ultrafilters have a strictly larger domain than
the factor structures, and thus, witnesses to certain existential statements in the
ultraproduct do not need to belong to the domain of the factor structures (cf.
Hodges [8] for a more comprehensive discussion of the role of ultraproducts for
the construction of extensions of given structures). Therefore, if an aggregator
is the restriction (to the factor-domain) of an ultraproduct7 and is required
to preserve some non-universal statement (for example: existence of a best
alternative; continuity; etc.), it must be the restriction of an ultraproduct with
respect to a principal ultrafilter and will thus be dictatorial.

Indeed, Lauwers and Van Liedekerke [10] have remarked that in the setting
of preference aggregation, the preservation of non-universal formulae generically
leads to dictatorial impossibility results. For example, the deeper reason
for Campbell’s [2] theorem — which asserts the impossibility of satisfying
Arrow’s rationality axioms plus non-dicatorship even in infinite populations
when preferences are assumed to be continuous — is that the formula defining
continuity of preference orderings is non-universal. (To be more precise, it is
neither universal nor existential, not even a so-called ∀∃ formula.8) The same
phenomenon can be observed in the more general setting of first-order predicate
aggregation theory.

In order to illustrate this, let us consider the simplest case, viz. preservation
of a formula with one existential quantifier in a restricted ultraproduct
construction. Suppose hence ψ = (̇∃̇v̇)̇φ(v̇) for some L-formula φ(v̇) with one
free variable, assume I is infinite, let D be an ultrafilter on I, and consider a
family A = 〈Ai〉i∈I of models of T , all with the same domain A. Suppose that
whilst (̇∃̇v̇)̇φ(v̇) is true in all models Ai, there does not exist an almost uniform
witness, i.e. there exists no a ∈ A such that φ[ȧ] would be true in D-almost
all models Ai. Then, Łoś’s theorem teaches that φ[ȧ] fails in

∏
i∈I Ai/D for all

a ∈ A, and therefore ψ cannot be true in the restriction of
∏
i∈I Ai/D to A.

7For instance, Arrovian preference aggregators always map every profile to the restriction
— to the set of alternatives — of its ultraproduct with respect to the ultrafilter of decisive
coalitions, cf. Lauwers and Van Liedekerke [10].

8These are formulae which, in their prenex normal form, start with a (possibly empty)
block of universal quantifiers followed by a (possibly empty) block of existential quantifiers
and finally a quantifier-free formula.) The class of ∀∃ formulae is interesting from a model-
theoretic vantage point, as the class of models of any theory that consists of ∀∃ formulae only is
closed under forming unions of elementary chains (another model-theoretic limit construction).
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This phenomenon can be used as a source of more general impossibility
theorems in abstract aggregation theory. Our result will give a sufficient
condition for aggregators that preserve some non-universal sentence to be a
dictatorship.

For this purpose, let us fix an arbitrary non-universal formula. In its prenex
normal form it can then be written as ψ ≡ (̇∀̇ẋ1)̇ . . . (̇∀̇ẋm)̇(̇∃̇ẏ)̇φ (ẋ1, . . . , ẋm; ẏ),
wherein m is a nonnegative integer and φ (ẋ1, . . . , ẋm; ẏ) is some L-formula with
m+ 1 free variables.9 For the rest of this paper, ψ and φ are thus fixed.

In order to formulate our results, we need some more terminology. We
say that a profile A ∈ ΩI has finite witness multiplicity with respect to φ if
and only if Ai |= ψ for all i ∈ I, but for all a1, . . . , am, a′ ∈ A, the coalition
{i ∈ I : Ai |= φ(ȧ1, . . . , ȧm; ȧ′)} is finite. An aggregator f is said to preserve
an L-sentence ψ if and only if for all A ∈ dom(f), one has f(A) |= ψ whenever
Ai |= ψ for all i ∈ I. Moreover, we say that φ is free of negation, disjunction and
universal quantification if and only if its non-abbreviated form does not contain
the symbols ¬̇, ∨̇ nor ∀̇, in other words, if the only logical symbols appearing in
it are ∧̇ and ∃̇. Henceforth we assume φ to possess this property.0

We can now state the impossibility theorem announced previously:

Theorem 4.1. Let f be an aggregator that preserves ψ, and assume that there
exists some A ∈ dom(f) with finite witness multiplicity with respect to φ.

1. If Df is an ultrafilter, then it is also principal (whence f is a dictatorship).

2. Df contains a finite coalition (whence f is an oligarchy).

Proof of Theorem 4.1. 1. Since f(A) is just the A-restriction of the
ultraproduct of A with respect to Df , Łoś’s theorem readily yields the
equivalence

f(A) |= φ(ȧ1, . . . , ȧm; ȧ′)

⇔ {i ∈ I : Ai |= φ(ȧ1, . . . , ȧm; ȧ′)} ∈ Df (5)

for all a1, . . . , am, a
′ ∈ A. Since A is assumed to have

finite witness multiplicity with respect to φ, we know that
{i ∈ I : Ai |= φ(ȧ1, . . . , ȧm; ȧ′)} is finite for all a1, . . . , am, a′ ∈ A, and
that Ai |= ψ for all i ∈ I, whence f(A) |= ψ as f preserves ψ.
Therefore, for all a1, . . . , am ∈ A there is some a′ ∈ A such that
f(A) |= φ [ȧ1, . . . , ȧm; ȧ′], hence

{i ∈ I : Ai |= φ [ȧ1, . . . , ȧm; ȧ′]} ∈ Df

by equivalence (5), although

C~a,a′ := {i ∈ I : Ai |= [ȧ1, . . . , ȧm; ȧ′]}

is finite. Thus, the ultrafilter Df contains a finite subset of I, viz. C~a,a′ .
But then, Df must already be principal, namely Df = {C ⊆ I : i ∈ C}
for some individual i ∈ C~a,a′ . The individual i is the dictator.

9Note (i) that we explicitly allow the casem = 0, so that ψ may be an existential statement,
and (ii) that φ — which is assumed to be in normal form – might start with a block of
existential quantifiers, in which case the first block of existential quantifiers in ψ would consist
of several quantifiers, not just one.

0Corrected after publication.
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2. By assumption, f(A) is just the A-restriction of the reduced product of A
with respect to Df . Since φ is free of negation, disjunction and universal
quantification, an analysis of the proof of Łoś’s theorem reveals that we
must have

f(A) |= φ(ȧ1, . . . , ȧm; ȧ′)

⇔ {i ∈ I : Ai |= φ(ȧ1, . . . , ȧm; ȧ′)} ∈ Df (6)

for all a1, . . . , am, a′ ∈ A. Hence, as before one can show that the
filter Df contains a finite subset of I, viz. C~a,a′ . But then, Df =
{C ⊆ I : C ′ ⊂ C} for some C ′ ⊆ C~a,a′ . This C ′, necessarily a finite
set, is the set of oligarchs.

Already Lauwers and Van Liedekerke [10, p. 230, Property 4 (of aggregation
functions)] had obtained a dictatorial impossibility theorem for preference
aggregators that preserve certain non-universal formulae (i.e. formulae which
contain at least one existential quantifier). However, their theorem is based on
a syntactic condition which is quite restrictive as it entails that A is countable
and that I is the set of nonnegative integers N. (Lauwers and Van Liedekerke’s
[10] proof strategy consisted essentially in constructing an aggregator based on
a free ultrafilter which does not preserve the truth value of the non-universal
formula in question, because the element which satisfies it does, by construction,
not belong to A.) Our condition allows uncountable sets of alternatives and
uncountable populations.

Moreover, even in the special setting of countably many alternatives and
individuals, our condition is at least as general as the one of Lauwers and Van
Liedekerke [10]:

Theorem 4.2. Let I = N and A = {αi}i∈N. For all n ∈ N, let ψn be the
formula

(̇∀̇ẋ1)̇ . . . (̇∀̇ẋm)̇(̇∀̇ẏ)̇(̇φ (ẋ1, . . . , ẋm; α̇n+1) ∧̇(̇φ (ẋ1, . . . , ẋm; ẏ)→
∧̇n

j=0
ẏ ˙6=α̇j )̇)̇.

If T ∪{ψn} is consistent for all n ∈ N, then there exists some A ∈ ΩI with finite
witness multiplicity with respect to φ.

Proof of Theorem 4.2. Suppose that T ∪ {ψn} is consistent for all n ∈ N. Then
there exists for every n ∈ N some model An of T ∪{ψn} with domain A.10 Then,
for every k ∈ N and arbitrary a1, . . . , am ∈ A, the set

{n ∈ N : An |= φ [ȧ1, . . . , ȧm; α̇k]}

must contain k − 1, but none of the integers ≥ k. It is therefore finite. Since
A = {αk}k∈N, we conclude that for all a ∈ A and all a1, . . . , am ∈ A, the set

{n ∈ N : An |= φ [ȧ1, . . . , ȧm; ȧ]}
10For, by completeness, there exists for every n ∈ N some model An of T ∪ {ψn} with

domain An, relational interpretations Rm ⊆ A
δ(m)
n (m ∈ N) and pairwise distinct constant

interpretations cna ∈ An (a ∈ A). Since T ∪{ψn} is universal, the restriction of this relational
structure to {can : a ∈ A} will still be a model of T ∪ {ψn}. Without loss of generality, one
may assume that can = a for all a ∈ A.
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is finite. On the other hand, ψn implies ψ, so each of the An is a model of ψ.
This proves that 〈An〉n∈I has finite witness multiplicity with respect to φ.

Let us finally consider some applications of our impossibility theorem
(Theorem 4.1):

• In preference aggregation, as already remarked by Lauwers and Van
Liedekerke [10, p. 231], any Arrovian aggregator which preserves either
continuity or the existence of upper bounds or lower bounds must be
dictatorial.

• In propositional judgment aggregation à la Dietrich and List [3], this
result means that a judgment aggregator which satisfies certain rationality
axioms and preserves some existential conjunctive statement about the
elements of the agenda must be oligarchic, provided usual agenda
conditions are met and there exists a profile with finite witness multiplicity.
Under stronger agenda conditions, we even have a dictatorial impossibility
result for aggregators which preserve some non-universal statement.

• In modal propositional judgment aggregation, any rational aggregator
which preserves some existential conjunctive statement about possible
worlds (in the Kripke semantics) must be oligarchic, provided there exists a
profile with finite witness multiplicity. Under stronger agenda conditions,
we even have a dictatorial impossibility result for aggregators which
preserve some non-universal statement about possible worlds.

5 Conclusion
In a model-theoretic framework for the analysis of aggregation problems the
ultraproduct construction allows one to derive the correspondence between
abstract aggregation rules in an Arrovian spirit and (ultra)filters of decisive
coalitions on the set of individuals. Whilst this construction immediately reveals
why dictatorship results do not carry over to the infinite case — where free
ultrafilters exist —, it opens up another source of impossibility results, which
we have analyzed in this paper: Non-universal statements are generically not
preserved under aggregation. This problem is, of course, hardly surprising from
the vantage point of model theory (given that an important use of ultraproducts
is the enlargement of a given structure). However, it shows the strength of a
seemingly innocuous condition on aggregation rules — viz. that the aggregate
model has exactly the same domain as the individual models (the factor domains
of the ultraproduct) —, as this requirement can only be met for sufficiently rich
theories if the ultrafilter of decisive coalitions is principal, i.e. the aggregation
rule is dictatorial.
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